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Abstract—The use of Mutual Information (MI) as a measure to
evaluate the efficiency of cryptosystems has an extensive history.
However, estimating MI between unknown random variables
in a high-dimensional space is challenging. Recent advances in
machine learning have enabled progress in estimating MI using
neural networks. This work presents a novel application of MI
estimation in the field of cryptography. We propose applying this
methodology directly to estimate the MI between plaintext and
ciphertext in a chosen plaintext attack. The leaked information,
if any, from the encryption could potentially be exploited by
adversaries to compromise the computational security of the
cryptosystem. We evaluate the efficiency of our approach by
empirically analyzing multiple encryption schemes and baseline
approaches. Furthermore, we extend the analysis to novel net-
work coding-based cryptosystems that provide individual secrecy
and study the relationship between information leakage and input
distribution.

Index Terms—Mutual Information, Cryptography, Individual
Secrecy, Input Distribution, Machine Learning.

I. INTRODUCTION

Mutual information (MI) has a long history in cryptography,
dating back to the era of Claude Shannon, who introduced the
concept of information leakage and its relationship to secure
communication systems [1]. According to the definition of
perfect secrecy [1], the MI between the ciphertext and the
plaintext is zero (i.e., a posteriori probability and a priori
probability of finding the plaintext remains the same even if
the ciphertext is known). However, achieving perfect secrecy
requires as large a key as the message which is difficult in
practice. Various relaxations from this condition have been
explored, including computational security against adversaries
with limited resources [2], [3] and information-theoretic se-
curity, where Eve’s access to information is restricted [4]–
[6]. Further deviations, such as individual secrecy, have also
been widely explored [7]–[9]. Recent research combining
information-theoretic methods and computational security no-
tions without compromising communication rate has been
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shown to provide energy-efficient secure communication sys-
tems by linear coding across the data of multiple links and
encrypting a portion of it [10]–[12].

However, these relaxations on the perfect secrecy condition
result in information leakage between the ciphertext and
plaintext. The leaked information from a cryptosystem can be
used to evaluate its strength, particularly against side-channel
attacks that exploit the physical properties of the implementa-
tion, such as power consumption and time. Although extensive
research has been conducted on MI analysis on side channels
to evaluate the security of cryptographic systems [13], [14],
application of MI between the plaintext and ciphertext directly
in the context of chosen plaintext attack [15], [16] has not
been explored as much. Inferring the MI between the plaintext
and its ciphertext could potentially reduce the complexity of
finding the key, and thus the security level of the cryptosystem
[13].

Many security schemes, especially those providing individ-
ual secrecy, also rely on randomness and expect the input
messages to be both independent and uniformly distributed.
This ensures that patterns in plaintext do not aid eavesdroppers
by helping them deduce information from the ciphertext.
Encryption schemes like AES Electronic Cipher Block (ECB)
mode [17] and those providing individual secrecy can be
susceptible to vulnerabilities arising from such patterns, po-
tentially leaking additional information that assists adversaries
in learning more about the combination of input messages.
Furthermore, using the same encryption key for multiple
encryption instances, especially with large files, can lead to
an increase in the mutual information between the plaintext
and ciphertext. From an information theory perspective, the
only missing element is the key itself. Nevertheless, when
dealing with properly uniform data and employing secure
encryption methods, the ciphertext may appear entirely un-
correlated with the plaintext. Thus, the MI analysis between
plaintext and ciphertext is of special interest in such cases but
has been proven challenging due to their high-dimensional and
nonlinear relationship. Recent advances in machine learning
offer practical ways to estimate MI, using stochastic gradient
descent over neural networks [18]. This estimation is useful
for evaluating the strength of the cryptosystem since it can be
exploited by malicious users.

In this article, we explore the use of MI estimation using
neural networks to identify weak cryptosystems and their
potential use in chosen plaintext attacks. Furthermore, we dis-
cuss the different assumptions from the information-theoretic
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aspect of the cryptosystem and analyze the impact of input
uniformity on security. We also use the novel MI estimator
using neural networks (MINE) [18] to check information
leakage due to the partial encryption scheme presented in the
Hybrid Universal Network Coding Cryptosystem (HUNCC)
[10], [19] and present the necessary guidelines for its practical
use. We test the efficiency of such estimators in identifying
the correlation between the plaintext and ciphertext without
access to the key and its application as a tool for evaluating
the security of cryptographic systems.

II. NEURAL ESTIMATION OF MUTUAL INFORMATION ON
CRYPTOSYSTEMS

MI between variables with unknown distributions has been
prohibitively difficult to calculate, making it an even big-
ger challenge to calculate MI for a finite dataset of high
dimensional plaintext ciphertext pairs. However, the neural
estimation of MI proves to be converging to a lower bound
as the number of samples goes to infinity [18, Theorem 2].
This process follows the notion that MI between two random
variables X and Y can be expressed by the Kullback-Leibler
(KL) Divergence, the distance between their joint distribution
and the product of their marginal distributions.

I(X;Y ) = DKL(P (X,Y )||P (X)P (Y ))

Donsker-Varadhan representation of KL divergence is used
to estimate MI, where Ω is the product sample space of the
distributions P1 and P2, and the supremum is taken over all
functions F , with a finite expectation. As seen in [18], F can
be modeled as a neural network Fϕ, where ϕ is optimized
such that a maximum of Iϕ(X;Y ) can be computed using
stochastic gradient descent (SGD) [20].

DKL(P1||P2) = sup
F :Ω→R

EP1
[F ]− log(EP2

[eF ])

Iϕ(X;Y ) = EP (X,Y )[Fϕ]− log(EP (X)P (Y )[e
Fϕ ])

However, challenges have arisen from high variance with
large MI estimations when solving the equation above. To
mitigate this problem, [21] added a stabilization term to fix
this problem.

Iϕ(X;Y ) = EP (X,Y )[Fϕ]− log(EP (X)P (Y )[e
Fϕ ])

− 0.1(log(EP (X)P (Y )[e
Fϕ ]))2

This regularization term helps the optimizer find one solu-
tion for our estimation, rather than wandering between a class
of several functions. A more detailed discussion on the MI
estimation can be found in [18], [21].
A. Neural Estimation Procedure

Mutual information neural estimation has been successfully
used in different applications and optimizations of MI [18],
[22], [23] and we demonstrate the estimator’s capabilities with
cryptographic protocols. To set the baseline, a few extreme
cases are considered in section II-B and the experiments are
further extended to several popular cryptographic protocols in
section II-C.

Algorithm 1 MI Estimation for Cryptosystems
1: Input Plainext X for N samples
2: Encrypt(x) for ciphertext Y for N samples
2: Initialize network parameters θ
4: repeat
5: Find I(X;Y) between the sample set
6: Compute SGD optimizing and updating θ
7: until convergence

The estimation of MI in our experiments is achieved using
the gradient descent of a neural network that takes the batches
of the plaintext-ciphertext pairs as the input [18], [21], as
shown in alg. 1. Specifically, the network consists of two
intermediate layers of 100 nodes and an output node providing
the MI. The number of input nodes depends on the dimensions
of the input to the neural network. Our baseline experiments
require 32 nodes in the input layer. We use ReLU non-linearity
between layers. For each estimation, we use 100,000 samples.
The plaintext and ciphertext each have a length of 16 bytes
in our initial set of experiments. We use batch size 10,000,
learning rate 1e-4, and 2000 or 5000 epochs, depending on
the complexity of the protocol.

B. Baseline Experiments

For our baseline experiments to analyze the efficiency of
the neural estimation, we deploy it on a few baseline scenarios
such as plaintext and ciphertext being exactly the same (No
encryption), one-time pad encryption, one-time pad with key,
and simple XOR with the same key. We can get the true MI of
no encryption setting, by using I(X;Y ) = H(X)−H(X|Y ),
where H is the Shannon entropy. Consider X to be our
plaintext and Y to be our ciphertext. Since we do not encrypt,
X = Y , and by definition H(X|Y ) = 0 when Y = X .
Since our inputs are uniformly generated, we can calculate
I(X;Y ) = H(X) ≃ 11.09 nats1 and use this as an upper
bound and performance indicator. Similarly, for a completely
uncorrelated plaintext and ciphertext scenario, H(X|Y ) =
H(X) and I(X;Y ) = 0 by principle. However, the estimator
is able to optimize the MI over the finite dataset and estimates
Iϕ(X;Y ) a value negligibly greater than zero.

Our experiments with neural estimation for no encryption
setting provide the MI estimation of INO(X;Y ) = 9.7 nats
converging around 100 epochs, as shown in Fig. 1. This shows
that the MI estimation of our 16 dimension variables performs
with great accuracy. The MI estimation of the repeating key
XOR results in IXOR(X;Y ) = 7.8 nats. This high MI
estimation matches our expectations since XOR-ing with the
same key is a simple operation that results in a high correlation
between the two variables. For our baseline estimation of
a strong encryption scheme, we use a one-time pad (OTP),
proven to provide perfect secrecy, i.e., zero MI between
plaintext and ciphertext [1]. The MI estimation for the OTP
is approximately 0.05 nats. However, if we add the key used

1Our estimator uses natural logarithm



Fig. 1. Baseline MI estimation results

in OTP to the input, the estimator is easily able to detect the
correlation of X and Y , as shown in Fig.1.

C. MI estimation for popular cryptographic protocols

We now use our estimator on several some well-known
encryption schemes, including AES ECB, AES Counter Mode
(CTR), a single SPN block cipher, and Caesar cipher (stream
cipher). We again use the same parameters for the neural
network, but due to the complexity of the operations in these
encryption schemes, we run the estimator for 5000 epochs.

Fig. 2 depicts the results. As can be seen, the block cipher
encryption scheme converges to an MI estimate of I(X;Y ) =
1.1 nats, while the stream cipher encryption scheme converges
to an estimate of around I(X;Y ) = 3.1 nats. However,
estimation over AES ECB and CTR modes result in a very low
value, I(X;Y ) = 0.07 nats. Interestingly, if we try AES ECB
with non-uniform, correlated inputs, we estimate an MI of
I(X;Y ) = 2.1 nats. MI leakage from AES ECB implies that
the estimator is able to rightly identify leakage of correlation
between the plaintext and ciphertext, even though for any
particular instance the encryption is secure.

III. MUTUAL INFORMATION ANALYSIS OF NETWORK
CODING BASED CRYPTOSYSTEMS

Cryptosystems that guarantee individual secrecy through
coding schemes combined with information theoretic ap-
proaches have been of particular interest in achieving secure
communication with high data rates. Such systems may leak
information about combinations of inputs while protecting
each individual message from being decrypted. In this section,
we analyze the security of a recently proposed Hybrid Uni-
versal Network Coding Cryptosystem (HUNCC) that provides
individual computational security through coding and partial
encryption [10]. This approach is best explained in a network
setting with n messages to be sent over n communication
links. The messages are linearly encoded using a generator
matrix G ∈ Fn×n

2n using a network coding scheme [8], [9]
before encrypting a subset of the outgoing links with any
particular cryptosystem. By encrypting a small portion of
the outgoing message, this approach achieves individual and
computational security as presented in [10, Theorem 1] and
individual indistinguishability under chosen ciphertext attack
(IND-CCA1) as in [19].

Fig. 2. MI estimation for popular cryptographic protocols

The MI analysis of this scheme is particularly interesting
since it uses well-known cryptosystems to achieve computa-
tional security of individual messages with the random linear
encoding of inputs. Our neural network estimator models
a computationally limited adversary that estimates the MI.
Furthermore, there are a few similar works that follow the
same principle of linear encoding, but instead of cryptography
using physical layer security, to achieve absolute physical layer
security in high-frequency communication systems [24]. The
results from this analysis can also be extended to such works
with minor modifications.

In this section, we empirically examine these claims and
examine HUNCC under different input distributions to analyze
the necessary uniformity in HUNCC’s input distribution. For
this section, the encoding operation for HUNCC follows
random linear coding [8] and the encryption scheme is AES-
128 ECB, though HUNCC’s universality allows almost any
encryption scheme after encoding.

A. Analysis on HUNCC for Individual Secrecy

For the initial analysis of the HUNCC scheme, we consider
100,000 samples of uniformly distributed plaintexts of 128
bits, defined in GF (28) as 16 bytes. There are 8 outgoing
links with only one link encrypted using AES-128 ECB mode.
The MI estimate of this setting is indistinguishable from a
completely AES-ECB encrypted case, as shown in Fig. 4, for
a uniformly distributed input. We also analyze the individual
indistinguishability of the HUNCC scheme as defined in [19].
For this analysis, one particular input message among the 8
input plaintexts is set to a non-uniform input (as 128 bits
of 1 in our case) and the rest of the inputs are chosen as
random. It was observed that the ciphertexts of each instance
were entirely different, and the MI estimator was not able
to distinguish any particular pattern, estimating an MI of
I(X;Y ) = 0.052 nats, similar to the case when inputs are
uniformly distributed in fig. 4. This analysis supports the
claims in [10], [19] about individual computational security
and individual IND-CCA1 attacks.

B. HUNCC’s Robustness to Input Distribution

We analyze the security of HUNCC under inputs lacking
uniformity and compare it with its underlying cryptosystem.
We verify this by testing our MI estimator on HUNCC under
different levels of input uniformity, ranging from completely
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Fig. 3. Diagram of HUNCC

non-uniform all the way to completely uniform. We also test
AES ECB and AES CTR full encryption for the same inputs
to provide a comparison to the state-of-the-art encryption
schemes.

To create inputs with such varying uniformity, we use a
Gilbert-Elliot (GE) model [25], [26], with a 1 and 0 state,
each generating their respective bit. This two-state Markov
chain model with a state change probability of alpha (α) in
both directions for simplicity. We vary α from 0.01 (non-
uniform distribution) to 0.5 (uniform distribution) to introduce
randomness in the input. For the experiments in this section,
consider eight channels, each with 128 bits. Once these inputs
are generated by our GE model, they are concatenated into 16
bytes per channel, just as the values were for the encryption
schemes in section II. This leaves 128 symbols for the input
(16 bytes over 8 channels). These inputs are then passed
through our G encoding matrix, and then the first channel of
the eight is encrypted by AES. For comparison, the uncoded
inputs are fully encrypted with both AES ECB and AES CTR
modes across all eight channels. For each estimation, we use
the same parameters and architecture for our neural network
as we did throughout section II, besides including 500,000
samples and 256 input nodes for the larger inputs.

Fig. 4 and table I illustrate the results of the complete
set of tests. It is evident that the HUNCC system exhibits
significant information leakage when the inputs are non-
uniform. However, the MI between inputs and the HUNCC
output decreases rapidly as the randomness of the input
increases. In fact, HUNCC performance matches that of AES
with only a small amount of randomness in the input, an
alpha value of 0.1. This analysis suggests that the strict
theoretical requirement of a uniformly distributed input may
be relaxed when going up against attacks based on learning
MI between the plaintext and ciphertext. From a practical
point of view, this relaxed requirement can be satisfied by a
lossless compression scheme, such as the Lempel–Ziv–Welch
(LZW) compression [27]. Analyzing the entropy in the inputs
to determine randomness, an LZW compressed input with α
= 0.02 provides an average Shannon entropy of 1.33 nats
while an α = 0.1 input (where MI estimation of HUNCC
approximately matches AES), measures an average entropy
of 1.52 nats. Since compression schemes are used widely in
communication systems for reduced bandwidth usage, this can
be achieved without incurring any additional cost.

Fig. 4. Comparison between HUNCC and AES MI estimation for different
levels of uniformity

TABLE I
MI ESTIMATION FOR DIFFERENT LEVELS OF UNIFORMITY

(NATS).

α HUNCC AES CTR AES ECB
0.01 7.2542 0.0384 0.0536
0.02 5.1399 0.0411 0.0411
0.03 3.1801 0.0395 0.0384
0.05 1.1455 0.0374 0.0263
0.075 0.1447 0.0354 0.0281
0.10 0.0319 0.0452 0.0298
0.15 0.0302 0.0258 0.0371
0.20 0.0233 0.0377 0.0334
0.5 0.0270 0.0359 0.0324

IV. CONCLUSIONS

An accurate MI estimator capable of measuring the leakage
between high-dimensional random variables, such as plaintext
and ciphertext, can be advantageous in gauging the efficiency
of a cryptosystem. Leaked information varies significantly
depending on the cryptosystem and the input distribution. Our
empirical analysis with MINE showcases the capability of the
neural network-based estimator to identify leakage in weaker
cryptosystems and its limitations in learning about stronger
systems such as AES. This could be an important tool in
the cryptanalysis of a security protocol to model a compu-
tationally limited adversary, e.g., in chosen plaintext attacks.
Furthermore, we investigate how the input distribution impacts
the security of cryptosystems, particularly those providing
individual secrecy through a combination of linear coding and
encryption, as in HUNCC. It is evident that highly correlated
inputs result in leakage of information in such systems, but
with proper uniformization of the input, the network coding-
based cryptosystems limit their MI leakage to the same level
as their underlying cryptosystems. Furthermore, our analysis
shows that, for a practical application, lossless compression
of the input will be sufficient to provide adequately uniform
inputs.
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tional leakage: The role of information complexity in privacy leakage,”
in Proceedings of the 3rd ACM Workshop on Wireless Security and
Machine Learning, 2021, pp. 91–96.

[24] A. Cohen, R. G. L. D’Oliveira, C.-Y. Yeh, H. Guerboukha, R. Shrestha,
Z. Fang, E. Knightly, M. Médard, and D. M. Mittleman, “Absolute
security in terahertz wireless links,” IEEE Journal of Selected Topics
in Signal Processing, 2023.

[25] E. N. Gilbert, “Capacity of a burst-noise channel,” Bell sys. tech. journ.,
vol. 39, no. 5, pp. 1253–1265, 1960.

[26] E. O. Elliott, “Estimates of error rates for codes on burst-noise channels,”
The Bell Sys. Tech. Journ., vol. 42, no. 5, pp. 1977–1997, 1963.

[27] T. A. Welch, “A technique for high-performance data compression,”
Computer, vol. 17, no. 06, pp. 8–19, 1984.


	Introduction
	Neural Estimation of Mutual Information on Cryptosystems
	Neural Estimation Procedure
	Baseline Experiments
	MI estimation for popular cryptographic protocols

	Mutual Information Analysis of Network Coding Based Cryptosystems
	Analysis on HUNCC for Individual Secrecy
	HUNCC's Robustness to Input Distribution

	Conclusions
	References

