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ABSTRACT
We consider the task of representing signals supported on graph
bundles, which are generalizations of product graphs that allow for
“twists” in the product structure. Leveraging the localized product
structure of a graph bundle, we demonstrate how a suitable parti-
tion of unity over the base graph can be used to lift the signal on
the graph into a space where a product factorization can be readily
applied. Motivated by the locality of this procedure, we demonstrate
that bases for the signal spaces of the components of the graph bun-
dle can be lifted in the same way, yielding a basis for the signal
space of the total graph. We demonstrate this construction on syn-
thetic graphs, as well as with an analysis of the energy landscape of
conformational manifolds in stereochemistry.

Index Terms— Graph signal processing, Graph Fourier trans-
form, Fiber bundle, Graph bundle

1. INTRODUCTION

In signal processing and machine learning, a key aspect of many
methods is the selection of a proper coordinate system with which to
represent a dataset. Preprocessing steps such as PCA, for instance,
represent a dataset in coordinates determined by its principal com-
ponents, with the hypothesis that only a few coordinates will dom-
inate the rest. Fourier representations of signal sacrifice spatial or
temporal locality in order to make each coordinate (frequency) carry
information about the entire signal in question – wavelets interpo-
late between the spatial and spectral locality of standard and Fourier
representations. In graph signal processing, we are interested in rep-
resenting and processing graph signals in ways that reflect the un-
derlying graph geometry.

One such problem in graph signal processing arises when pro-
cessing signals on product graphs, where factoring the vertex set
as the Cartesian product of the vertex set of factor graphs yields a
multidimensional graph Fourier transform [1–3], analogous to the
multidimensional Fourier transform in Euclidean space having fre-
quency axes corresponding to each coordinate. In this case, the
Fourier modes of the Cartesian product graph are given by the tensor
product of the Fourier modes on the factor graphs. However, these
product factorizations do not always hold. For instance, a graph may
only factor as a product of two factors locally about each node, but
not globally. When the product factorization only holds locally, the
tensor product factorization of the Fourier modes does not neces-
sarily hold, as it is dependent on the product factorization of the
graph holding globally. This is most classically exemplified in the
Möbius graph (Fig. 1), where the factors of the graph are approxi-
mately given by a cycle graph and a path graph, but there is a twist in
the global structure that obstructs such a factorization. To overcome
this obstruction for the task of signal representation, this necessitates
the use of a localized factored coordinate system about each node.
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Fig. 1. A Möbius graph (top left), the cylinder graph given by the
product of the base and the fiber (top right), and the spectra of their
Laplacians (bottom).

1.1. Contributions.

In this work, we develop tools for representing signals on graphs that
locally factor as product graphs. In particular:

1. We introduce graph bundles as objects describing graphs that
locally factor as product graphs.

2. With the local product structure of graph bundles in mind, we
illustrate how any bases for the local factors can be used to
construct a localized basis for signals on the graph bundle.

3. We illustrate the utility of this on synthetic graph bundles,
as well as an application in analyzing energy landscapes in
stereochemistry.

2. GRAPH BUNDLES AND SIGNAL REPRESENTATION

2.1. Graphs and graph signals.

A graph G consists of a finite set of vertices, denoted VG , and a set
of edges, denoted EG , such that every edge is an unordered tuple of
vertices. We find it convenient to treat a graph as a set G = VG∪EG .
For a given set of vertices S ⊆ VG , the induced subgraph on S
is the graph whose vertex set is equal to S, and whose edge set is
comprised of those edges in G that span elements of S, denoted G[S].
For a vertex v ∈ VG , the neighborhood graph about v is the graph
Nv such that VNv consists of v and all nodes u such that (u, v) ∈ EG
andENv consists of all pairs (u, v). That is, the neighborhood graph
is a star graph centered at v.

For graph G,H, a graph map is a function φ : H → G such that
φ(VH) ⊆ VG , and for any (i, j) ∈ EH, it holds that φ((i, j)) ∈
{φ(i), φ(j), (φ(i), φ(j))}. We will use the term “map” to mean
graph map, in general. For graphs G,H and an injective map φ :
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Fig. 2. A graph bundle F → G π→ B. The projection map π is
indicated by the shapes of the vertices in the total and base graphs.

H → G, we say that φ is a local isomorphism if for any pair i, j ∈
VH, it holds that (φ(i), φ(j)) ∈ EG if and only if (i, j) ∈ EH.
For two graphs B,F , the (Cartesian) product graph is the graph
G = B�F whose vertex set is the Cartesian product VB × VF , and
whose edge set is such that ((i1, i2), (j1, j2)) ∈ EG if and only if
i1 = j1 and (i2, j2) ∈ EF , or (i1, j1) ∈ EB and i2 = j2 [4].

For a graph G, a graph signal on G is a function x : VG →
R. We denote the set of all such functions by X(G), and endow it
with the usual Hilbert space structure via identification with RVG .
Moreover, we find it useful to define a product of graph signals (·) :
X(G) × X(G) → X(G), which is evaluated by taking the pointwise
product at each vertex of the graph. For graph signals taking strictly
nonnegative values, this yields a well-defined notion of the square-
root of a graph signal.

When graphs are related to each other via maps, we can use
those maps to relate their signal spaces as well. Let G,H be graphs,
with a map π : G → H and an injective map φ : H → G. For
a signal x ∈ X(H), the pullback of x by the map π is a signal on
G given by precomposition of x with π, denoted by π∗x := x ◦ π.
Similarly, the pushforward of x by the injective map φ is given by
precomposition of x with φ−1, denoted by φ∗x := x ◦ φ−1. For
those vertices v ∈ VG not contained in the image of φ, by convention
we say that (φ∗x)(v) = 0.

2.2. Graph bundles.

A graph bundle is a simpler construct than a general fiber bundle [5].
Let F ,G,B be finite graphs with a surjective map π : G → B such
that for all v ∈ VB, there is a local isomorphism φv : Nv�F → G
with the condition that p1 = π ◦ φ, where p1 is the projection map
onto the first factor. Under these conditions, we call the object F →
G π→ B a graph bundle.

This is exemplified in Fig. 2, once again by the Möbius graph.
The fiber is a path graph of length 2, and the base graph is a cycle
on 5 vertices. The projection from the total graph to the base graph
“squashes” the fibers each down to a single vertex in the base, thus
yielding a cycle graph.

In our example, observe that for any strict subgraph U ⊆ B,
the preimage π−1(U) admits a local isomorphism φU : π−1(U)→
U�F , as desired. For a graph bundle, there always exists at least one
trivializing cover of the base graph, which is a set of subgraphs U
of the base graph where (i) B = ∪U∈UU , and (ii) for each U ∈ U ,
there is a local isomorphism φU : U�F → G with the condition
that p1 = π ◦ φU . One such trivializing cover is given by the set of
all neighborhood graphs in the base, but others can be constructed as
well.

A graph bundle naturally generalizes the notion of a (Cartesian)
product graph. For a base graph B and fiber F , let G = B�F be
the Cartesian product graph. Letting π : G → B be the standard
projection map onto the first coordinate of a product, one can check
that F → G π→ B is a graph bundle. The conditions for a graph

bundle imply that for any v ∈ VB, it holds that π−1(v) ∼= F . We
call G the total graph, π the projection map, B the base graph, and
F the fiber.

The advantage of graph bundles is the allowance for “twists” in
the product structure. The presence of twists is what distinguishes
graph bundles as more general objects than product graphs. Indeed,
a graph bundle with a tree for a base graph factors as a product of
the base and the fiber, since there are no loops to twist around over a
tree.

2.3. Spectral graph signal representations.

Many signal processing and machine learning methods hinge on the
choice of a proper representation for the data. There are a variety of
options for graph signal representation put forth in the literature. For
a graph G, the standard basis for X(G) represents a graph signal x as
a weighted sum of unit impulse functions at each node. The Fourier
basis represents a graph signal x as a weighted sum of eigenvectors
of a suitably defined graph matrix, such as the Laplacian or any of its
normalized variants; this is commonly known as the graph Fourier
transform or GFT [6]. Both the standard and Fourier bases are dic-
tionaries of graph signals that constitute orthonormal bases for the
Hilbert space X(G). The standard basis can be though of as being
spatially localized and spectrally delocalized, while the Fourier basis
is spectrally localized and spatially delocalized.

3. THE BUNDLE TRANSFORM

3.1. Local coordinate systems.

Recent works have considered the processing of signals on product
graphs [1–3], which are special cases of graph bundles. The under-
lying components of a product graph are used to form a coordinate
system, which then allows one to differentiate more interesting spec-
tral features of graph signals using the GFT. This is analogous to
the Fourier transform for images. Rather than carrying out Fourier
analysis isotropically, the Fourier transform of a signal on a grid is
understood as a function of two frequencies: one for the horizon-
tal direction, and one for the vertical direction. For product graphs
G = G1�G2, the first coordinate can often be thought of as “space”
and the second as “time,” (particularly if G2 is a path graph). Taking
the GFT in each coordinate separately allows one to decouple these
features, in order to understand the relationship between spatial and
temporal Fourier modes.

For a graph bundle, this decoupling is only approximately valid.
A coordinate representation of a graph bundle not only needs a co-
ordinate on the base and a coordinate on the fiber, but also a way to
map that coordinate into the total graph via a local isomorphism φU .
That is to say, graph bundles indeed have a coordinate system that
factors into a base and a fiber, but only when localized to a particular
set in the cover of the base graph.

As an example of the GFT’s failure to factor over graph bun-
dles, we return to the Möbius graph in Fig. 1, whose base graph
is a cycle on five nodes and fiber is a path on two nodes. If the
Möbius graph could be identified as a product of the base graph and
the fiber, then the spectrum of the graph Laplacian would be given
by the convolution of the spectra of the base and the fiber [7]. And
indeed, applying techniques from [8, 9], one can check that the kth

moments of the spectra of the product of the base and the fiber and
the Möbius graph are identical up to k = 2: however, their higher-
order moments differ, yielding distinct spectral structures. This is a
result of the graph spectrum being a global descriptor of the graph



Fig. 3. The bundle dictionary on the Möbius graph. A Fourier mode
on the fiber is pictured on the left. Each column corresponds to a
Fourier mode on the base (pictured as the colored signal on the top
row) coupled with a covering set and corresponding partition func-
tion (highlighted nodes).

structure, while the property of “factoring as a product graph” only
holds locally for graph bundles.

3.2. The Bundle Transform.

We now define the bundle transform for signals on graph bundles.
Let F → G π→ B be a graph bundle, with DB an orthonormal basis
for X(B), and DF an orthonormal basis for X(F).

Let U be a trivializing cover of B: for instance, this can be the
set of all stars of elements of VB. Let {ρU :∈ [0, 1]VB : U ∈ U}
be a partition of unity subordinate to U . That is, the support of ρU
is contained in U for each U ∈ U , and at any v ∈ VB, the sum∑
U∈U ρU (v) has unit value.

We now construct a set of elements of X(G), indexed by
DB,DF ,U . For ψb ∈ DB, ψf ∈ DF , U ∈ U , define a signal
ψUb,f ∈ X(G) so that

ψUb,f = (φU )∗((
√
ρU · ψb)⊗ ψf ). (1)

In words, ψUb,f is the tensor product of ψb and ψf localized to the
base set U via the weight function ρU , then pushed forward to the
total graph G via the local isomorphism φU . Let DG be the set of
all such signals. As a trivial example, suppose DB and DF are the
standard bases consisting of impulse functions, for their respective
signal spaces, and the partition of unity is such that each function
ρU takes value 1 on a single node and value 0 elsewhere. Then,
the set DG is merely the standard basis for X(G). For a signal x ∈
X(G), the bundle transform of x is the collection of inner products
{〈x, ψ〉 : ψ ∈ DG}. This construction allows for DG to inherit the
representational properties of DB and DF , in the following sense:

Theorem 1. Under the assumption that DB and DF are orthonor-
mal bases for the respective signal spaces X(B) and X(F), the dic-
tionary of atoms DG formed according to (1) is a tight frame for
X(G).

Proof. Let x ∈ X(G) be given arbitrarily. We consider the squared
`2-norm of the transform of x by the dictionary DG , which can be
expressed in the following way:∑

ψb∈DB

∑
ψf∈DF

∑
U∈U

〈
x, (φU )∗((

√
ρU · ψb)⊗ ψf )

〉2
=

∑
U∈U

∑
ψb∈DB

∑
ψf∈DF

〈
π∗
√
ρU · x, (φU )∗(ψb ⊗ ψf )

〉2
.

Observe that the map sending x 7→ π∗
√
ρU · x is an isometry in the

following sense: ∑
U∈U

‖π∗√ρU · x‖22 = ‖x‖22,

owing to the fact that {ρU}U∈U is a partition of unity.
For each U ∈ U , define xU := π∗

√
ρU · x. It is then suffi-

cient to show that for each U ∈ U , the pushforward of the tensor
product DB ⊗DF preserves the norm of xU . For some such U and
xU , observe that the support of xU is contained in the image of the
local isomorphism φU : U�F → G. Therefore, the pullback of the
signal xU ∈ X(G) by φU to X(U�F) is an isometry. Clearly, the
tensor product of dictionaries DB ⊗DF restricted to U�F forms a
tight frame for X(U�F) [10]. Finally, we have identity of the inner
products under the pullback, i.e.,〈

xU , (φU )∗(ψb ⊗ φf )
〉
=
〈
(φU )

∗xU , ψb ⊗ ψf
〉
.

With this identity in hand, we can now complete the proof.∑
U∈U

∑
ψb∈DB

∑
ψf∈DF

〈
π∗
√
ρU · x, (φU )∗(ψb ⊗ ψf )

〉2
=

∑
U∈U

∑
ψb∈DB

∑
ψf∈DF

〈
(φU )

∗xU , ψb ⊗ ψf
〉2

=

∑
U∈U

‖(φU )∗xU‖22 =
∑
U∈U

‖xU‖22 = ‖x‖22,

as desired.

The proof is essentially due to [11], originally for vector bun-
dles over the Grassmanian manifold. Theorem 1 indicates that the
tightness of the bases for the base and fiber signal spaces are indeed
preserved when pushed forward to the total graph. However, this
is at the cost of dispersing the energy of the base atoms across the
cover U . Note that Theorem 1 recovers the known fact that the tensor
product of the Fourier modes of the base and the fiber form a basis
for the space of signals on their Cartesian product: to see this, let the
cover U of the base graph be the singleton set containing the entirety
of B, so that the corresponding partition of unity is just the constant
function on the base graph.

The computation of the atoms ψUb,f is illustrated in Fig. 3. Ob-
serve how the support of each atom is restricted to a covering set U ,
which lift to “patches” on the total graph via the local isomorphism
φU . In the base space, the Fourier modes DB are weighted accord-
ing to the partition functions ρU . This amounts to a windowed graph
Fourier basis [12, 13] on the base graph, which allows for compati-
bility with the fiber structure.

4. EXPERIMENTS

4.1. Locality of the base cover.

As indicated by Theorem 1, any pair of orthonormal bases on the
base and fiber signal spaces can be locally lifted to the total space
via local isomorphisms weighted by a suitable partition of unity. In
this way, the bundle transform guarantees a tight frame for the sig-
nal space on the total graph (as opposed to an orthonormal basis, in
general, since the frame will be redundant by a factor of the cardi-
nality of the cover U). We consider here how changing the design
of the partition of the unity affects properties of the resulting frame.
Specifically, we evaluate how the cumulative coherence [14] and the
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Fig. 4. Numerical evaluation of the bundle transform. (a) The cumulative coherence of the lifted Fourier bases as a function of the stride
and reach of the cover of the base graph. The squares in black are those where the reach is too small for the given stride to yield a cover of
the base graph. (b) The standard deviation of the atom norms in lifted Fourier bases as a function of the stride and reach of the cover of the
base graph. (c) The simulated energy landscape of n-pentane. The identification of the left and right edges is indicated by the red arrows. (d)
Denoising performance. Lines indicate mean squared error (MSE). Shaded regions indicate the standard deviation of the error over 50 trials.

standard deviation of the norms of the atoms inDG vary with respect
to how far apart the covering sets are situated, and how much of the
graph each one covers.

Let the base graph B be given by a cycle graph on 27 nodes, with
an extra edge connecting the first and thirteenth nodes in the cycle:
this yields a graph consisting of two loops that share an edge. For a
fiber F given by a path graph of length 7, construct a total graph G
such that the fiber “twists” around one of the loops, and doesn’t twist
around the other. This yields a cylinder and a Möbius band that are
glued together along the product of a single edge in the base and the
fiber.

We construct a family of covers of the base B determined by
two parameters. The first is the stride, which determines how far
apart the centers of the covering sets are located along the base. The
second is the reach, which determines the radius of the neighbor-
hood about each center to form the covering sets. For a cover of the
base graph determined by a given stride and reach, we construct a
simple partition of unity where each partition function at a partic-
ular node in the corresponding covering set is equal to the inverse
of the number of sets that cover that node. As shown in Fig. 4 (a),
the cumulative coherence evaluated at a sparsity level of

√
n, where

n = 189 is the number of nodes in the total graph, the cumulative
coherence decreases as the stride increases, with very little influence
of the reach. We see furthermore in Fig. 4 (b) that standard deviation
of the `2-norm of the atoms in DG increases with the stride, but de-
creases with the reach. A low standard deviation is desirable here, as
it indicates the energy is dispersed evenly among the representation
of the signal space by the dictionary. In this case, a design choice
needs to be made in the choice of partition function in order to trade
off between coherence and variance in the atom norms.

4.2. Conformation space of pentane.

In stereochemistry, the energy landscape of molecules is studied with
respect to their possible shapes, or conformations [15]. One such
space of conformations is that of the n-pentane molecule, which is a
chain of five singly-bonded carbon atoms. Under a rigid bond model,
the bond lengths and bond angles between each consecutive carbon
atom is assumed to be fixed, leaving the only degrees of freedom for
the conformation of the molecule to be the torsional angle about the
two central carbon-carbon bonds, which we denote by (θ1, θ2). By
symmetry of the molecule, we can make the identification (θ1, θ2) ∼

(θ2, θ1). Then, the conformation space of n-pentane can be modeled
by the product of two circles modulo this equivalence relation. The
product of two circles yields a torus, and dividing by the equivalence
relation yields a Möbius band. Each conformation has an associated
energy function, determined by the proximity of hydrogen atoms to
one another, yielding a function from the Möbius band to the real
numbers. The stereoisomers of n-pentane, then, are those whose
conformations are at local minima of this energy function.

We approximate the conformation space by a graph bundle,
whose fiber is a path graph of length 6, and whose base is a cycle
graph of length 15. The energy landscape is computed using the
RDKit [16] implementation of the universal force field [17], shown
in Fig. 4 (c). We consider a denoising task, where the universal
frame thresholding method [18] is applied using a both the Fourier
basis of the total graph, and the bundle transform determined by the
Fourier modes on the base and fiber graphs, with covering sets of
stride 3 and reach 2. The mean squared error of the denoised en-
ergy landscape under additive white Gaussian noise using universal
frame thresholding is plotted in Fig. 4 (d). Observe that in addition
to having the interpretability of locally factoring into the product of
the fiber and base coordinates, the lift of the Fourier bases via the
bundle transform yields superior performance in denoising over the
standard Fourier basis on the total graph.

5. CONCLUSION

Incorporating knowledge of the geometry underlying problems in
signal processing and machine learning has been of great interest
lately. A key aspect of this is to represent data in appropriate co-
ordinate systems, allowing for sound interpretation and design of
processing methods. We have considered how ideas from signal
processing on products of graphs can be adapted to graph bundles,
in which local signal representations are used as “coordinates” for
structures that only factor as product graphs in a local sense. This
approach preserves tightness of the factor bases, and yields inter-
pretable signal representations, as demonstrated on real and syn-
thetic data.
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