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ABSTRACT

Masked Language Modeling (MLM) is widely used to pretrain
language models. The standard random masking strategy in MLM
causes the pre-trained language models (PLMs) to be biased towards
high-frequency tokens. Representation learning of rare tokens is
poor and PLMs have limited performance on downstream tasks. To
alleviate this frequency bias issue, we propose two simple and ef-
fective Weighted Sampling strategies for masking tokens based on
token frequency and training loss. We apply these two strategies to
BERT and obtain Weighted-Sampled BERT (WSBERT). Exper-
iments on the Semantic Textual Similarity benchmark (STS) show
that WSBERT significantly improves sentence embeddings over
BERT. Combining WSBERT with calibration methods and prompt
learning further improves sentence embeddings. We also investi-
gate fine-tuning WSBERT on the GLUE benchmark and show that
Weighted Sampling also improves the transfer learning capability
of the backbone PLM. We further analyze and provide insights into
how WSBERT improves token embeddings.

Index Terms— Weighted Sampling, Mask Language Model,
Sentence Representation, GLUE Evaluation

1. INTRODUCTION

Early language models model context unidirectionally, either left-
to-right or right-to-left. In contrast, Masked Language Modeling
(MLM) replaces a subset of tokens in the input sequence with a
special token [MASK] and trains the model to predict the masked
tokens using their bidirectional context. MLM has been widely
adopted as a self-supervised pre-training objective for learning
bidirectionally contextualized language representations, such as
BERT [1] and RoBERTa [2]. BERT and its extensions as pre-trained
language models (PLMs) have shown remarkable performance on
various downstream NLP tasks.

Nevertheless, recent studies reveal critical problems in MLM.
[3, 4] find the contextualized word representations of BERT and
other PLMs are not isotropic as they are not uniformly distributed
w.r.t. direction; instead, they are anisotropic as word representations
occupy a narrow cone. The token frequency in the pre-training data
usually follows a long-tailed distribution. The conventional masking
strategy for MLM selects tokens to mask with a uniform distribu-
tion [1, 2]. This random masking strategy for MLM unavoidably en-
counters the frequency bias issue, that is, high-frequency tokens will
be masked frequently, while more informative tokens, typically with
lower frequencies, will be masked much less frequently during pre-
training, which would greatly harm the efficiency of pre-training,

Fig. 1. An example from WikiText. Randomly selected tokens are
in blue while Frequency Weighted Sampled tokens are in pink.

lower the quality of representations of rare tokens and limit the per-
formance of PLMs. As shown in Figure 1, tokens selected based
on their frequency (in pink, see Eqn. 2) are apparently more infor-
mative than tokens selected randomly (in blue) which are mostly
high-frequency tokens but not essential to the semantics of the sen-
tence. [5] investigates the embedding space of MLM-trained PLMs
and confirms that embeddings are biased by token frequency and rare
tokens are distributed sparsely in the embedding space. [6] demon-
strates that frequency bias indeed harms the performance of sentence
embeddings generated by MLM-trained PLMs. As shown in these
studies, alleviating the frequency bias issue is essential for improv-
ing effectiveness of MLM and performance of resulting PLMs.

Several recent studies focus on improving efficiency of pre-
training, including mixed-precision training [7], parameter distil-
lation for different layers [8], introducing a note dictionary for
saving information of rare tokens [9], designing different train-
ing objectives [10, 11, 12], and dropping redundant tokens during
pre-training [13]. However, most of these approaches focus on
modifying model architecture or optimization for pre-training.

Our work focuses on alleviating the frequency bias issue in
MLM and improving quality of PLMs. We propose two Weighted
Sampling methods for masking tokens based on token frequency
or training loss. The latter one can dynamically adjust sampling
weights and achieve a good balance between masking probabilities
of common tokens and rare tokens1 based on the learning status
of PLMs. Our Weighted Sampling methods can be applied to any
MLM-pretrained PLMs. In this work, we focus on investigating
the effectiveness of applying Weighted Sampling to BERT as the
backbone. We initialize from BERT and continue pre-training with

1We denote high-frequency and low-frequency tokens by common tokens
and rare tokens in the rest of the paper.
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Weighted Sampling. We denote the resulting PLM by WSBERT.
We hypothesize that since Weighted Sampling could alleviate fre-
quency bias, it could improve representation learning of rare tokens
and also improve the overall quality of language representations.
Quality of pre-trained language representations is generally eval-
uated on sentence representations generated by PLMs, commonly
evaluated on the Semantic Textual Similarity (STS) benchmark
[14, 15, 16, 17, 18, 19, 20]; and evaluated on transfer learning ca-
pability of PLMs, commonly evaluated on fine-tuning and testing
on the GLUE benchmark [21]. Recent efforts on sentence rep-
resentation modeling include calibration methods [5, 22], prompt
learning[23, 24, 25, 26, 27, 6], and sentence-level contrastive learn-
ing (CL) based models such as SimCSE [28] and its variants [29, 30].
Although SimCSE and its variants achieve state-of-the-art (SOTA)
performance on STS, they degrade the transfer learning capability
on tasks such as SQuAD since they do not target improving token-
level representation learning [31]. We also observe absolute 0.5
performance degradation on GLUE from SimCSE-BERT compared
to BERT.

In this work, to investigate whether the proposed Weighted Sam-
pling could improve the quality of token embeddings, we evaluate
sentence representations generated by WSBERT on STS and the
transferability of WSBERT on GLUE. We also analyze the embed-
ding space of WSBERT and BERT to understand how Weighted
Sampling improves the quality of token embeddings. Our contri-
butions can be summarized as follows:

• We propose two Weighted Sampling methods to alleviate the fre-
quency bias issue in conventional masked language modeling.

• We develop a new PLM, WSBERT, by applying Weighted Sam-
pling to BERT. Different from SOTA sentence representation
models, we find WSBERT outperforms BERT on both sentence
representation quality and transfer learning capability. We
also find integrating calibration methods and prompts into WS-
BERT further improve sentence representations.

• We design ablation approaches to analyze the embedding space
of WSBERT and BERT. We find that with Weighted Sampling,
rare tokens are more concentrated with common tokens and com-
mon tokens are more concentrated in the embedding space than
BERT. We also find that both common and rare tokens are closer to
the origin in WSBERT than BERT and token embeddings of WS-
BERT are less sparse than BERT. We believe these improvements
in token embeddings caused by Weighted Sampling contribute to
the improvements in sentence representations and transferability.

2. METHOD

In this section, we first describe traditional Masked Language Mod-
eling (MLM). Then we propose Weighted Sampling for MLM to
alleviate the frequency bias problem.

2.1. Masked Language Modeling

For a sentence S = {t1, t2, . . . , tn}, where n is the number of to-
kens and ti is a token, the standard masking strategy as in [1] ran-
domly chooses 15% of tokens to mask. The language model learns
to predict the masked tokens with bidirectional context. To make the
model compatible with fine-tuning, for a chosen token, 10% of the
time it is replaced by a random token from the corpus, 10% of the
time it remains unchanged, and 80% of the time it is replaced by a
special token [MASK].

Fig. 2. Illustration of the proposed Dynamic Weighted Sampling
for mask language modeling (MLM). The sampling weight of choos-
ing a token to mask is computed based on the prediction loss of this
token by the current PLM. We store the sampling weights of each
token in the weight dictionary.

2.2. Weighted Sampling

In order to tackle the frequency bias problem, we propose two
weighted sampling strategies, namely, Frequency Weighted Sam-
pling and Dynamic Weighted Sampling, to compute the masking
probability for each token, based on statistical signals and model-
based signals, respectively.

2.2.1. Frequency Weighted Sampling

A natural statistical signal characterizing the informativeness of a to-
ken w is its frequency freq(w) in the pre-training corpus. We first
apply the following transformation to remove the excessive influ-
ences of extremely rare tokens, which are usually noise.

freq∗(w) =

{
freq(w) , if freq(w) > θ

θ , otherwise.
(1)

Then we compute the sampling weight wt(w) for w as follows.

wt(w) = (freq∗(w))−α (2)

In our experiments, we set the hyperparameters θ = 10 and α = 0.5
based on optimizing performance on the development set.

For each token ti in a sentence S = {t1, t2, . . . , tn}, where n
is the number of tokens, we compute the sampling probability p(ti)
for masking ti by normalizing wt(ti).

p(ti) =
wt(ti)∑n
j=1 wt(tj)

(3)

2.2.2. Dynamic Weighted Sampling

Frequency Weighted Sampling produces constant sampling proba-
bilities for tokens and does not consider the learning status of the
backbone masked language model that it applies for. We hypothesize
that the signal of informativeness of a token w may also be derived
from how poorly a masked language model predicts it. Therefore,
we propose the Dynamic Weighted Sampling strategy shown in Fig-
ure 2. We use a weight dictionary in memory to store the sampling
weights of each token after each batch in each iteration instead of
updating the sampling weights after processing all batches in an iter-
ation as the sampling only happens once in the latter case. Firstly, we
set an initial sampling weight wt(ti) = 1 for each token ti ∈ T in



Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

BERT 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERT-CP 41.00 60.02 51.11 68.43 64.59 56.32 62.07 57.65
WSBERT Freq 42.60 61.32 52.04 69.84 66.61 59.89 61.94 59.18
WSBERT Dynamic 47.80 67.28 57.13 71.41 68.87 65.28 64.90 63.24

BERT-Whitening 54.28 78.07 65.44 64.83 70.16 71.43 62.23 66.43
WSBERT-Whitening 55.14 78.45 66.13 65.47 70.68 71.98 61.91 67.10

BERT + Prompt† 60.96 73.83 62.18 71.54 68.68 70.60 67.16 67.85
WSBERT + Prompt 63.03 71.66 63.80 75.32 76.67 74.79 65.32 70.08

Table 1. Sentence representation performance on STS tasks. The
reported score is Spearman’s correlation coefficient between the pre-
dicted similarity and the gold standard similarity scores. The best re-
sults are both underlined and in bold. WSBERT without a subscript
refers to WSBERT Dynamic. Performance of BERT-Whitening is
from the model learned on the full target dataset with embedding
size 256 (train+development+test) [22]. † denotes the best manual-
prompt results cited from [6].

the weight dictionary, where T denotes all tokens in the pre-training
dataset. Then, we compute the sampling probabilities using sam-
pling weights in the weight dictionary based on Eqn. 3 and train a
masked language model. During each mini-batch, the masked to-
kens are predicted by the current model and we compute the total
cross-entropy loss for token ti as:

Lti = −logP (ti | x, θ) (4)

where x denotes the input masked sequence and θ denotes the pa-
rameters of the current masked language model. Then, we use Lti

to compute the sampling weight wt(ti) based on Eqn. 5.

wt(ti) = exp(
Lti

τ
) (5)

where τ is a temperature parameter with default as 0.2. Finally, for
the next mini-batch, we compute the sampling probability p(ti) for
token ti by normalizing wt(ti) following Eqn. 3.

The sampling weights computed by Eqn. 5 are larger for tokens
with higher cross-entropy prediction loss, i.e., tokens that are poorly
learned in the current masked language model and are often rare to-
kens; the sampling weights are smaller for tokens with lower cross-
entropy loss, i.e., tokens that are relatively better learned. We design
the sampling weight function wt(ti) as Eqn. 5 to enlarge the vari-
ance of sampling weights between different tokens and to further
boost up sampling probabilities of rare tokens. During each itera-
tion in pre-training, the weight dictionary is updated with the latest
sampling weights wt(ti) for each token ti. For the next iteration,
for a sequence s = t1, t2, ..., tn, s ∈ S, the sampling probability of
choosing to mask each token is computed using the updated weight
dictionary by Eqn. 3.

3. EXPERIMENTS
We conduct two experiments: evaluating unsupervised sentence rep-
resentations using WSBERT on STS tasks, and evaluating the effi-
cacy of Weighted Sampling on BERT’s transfer learning capability
by fine-tuning WSBERT on the GLUE benchmark. Ablation stud-
ies are also designed to analyze the impact of WSBERT on token
embeddings for rare and common tokens.

3.1. Datasets and Implementation Details

For WSBERT, we continue pre-training on bert-base-uncased
(BERT)2, with Weighted Sampling on the WikiText dataset (+100M

2https://huggingface.co/bert-base-uncased

Dataset BERT BERT-CP WSBERT

MNLI 84.30±0.26 84.26±0.19 84.42±0.35

QQP 91.31±0.04 90.94±0.59 91.43±0.05

QNLI 91.47±0.01 91.32±0.17 91.14±0.17

SST-2 92.86±0.13 92.78±0.43 91.35±0.47

CoLa 56.47±0.65 57.44±0.95 58.29±0.33

STS-B 89.68±0.26 89.52±0.37 89.86±0.18

MRPC 86.13±1.63 85.13±0.53 88.20±2.39

RTE 69.23±0.4 67.25±1.84 70.89±0.17

AVG 82.68±0.33 82.33±0.32 83.20±0.10

Table 2. GLUE Validation results from BERT-base-uncased (BERT-
base), BERT-base-uncased continually pre-trained (BERT-CP), and
Weighted-Sampled BERT (WSBERT). BERT-CP and WSBERT
both continually train on BERT with the same training settings. WS-
BERT refers to WSBERT Dynamic. The best results for each dataset
and AVG are in bold.

tokens) 3. We set the learning rate 5 × 10−5 and train 10 epochs.
We use 4 NVIDIA V100 GPUs to train WSBERT with batch
size 8 per device and gradient accumulation as 8. We use the
WordPiece tokenizer as in [1] and token frequency is based on
the tokenized Wikitext. STS tasks contain STS 2012-2016, STS
benchmark, and SICK-Relatedness datasets. GLUE includes eight
datasets [21]. To analyze the effect of continual pre-training with-
out Weighted Sampling, we also continue pre-training on BERT
with the same random sampling as for BERT on the same Wiki-
Text data and with the same pre-training setting as WSBERT. We
denote the resulting model BERT-CP. We compare fine-tuning
performance of bert-base-uncased (BERT), BERT-CP, and
WSBERT on GLUE. For each model on each GLUE task, we run
three runs with different random seeds; for each run, we conduct
a grid search on hyperparameters on GLUE validation set among
2× 10−5, 3× 10−5, 5× 10−5 learning rate and 5, 10 epochs. The
other hyperparameters are the same for the three models: we use 1
V100 with batch size 32 per device, warm-up ratio 0.06, and weight-
decay 0.01. We then report the mean and standard deviation of the
best results from three runs in Table 2.

3.2. Main Results
Semantic Textual Similarity Table 1 shows the main STS results.
All models in the table are of BERT base size. We report results of
WSBERT with Frequency Weighted Masking and Dynamic Weighted
Masking, denoted WSBERT Freq and WSBERT Dynamic. The first
group in Table 1 shows that WSBERT Dynamic outperforms BERT
and BERT-CP by 6.54 and 5.59 absolute, significantly improving
the quality of sentence embeddings of PLMs. WSBERT Dynamic
outperforms WSBERT Freq by 4.06 absolute, showing that Dy-
namic Weighted Sampling is more effective than sampling only
based on token frequency. BERT Whitening [22], as a calibration
method, is compatible with WSBERT. The second group in Table 1
shows that although WSBERT Dynamic yields a lower average
score on STS compared to BERT Whitening, WSBERT Dynamic
could be effectively combined with Whitening and further improve
the performance of WSBERT Dynamic to 67.10. We also investi-
gate enhancing BERT and WSBERT with prompt. Different from
previous works using a single [MASK] in prompts [6], we transform
a sentence using manual prompt templates with multiple [MASK]4.

3https://huggingface.co/datasets/wikitext
4The best prompt is designed as The sentence: [X] means [MASK] and

also means [MASK].

https://huggingface.co/bert-base-uncased
https://huggingface.co/datasets/wikitext


Method Rare Tokens Common Tokens

BERT 14.97 64.82
BERT-CP 14.86 64.95
WSBERT 15.60 65.54

Table 3. Portion of common tokens (high-frequency tokens) in the
nearest neighbors of rare tokens (low-frequency tokens) and com-
mon tokens. We first sort tokens in the WikiText vocabulary by fre-
quency in descending order. Then we select the tokens with ranks
ranging from 10K-20K as rare tokens while choosing the Top-10K
tokens as common tokens. We choose the 10 nearest neighbors de-
cided by the Euclidean distance between representations of the target
token and other tokens.

Furthermore, instead of extracting and averaging representations of
the masked tokens as final sentence embeddings [6], we encode the
whole transformed sentence and compute sentence embedding by
average pooling all token embeddings of the sentence. The third
group in Table 1 shows that prompt-enhanced WSBERT achieves
70.08. These results demonstrate that Weighted Sampling im-
proves sentence representations generated by PLMs and combining
WSBERT with Whitening and prompts further improves sentence
embeddings. We did not compare WSBERT to the SOTA models
on STS, i.e., sentence-level contrastive learning (CL) based mod-
els such as SimCSE [28], since prior works [31] and our studies
show sentence-level CL based models hurt transfer learning capa-
bility. We observe absolute 0.5 degradation on GLUE AVG score
from SimCSE-BERT compared to BERT. However, as shown in the
following GLUE experiments, WSBERT both enhances sentence
representations of BERT and improves transfer learning capability.
GLUE Evaluation As shown in Table 2, WSBERT achieves the best
average GLUE score compared to BERT and BERT-CP, outperform-
ing BERT by 0.52 absolute. WSBERT maintains competitive per-
formance on MNLI and QQP and outperforms BERT on all other
tasks. In contrast to models such as SimCSE, Dynamic Weighted
Sampling improves the transfer learning capability while enhancing
sentence representations. Compared to BERT, BERT-CP degrades
GLUE AVG by 0.35 absolute while WSBERT outperforms BERT-
CP by 0.87 absolute. These results prove that the gain of WSBERT
over BERT is from continual pre-training with Dynamic Weighted
Sampling instead of just continuing pre-training BERT using ran-
dom sampling with more steps on the same WikiText dataset. BERT-
CP degrades GLUE performance compared to BERT, probably be-
cause WikiText (373.28M data size) used for continual pre-training
is much smaller and less diverse than the standard BERT pre-training
dataset (Wikipedia and Bookscorpus, 16GB data size), which could
hurt generalizability of PLMs.

3.3. Analysis
As observed in [5, 32], token embeddings of MLM-pretrained
PLMs can be biased by token frequency, causing embeddings of
high-frequency tokens to concentrate densely and low-frequency
tokens to disperse sparsely. Inspired by these works, to analyze
whether Weighted Sampling could indeed alleviate the frequency
bias problem, we propose two approaches to analyze distributions
of BERT, BERT-CP, and WSBERT in the representation space. We
also discuss the training time for training MLM with and without
weighted sampling.
Nearest Neighbors We investigate the portion of common tokens
in the nearest neighbors (NN) of rare tokens, denoted Prare, and
the portion of common tokens in NN of common tokens, denoted

Rank of token frequency 0-100 100-500 500-5k 5k-10k

Mean ℓ2-norm
BERT 0.9655 1.0462 1.2150 1.3639

BERT-CP 0.9597 1.0428 1.2141 1.3647
WSBERT 0.9562 1.0385 1.2112 1.3621

Mean k-NN ℓ2-norm (k=3)
BERT 0.6972 0.7782 0.8188 0.8953

BERT-CP 0.6913 0.7750 0.8180 0.8963
WSBERT 0.6883 0.7724 0.8154 0.8929

Mean k-NN ℓ2-norm (k=5)
BERT 0.8007 0.8868 0.9327 1.0083

BERT-CP 0.7936 0.8833 0.9319 1.0096
WSBERT 0.7899 0.8800 0.9287 1.0056

Mean k-NN ℓ2-norm (k=7)
BERT 0.8590 0.9458 0.9932 1.0671

BERT-CP 0.8513 0.9422 0.9924 1.0685
WSBERT 0.8471 0.9386 0.9888 1.0642

Table 4. The mean ℓ2-norm calculated for each bin of tokens with
ranking ranges based on token frequency in WikiText. Common to-
kens occupy a higher ranking while rare tokens are in low rankings.
A lower mean ℓ2-norm suggests that the token embeddings in that
bin are more concentrated.

Pcommon (rare and common tokens are defined in Table 3 cap-
tion). The larger portion of common tokens in NN of rare/common
tokens indicates more concentrated token distributions and hence
smaller frequency bias in the token embeddings. In Table 3,
Prare/Pcommon for WSBERT increase by 0.63/0.72 over those
of BERT and 0.74/0.59 over those of BERT-CP, suggesting that
WSBERT has more concentrated token distributions and smaller
frequency bias in token embeddings compared to BERT and BERT-
CP, and common tokens are also more concentrated in WSBERT
than BERT and BERT-CP.
Token Distribution Inspired by [5], we compute the mean ℓ2-norm
between token embeddings and the origin for the three models to
analyze token distributions. As shown in the first row of Table 4,
although common tokens are close to the origin and rare tokens are
distributed far away from the origin, the smaller mean ℓ2-norm indi-
cates the token embeddings of WSBERT are more concentrated than
BERT and BERT-CP. The ℓ2-norms of WSBERT are smaller on all
the bins than those of BERT, suggesting that both common tokens
and rare tokens are closer to the origin in WSBERT than BERT. Fur-
thermore, WSBERT tokens in each bin are more compact than BERT
and BERT-CP as shown by the smaller mean k-NN ℓ2-norm for each
K in Table 4, which indicates that the embedding space of WSBERT
is less sparse than BERT and BERT-CP. Sparsity in the embedding
space may cause poorly defined semantic meanings [5], hence the
gains in sentence embeddings and transfer learning capability from
WSBERT over BERT may also be attributed to sparsity reduction by
WSBERT in the embedding space.
Training Time Calculating the sampling weight for each token dur-
ing training takes extra time. Training a MLM without weighted
sampling takes 11 hours while training with weighted sampling takes
20 hours. The extra time can be reduced through optimizations such
as implementing parallel writing to the dictionary and using an in-
memory vector to accelerate the reading and writing processes.

4. CONCLUSION

We propose two Weighted Sampling methods to alleviate the fre-
quency bias issue in Masked Language Modeling for pre-training
language models. Extensive experiments show Weighted Sam-
pling improves both sentence representations and the transferability
of pre-trained models. We also analyze the token embeddings to
explain how Weighted Sampling works. Future work includes in-
vestigating other dynamic sampling methods and exploring training
objectives with a penalty for frequency bias.
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