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Abstract—While feasibility and obtaining a solution of a given
network coding problem are well studied, the decoding procdure
and complexity have not garnered much attention. We conside
the decoding problem in a network wherein the sources geneta
multiple messages and the sink nodes demand some or all of the
source messages. We consider both linear and non-linear neark
codes over a finite field and propose to use the sum-product
(SP) algorithm over Boolean semiring for decoding at the sik
nodes in order to reduce the computational complexity. We us
traceback to further lower the computational cost incurred by
SP decoding. We also define and identify a sufficient conditio
for fast decodability of a network code at a sink that demands
all the source messages.

I. INTRODUCTION

In contemporary communication networks, the nodes per-
form only routing,i.e., they copy the data on incoming links
to the outgoing links. In order to transmit messages geedrarig. 1. Butterfly Network (a) A network code and (b) Global eding
simultaneously from multiple sources to multiple sinks thgctors
network may need to be used multiple times. This limits th@essagesy; € [J]. Let w = 2}7:1 w; be the total num-

throughput of the network and increases the time delay toopler of source messages. Thetuple of source messages is
is known that if intermediate nodes in a network are permitt®enoted byr = (21,%2,...,2.), Wherez; € F, Vi € [w]

to perform coding operationsg., encode data received on theand F is a finite field. Byx = (z1,...,,)7 we denote

(b)

incoming links and then transmit it on the outgoing linksofea the column vector of the source messages. The demand of
outgoing link can get differently encoded data), the thtqug  the ;" sink node is denoted by, C [w]. Given a set
of the network increases. This is called network coding [1} = {;, ... i} C [w], let z; = (z;,, LTy, e, T,
Thus, network coding subsumes routing. restrictedto I. Let {z;} = {z;: z; € F'}, i.e, the set of all
For example, consider the butterfly network [1] of Hig. ¥-tuples overF. For a multi-variable binary-valued function
wherein each link can carry one bit per link use, source nogl‘@xl’ ..., 1), the subset of"“ whose elements are mapped
S generates bit$; andb,, and both sink node$; and7> to 1 by f(xz1,...,z,) is called its support and is denoted by
demand both source bits. With routing only, two uses of Iingupt(f(x[w})) and supt, (f(z(,))) denotes theI|-tuples in
V3 — Vy are required while with network coding only one. the support restricted td. A source message is denoted by
Above is an example of single-source multi-sink lineagdges without any originating node and terminating at acur
multicast network coding, wherein there is a single sourgmde. Data on a link € E is denoted byy..
(S), generating a finite number of messages,, {-), and A network code (NC) is a set of coding operations to
multiple sinks, each demanding all the source messages &edperformed at each node such that the requisite source
the encoding operations at all nodes are linear. In gerteeak  messages can be faithfully reproduced at the sink nodes. It
may be several source nodes, each generating differentetumdan be specified using either local or global descriptidn [1]
of source messages, and several sink nodes, each demandiwg former specifies the data on a particular outgoing edge
only a subset, and not all, of source messages. Decodingagta function of data on the incoming edges while the latter
sink nodes with such general demands is studied in this papgecifies the data on a particular outgoing edge as a function
We represent a network by a finite directed acyclic grapf source messages. Throughout the paper we use global
N = (V,E), where V is the set of vertices or nodesdescription for our purposes.
and £ C V x V is the set of directed links or edges Definition 1: Global Description of an NC[[1]: Anw-
between nodes. All links are assumed to be error-free. Ldimensional NC on an acyclic network over a fidldconsist
[n] = {1,2,...,n}. The network has/ sources,S;, j € [J], of |E| global encoding mapg. : F* — F,Ve € E (i.e.
and K sinks, Ty, k € [K]. The sourceS; generatesv; fo(x) = y.).
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Lete;, i =1,...,w, be the incoming edges at the source, themaximum throughput. Solving linear equations in boolean
Ye, = Ti. variables is also studied inl[8].

When the intermediate nodes perform only linear encodingThe contributions and organization of the paper are as
operations then such an NC is said to be a linear network cdadows:

(LNC). « In Section IlI-A we pose the problem of decoding of
Definition 2: Global Description of an LNCL[1]: Anw- linear and non-linear NC awarginalize a product func-
dimensional LNC on an acyclic network over a fidldconsist tion problem(MPF) and construct factor graph using the
of |F] 1 x w global encoding vector., Ve € E such that global description of network codes. For a particular sink
f. - x = y.. node, the constructed graph will have fewer vertices than
The global encoding vectors for the incoming edges at the in [7] and hence the number of messages and opera-
source are standard basis vectors for the vector spatce tions performed will also be fewer. Unlike inl[7], our
The global encoding vectors of the LNC for butterfly network ~ scheme requires only the knowledge of global encoding
is given in Fig.[d(b). maps/vectors of incoming edges at a sink node and not the
Hereafter we assume that the network is feasibée, de- entire network structure and coding operation performed

mands of all sink nodes can be met using network coding and at each node.
the global description of a network code (linear or nondine  « In Sections 11I-B, we utilizetracebackinstead of running
is given_ If a sink node demandg (S w) source messages, it mUltiple-VerteX version of algorithm, thus, further reduc
will have at leastv’ incoming edges. The decoding problem  ing the number of operations. Some examples illustrating
is to reproduce the desired source messages from the coded the proposed techniques are given in Section IlI-D.
data received at the incoming edges. Thus, decoding amounts We discuss utility and computational complexity of the
to solving for a specified set af’ unknowns using a set of proposed technique in Section IlI-C. For sink nodes
at leastw’ simultaneous equations in unknowns. Hence, the which demand all the source messages, the notion of
global description of the NC is more useful for decoding. fast decodable network codesdefined and a sufficient
While decoding of non-linear NC has not been studied, condition for the same is identified.
the common technique used for decoding a LNC is to pefle present a brief overview of the SP algorithm in Section Il
form Gaussian elimination [2],[3], which require8(n?) and conclude the paper with a discussion on scope for further
operations, followed by backward substitution, which rieems Work in Section IV.
O(n?) operations % is the number of variables)[4]. This Il. THE SUM-PRODUCT ALGORITHM AND FACTOR
is not recommendable when the number of equations and/or GRAPHS
variables is very large. In such cases, iterative methods ar
used. Convergence and initial guess are some issues tbat %
while using iterative methods§|[5].
We propose to use the sum-product (SP) algorithm

In this section, we review the computational problem called
e MPF problem and specify how SP algorithm can be used
to efficiently solve such problems. An equivalent method to

perform iterative decoding at the sinks. A similar scheme fgfflmently solve MPF problems is given inl[9] and is called

e generalized distributive law{GDL) or the junction tree
decoding multicast network codes using factor graph [6] W%?gorithm The simplest example of SP algorithm offering

stU(::led in [7]. Th? 3utht(r)]rtshcon3|dere(cjj ghe cgse of rl]‘NC T% mputational advantage is the distributive law on real hum
problems associated wi e proposed decoding schemg in ts,a-(b+¢) — a-b+a-c the left hand side of

are. the equation requires fewer operation than the right hand

« In order to construct the factor graph, full knowledgegide. Generalization of addition and multiplication is wis
of network topology is assumed at the sinks whicBxploited by the SP (or the junction tree) algorithm in digfet
is impractical if the network topology changes. For 8PF problems. The mathematical structure in which these
particular sink node (say’), the factor graph constructedoperations are defined is known as commutative semirings.
will have w+| E| variable nodes anfl|+-[In(T')| factor ~ Definition 3: A commutative semiring[9] is a seR, to-
nodes, wherdn(T) is the set of incoming edges at nodgyether with two binary operations+* (additior) and “”
T. (multiplication), which satisfy the following axioms:

» Complete knowledge of local encoding matiix [1] of each 1) The operation 4" satisfies closure, associative, and

node is assumed at the sinks which again is impractical ~ commutative properties; and there exists an elemeht *
since local encoding matrix for different nodes will have (additive identity such that + 0 = r,Vr € R.

different dimensions and hence variable number of over-2) The operation ® satisfies closure, associative, and com-
head bItS W|” be required to Communicate to dOWﬂStI’eam mutative properties; and there exists an elemselit “
nodes which will incur huge overhead. (multiplicative identity such that - 1 = r, Vr € R.

We also point out that the motivating exampleig,, Examples ~ 3) The operation - distributesover “+”, i.e., 71 -ro + 71 -

1 and 4, given in[[7] for which the proposed decoding 73 =r71-(r2+73), Vri,ro,73 € R

method claims to exploit the network topology admits a senpl For different problems, we use different semirings with

routing solution and no network coding is required to achiewifferent notion of - and-". Some examples are listed below.



1) Application of the SP algorithm to Fourier transformvariable noder the local domain and local kernel ateand
yields the FFT algorithm; the semiring is the set of comt respectively.
plex numbers with the usual addition and multiplication Let N(z;) denote the set of factor nodes adjacent to the
[6l, 19]. variable nodex;, i.e., set of local kernels with as an argument
2) ML decoding of binary linear codes is also an MPRnd N («;)(= xs,) denote the set of variable nodes adjacent
problem and application of SP algorithm yields théo the factor nodey;, i.e., the local domain ofy;. The directed
Gallager-Tanner-Wiberg decoding algorithm over a Tamessage passed from a variable neg¢o an adjacent factor
ner graph; the semiring is the set of positive real numbensdec; and vice versa are as follows:
with “min” as sum and 4" as product, called the min-

sum semiring([56],[[9]. The BCJR algorithm for decoding Has sy (i) = /\ far—a, (%) (2)
turbo codes and LDPC deocoding algorithm are some a’€N(zi)\ey
other applications of SP algorithm.

3) Application to the ML sequence estimation, for instance Poj—z; = \/ aj(zs;) /\ Par—a, (') (3)
in decoding convolutional codes, yields the Viterbi algo- {zs;\i} o' €{ms;\i}

rithm [9]; the semiring is again the min-sum semiring. , i
4) Recently, the GDL has been shown to reduce the MLDependmg on the requirement, we may need to evaluate

decoding complexity of space-time block codesin uo]:narginal(s) at only one, a few or all variable nodes. The

the semiring applicable is the min-sum semiring of COrT1’:1Igorithm starts at the leaf nodes (nodes with degree orth) wi

plex number. The authors introductedcebackior GDL the leaves passing messages to the adjacent nodes. Once a

and used it to further lower the number of operationsvertex has received messages from all but one of its neighbor

. . it computes its own message and passes it to the neighbor
Thus, both these algorithms subsume as special cases man S ; .
. rom which it has not yet received the message. This message
well known algorithms.

passing terminates when all the variable nodes at which
A. MPF Problems in Boolean Semiring marginals are required to be evaluated have received from al

A Boolean semiring is the séb, 1} together with the usual @ts neighbors. A node after receiving messages from all of

Boolean operations’ (OR) andA (AND). We denote it by its neighbors, computes ittateas the product of messages
R = ({0,1},V,A). The element®) and 1 are theadditive received from all the adjacent nodes. For a variable nogde,

and multiplicative identitiesrespectively. The MPF problem it iS denoted byo;(z;) and is given as follows:

defined f_or this se_miring is dgscr_ib_ed below. laelt.i € [n] oi(z:) = /\ fior o (1), (4)
be n variables taking values in finite alphabets,i € [n]. N () '
For I = {i1,...,ix} C [n], let x; = (x4,,...,25,) A1 = o )
Ay X ... X A, LetS = {51, 8,,...,5u}, S; C [n], such Similarly, the state for a factor node is computed as foltows
that for eachj € [M], there is a functiony; : As, — R. The _ ’
functionsa;s are called théocal kernels the set of variables Oa; (@s;) = ay(s;) ) N oo, (@) ®)
in x5, is called thelocal domainassociates withy; and Ag; v'elms;}
is the associatedonfiguration spaceThe global kerne] 5 : As stated in[[6], [[9], after sufficient number of messages
Ap) — R and its ith marginalization ; : As, — R, are have been passed, the state of a variable ngatill be equal
defined below. to Bi(x;).
M To obtain the correct value of the required marginal(skg it i
B(x1,T2,. .. Tn) = /\ aj(zs,) essential that the factor graph be free of cycles. If theee ar
j=1 cycles these may not be the correct values. The cycles can be

eliminated bystretchingvariable nodes oclusteringvariable
Bi(x:) = \/ B(x1, %o, .. an) L O factor nodes (refer to [6, Se_c. \(I] for a_detailed desaipt
These methods are exemplified in Section 11I-D.
Both these graph transformations lead to enlargement of
B. The SP Algorithm the local domain(s), and hence the configuration space of the
Brute force computation of marginalizations] (1) requireode(s). In the new graph, the directed message passed from
O(Ay,)) computations; the SP algorithm is an efficient way i vertexv to w is
computing these. It involves iteratively passimgssagealong
the edges of théactor graph G = (V U F, £), associated with po—sw(s,ns,,) = \/ a(@s, ) /\ fo—o(Ts,ns,),  (6)
the given MPF problem. The factor graph is a bipartite graph. Esnsut  vEN()\w
Vertices in) are called variable nodes; one for each variabighere N (v) is the set of neighboring vertices ofand its state
x4, Vi € [n] (|V| = n). The vertices inF are called the factor ¢, (zg,) is
nodes; one for each local kernel, Vj € [M] (JF| = M).
A variable nodez; is connected to a factor node; iff z; ou(w5,) = a(@s,) [\ Hwool(@s,ns,) (7)
is an argument ofy;. For convenience we assume that for a v'EN(v)

{I[n]\i}



These are the general forms of messages and staie§] (2H@&)e 3*) is the global kernel of the MPF problem at the’
can be obtained from these. sink and¢ is a function that indicates whether its two input
Let v* be the node with the largest configuration spage arguments are equal or ncg, ,

(choose any one if there are multiple such nodes). Then the 0, ifasb
number of operations required for computing messages and §(a,b) = { T “
states in the SP algorithm will b@(A,-). Thus, at the cost 1, ifa=b

of possibly increased computational cost, the SP algordhm For LNC, (8) becomes

the transformed graph yields the exact value of the marginal -

In the sequel, we assume that the factor graph is acyclic. Dy SULPt \/ /\ J(fe - x, ye)
Pr xeFe ecin(my)

I1l. DECODING NETWORK CODES USING THE

SUM-PRODUCT ALGORITHM

Thus, decoding a NC has the form of a special class of MPF
problems over Boolean semiring wherein we are interested
ly in some coordinates (specified by.) of the w-tuples in
Flne support set and not the value of the global kernel.
Since the solutiony, is unique, individual coordinatese
can be separately computed.,

In this section, we show that decoding a NC is an MP
problem over a Boolean semiring. We provide a method
construct factor graph for decoding at a sink node using trﬁ

SP algorithm.
Though the factor graph approach and the junction tree T = supt \/ ﬁlgk) (x;)
approach are equivalent formulations to solve MPF problems J zjeF 9
we prefer the former because of the amount of preprocessing B(k) (z;) = \/ Bk )( ©)
; Lo ; . i i) = )E
required to obtain junction tree as argued below: o)

1) The construction of a junction tree for an MPF problem
requires: (a) construction of amoral graph (b) its Whereﬁ
minimum complexity triangulatioif it is not already B
triangulatedc) construction of theslique graphof the The factor graph for decoding at sinky,k € [K] is
triangulated moral graph, anftl) finding a spanning constructed as follows:
tree which leads to minimum computational cost. To the 1) Install w variable nodesone for each source message.

(:cj) is the j** marginalization of the global kernel

2)

nodes of this clique tree the local kernels and variables of
the MPF problem are attached [9] to obtain the junction
tree (a kernel or a variable is attached to a node of clique2)
tree iff its local domain is a subset of the local domain of
the said clique tree node). Thus, the GDL always gives
the exact solution of the MPF problems.

A factor graphs is easily described by the local kernels
associated with the MPF problem; it is a bipartite graph
involving set of variable and a set of local kernels of the 3)
MPF kernels as the two vertex sets. If it is acyclic, then
the SP algorithm gives the exact solution, if not, it gives
an approximate solution. The SP algorithm is known to

These vertices are labeled by their corresponding source
messagesy;.

Install |In(T})| factor nodesand label themf,.e e
In(Ty). The associated local domain of each such
vertex is the setS C (), of source messages that
participate in that encoding map and the local kernel
is 6(fe(:v[w]), Ye). These vertices are labeled by their
corresponding local kernelg,.

A variable node is connected to a factor node iff the
source message corresponding to that variable node
participates in the encoding map corresponding to the
said factor node.

perform well even if the factor graph has cycles, fowe use thicker lines for factor nodes to differentiate them
example, in decoding of LDPC and turbo codes. Factgiom variable nodes. The factor graph so constructed will be
graphs with cycles can be transformed into acyclic onesbipartite graph. General form of a factor graph and the same
to obtain exact solutions [[6, Sec. VI]. for the two sink nodes of the butterfly network are given in
Fig.[2 (cf. [7, Fig. 3)).
A. NC Decoding as an MPF Problem Messages and states are computed u§ihg (6)[and (7) respec-
Given an acyclic networlVy = (V, E), the demands at eachtively. As stated before, once a node (say has received
sink, Dy, k € [K] and a set of global encoding mag§, : e ¢ Message from all the adjacent nodes, its stai€¢zs,), can
E}, that satisfy all the sink demands, the objectives at a sifi computed. Letp, Nzs, = zp. The value of the subset
say k', is to find the instance af p, that was generated byB of the requisite source messages at e sink node is
the source(s) using the data it receives on its incominggdge -+ — sypt \/ e /\ fro—o(Ts,ns,)  (10)
e, {zs,} v'EN(v)
As specified in Section I, the SP algorithm yields the
correct value of the source messages if the factor graph is

a tree. If not then the cycles in the factor graph will have to
be removed.

(8)

*k—supt \/ /\ 5(fe Tie) )

Dk T €EFY ecIn(Ty)

B (1)



reduction in number of operations and is exemplified in
@ (1, yvi-my) Section IlI-D.

C. Computational Complexit
@ @ @ d(z1 + 2, yv;%) P P y

We suggest using SP algorithm for decoding a network
(b) code only when the code is either non-linear or it is linear
but the number of messages is very large. For linear network

@ 5(“ IS codes with manageable valuewf Gaussian elimination with
T packward substitution is advisable. If using SP algorittom f

decoding network codes (when warranted) leads to compu-
@ 5(332,,%5) tational complexity strictly better than brute-force deitm
complexity, then the code is calldfdst decodable network
(c) code

We now discuss the computational complexity of SP algo-
Fig. 2. (a) General form of a factor graph (b) Factor graphsfioand () rithm based decoding of network codes. As[in [6], by com-
\:%rt(i)getgé butterfly network. Local kernels are given adjacenth® function plexity we mean the number of semiring operations required
to obtain the desired source message. For convenience, we
assume that all the source messages take value frorarg

) ) ) alphabet; results for variable alphabet size can be olgtaine
Since we are interested in the value of the source messagigg|arly.

and not the value of the marginalizations of the global kerne as stated above, in order to recover the requisite source
we can qsetraceback[lO] to further lower the number of messages at a sink we need only run single-vertex SP algo-
computations. . . _ _rithm followed by traceback steps. For a given sink node,

Assume that the single-vertex SP algorithm is run with the factor graph constructed using the method given in
vertexov as the root (all messages are directed towajd&nd  gection 111-A is cycle-free and the network code is such that
the valuerg C zp, of some source messages in the demarde |ocal domains of all factor nodes have cardinality attmos
set of thek.th sink ha§ beer_1 ascertained. Now, partition thle(< w), then the number of operations required for decoding
local domain of a neighboring node, aszs, = x4 Uxg, ysing the SP algorithm i€(q). If the sink demands all the
where A = 5,\5, and B = S, N S,. Sincex, is kKnown, soyrce messages, then the brute-force decoding wouldreequi
the valuex?; that causes,,(z4,zp) to take valuel is also O(¢¥)(> O(q')) operations. Thus, an acyclic factor graph
known. The value of the source messages can then be ith at mosti (< w) variables per equation is a sufficient
obtained usingl{7) as follows: condition for fast decodability of the network code at a sink
which demands all the source messages.

If the graph is not cycle-free then we remove the cycles

B. Traceback

x¥ = supt \/ ow(TA, Th)
A

frak . . using the methods specified above and#et< w be the

= Slzpt \/ fo—w(Ts) Aw(Ta, Tp) (11) size of maximum cardinality local domain in the transformed
{wa} cycle-free factor graph. The number of computations regliir

= supt \/ Ao (Za,27), now will be O(¢™) < O(¢*) and the code is fast decodable
z iff m <w.
{za}

where D. lllustrations
Aw(Ta,78) = a(xs,,) /\ [ —w (28,08, We now present some examples illustrating use of the SP
v EN(w)\v algorithm to decode NC.

is the partial state computed at while passing the message Example 1:Consider the butterfly network of Hig.1. Here

fiw—o(25) 10 the rootv. Thus, i, . (z%) does not need to ¢ = w = 2. The factor graphs for two sink nodes are given in

be computed or passed, leading to saving of operations. are given in Fig[2(b) and (c). The messages passed and state
Here we have exploited the fact that we require on§omputations for decoding &t are as follows:

supt 4 \/zA ow and not the value of,, which would have

required passing of the message_.,,(z5) from v to w Has oy, —z, (72) =1
too. Hence, the traceback step reduces the computational Hfy, 7 —a: (T1) = 6(T1,yvi—1)
complexity. fity, 7, —ar (1) = \/ 0(z1 + 22, yv,—1)

The traceback step can be used repeatedly until values of all g
the source messages irp, are obtained. This can be done (21) = (1)
by using [I1) on other neighbors of and then neighbors Har =ty —n W01 = Py oy 20 101
of neighbors ofv and so on. This can lead to considerable Oy (21) = Py, 7y 00 (1) By, 7y a0 (1)

5]



Complete bipartite graph
T1 To Ty Ty Tp

(21,2, 25, @ 6 x4, T3}

Fig. 3. (a) Combination network (b) Factor graph with cydesT1es and (c) one obtained by clustering equation nodles- fi2 (f = Aj2¢ fi)

Py, 1, —as (T2) = \/ S(z1 + T2, yvi—1y) My, 7 -z, (T1) Consider decoding at th#5" sink whose global encoding
3 maps of incoming edges arg, ¢ = 5,...,12. The factor
Oy (22) = gy, _r, 2o (22) graph constructed using the method stipulated above will
have cycles (Fig[13(c)). To eliminate the cycles, we cluster
It is easy to verify thato,, (z;) = Bi(z:),i = 1,2. Hence, f, i = 6,...,12 function vertices into a single one with
z; = supt,, \/,, oz (zi),i = 1,2. Similar computations the local kernel as the product @foriginal ones (Fig[13(c)).

3

apply for 7> also. This network code is not fast decodablghe computational complexity of SP decoding is same as that

since the number of computations requiredi&”). O of brute-force decoding(¢®)). This is true for all the sink
Now we present a multicast network which admits no lineafodes and hence this code is not fast decodable for any of the
solution overF,, but a non-linear solution exists. sinks. O

Example 2:Consider the multicast combination network |n the next example we present a network with general
given in Fig.3(a). All messages take value frafa. Each demands at sinks and employ the SP algorithm for decoding a
sink is connected to a distinct sizesubset of intermediate yector non-linear network code for it. We also demonstrate
node. Multicast, inF, is feasible over such a network iff ysefulness of traceback for saving computations of some
a (12,32,5) binary error correcting code exists [11]. Thanessages in the factor graph.

Nadler's code is one such systematic code with the requisiteExfmwe 3: Consider the network given in Figl 4. The sinks

parameters. Note that smce_there exist (m9,32,5_) blnary (nodes37 — 46) have general demands which are specified by
linear code, the above multicast network, admits no linegsiapies below them. IN[13], the authors showed that this
solution overF;. network admits no linear solution over any field and gave a

Apart from the systematic part of the Nadler's code, &ie- yector non-linear solution. The source messageé < [5] are
dundant bits are encoded using non-linear functionss &g 5 _p;t binary words ¢ = 4, w = 5), + denotes addition in ring
are. Z4, © denotes the bitwise XOR and the functit{n) reverses
Fiemi ie 5] the order of the 2-bit input.

o The factor graphs for node37, 40 and 43, denoted by

fo = w1+ @2+ 23+ (21 + 25) (23 + 24) Gs7,Gao and Gy3 respectively, are given in Figl] 5; the same
fr=a1 420+ a4 + (21 + x3) (x4 + x5) for other nodes have similar structure and can be consttucte
P _ _ using method given in Section IlI-A. Note th@i, has a cycle
fo=mtaztast (@ +adlestas) of length4 andG,3 has two cycles of length each. The cycles

fo=wa+ a3+ x4 + 2104 + 2425 + 2571 are removed as follows:
Jilo = Lot T3+ T5 + 1Ty F TyTs F T5T « The cycle inGy is removed by clustering the variable
fi1r =x2+ x4+ x5 + 123 + T325 + T521 verticesr; andzs; the local domain and kernel of the new

variable vertex aréz, z2) (union of the local domains of
the clustered vertices) arid(product of the local kernels
These functions are the global encoding maps ofithsource of the clustered vertices) (Figl 5).

to intermediate node links. The intermediate nodes simply. The cyclesC; and C; in G43 are removed by deleting
route the data on incoming edges to the connected sink nodes, the dotted edges arsiretchingvariable vertex:s around
hence, the global encoding maps of the incoming and outgoing the respective cycles; this involves adding the stretched
edges of an intermediate node is same. variable to all the local domain in the cycle and leaving

fi2 =21 + 22 + 23 + T4 + 25 + T3T4 + T4T5 + T523



Ty, T3 T3 Ty T3 T2 T T1, T2, T3, Ty, T T5 T4 T3

Fig. 4. The networkN3 of [L3].

the local kernels unchanged (Fig. 5). having to comput@: s, fte—q Or pq—. as follows:
We infer fromG,s that the number of computations3required ot = supt \/O_e(xh %) = supt Ae(z1, 2%)
to reproduce all the source message¥gtis only O(¢?) in- S 3
stead ofO0(¢°) (as brute-force decoding would have required) — supt 6(z1 + 7%, Y243 frase(T1, 25)
and hence this code is fast decodable ¥gs. The decoding o 103 I52-43/Rd el 73
process a3, using single-vertex SP algorithm with node “f” 2% — supt 2 2o 2%) = supt A.(2F . 2o 2
in G4 as root followed by traceback to compute 2, x4, x5, S Voelaf. a2, 23) P (21, 2, 73)

Z2

= supt 5(55{ + 22, Y31-43) o (T2, 5173)
T2

is demonstrated below:

Note thatpy,. and u,—,. were already computed. Without
(w2 4 3,Y33-43) tracebacky; and z, are decoded at variable nodes “d” and

Hish = Phog(T3,T4) = \/ 6(24 + 5, Y36—43) j—i (T3, T5) “b” respectively as follows:

ki = tj—i(T3,75) = 6(t(x3) + 5, Y35-43)
MHa—b = Nb—m(x% 553) =0

Ts5

5 Hf%e(IB) = ,Ugﬂf(IB)
fe—sd = fd—e(T1,73) = y (z1 + 2, Y31-43) 1o (71, T2) pesd(T1,x3) = piroe(x3)d(x1 + X3, Y32—43)
2
* —
Heo f(x3) = \/5(561 + 3, Y32-43) bd—e(T1, T3) Ty = supt \/ Heosd(21, 23)pro—sa(21, 23)

T 3
Z1

fig—(3) = \/5(15(1173) + T4, Y34-43) th—g (T3, T4)
T4 fre—sb (T2, T3) = \/ fd—c(T1,23)0(T1 + T2, Y31-43)

Pd—sc(T1,23) = pe—sal(T1,T3)

Z1

x5 = supt \/ Pesb (T2, 23) plasb (T2, T3)

2

At “f”, decoding of x5 is performed as follows:

x x
3 T3

P = t = t . . .
z; = supt \/ oy (ws) =P o5 (vs) Similarly z, andzs can be obtained. The number of semiring

operations required to compute all the messages passed and
- ngt He—sf(¥3) prg—f (¥3) states computed is given in Table I.
The number of computations required with traceback are 2
We can now use tracebadk111) to computeandz, without (C1+C2+..+C5)+C6+C7+C8 which i€(¢> +¢?) +5¢ = 180



{21, 2,25}
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Fig. 5. The factor graphs for sinks with labedg, 40 and43 in network of Fig[2.

Messages/States  No. g No. of \/ maps (or vectors in case of LNC) of the incoming edges and
c1 (b i 0 0 demands of the sink was provided. The graph so c_onstructed
c2 H(HZ’MJHC 0 0 had f_ewer nodes and led to fewer message being passed
c3 M'—m’u o e ?(g-1) lowering the numk_Jer of operations as cqmpared to the scheme
ca M;_} ’MZ_) 0 0 of [[7]. N_ext we discussed how cyclgs in factor graph affect
c5 " 7’H ¢ r og—1) the soluthn of the MPF problem and illustrated W|.th exarsple
c6 H{T’* 921 7 0 how to circumvent them. We mtrod_uced and d|scussec_i the
c7 - 5;6* 0 advantages of _traceback over multiple-vertex SP algorithm
cs xi’xfﬁ ¢ 0 Next, for the sinks demanding all the source messages, we

275 q introduced the concept of fast decodable network codes and
c9 Hize:Big 02 0 provided a sufficient condition for a network code to be fast
CL10 peas Hon q 0 decodable.

Ci1 i q° a(g —1)

C12 Hd—scy h—i 0 0
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