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Abstract—While feasibility and obtaining a solution of a given
network coding problem are well studied, the decoding procedure
and complexity have not garnered much attention. We consider
the decoding problem in a network wherein the sources generate
multiple messages and the sink nodes demand some or all of the
source messages. We consider both linear and non-linear network
codes over a finite field and propose to use the sum-product
(SP) algorithm over Boolean semiring for decoding at the sink
nodes in order to reduce the computational complexity. We use
traceback to further lower the computational cost incurred by
SP decoding. We also define and identify a sufficient condition
for fast decodability of a network code at a sink that demands
all the source messages.

I. I NTRODUCTION

In contemporary communication networks, the nodes per-
form only routing,i.e., they copy the data on incoming links
to the outgoing links. In order to transmit messages generated
simultaneously from multiple sources to multiple sinks the
network may need to be used multiple times. This limits the
throughput of the network and increases the time delay too. It
is known that if intermediate nodes in a network are permitted
to perform coding operations,i.e., encode data received on the
incoming links and then transmit it on the outgoing links (each
outgoing link can get differently encoded data), the throughput
of the network increases. This is called network coding [1].
Thus, network coding subsumes routing.

For example, consider the butterfly network [1] of Fig. 1
wherein each link can carry one bit per link use, source node
S generates bitsb1 and b2, and both sink nodesT1 and T2

demand both source bits. With routing only, two uses of link
V3 − V4 are required while with network coding only one.

Above is an example of single-source multi-sink linear
multicast network coding, wherein there is a single source
(S), generating a finite number of messages, (x1, x2), and
multiple sinks, each demanding all the source messages and
the encoding operations at all nodes are linear. In general,there
may be several source nodes, each generating different number
of source messages, and several sink nodes, each demanding
only a subset, and not all, of source messages. Decoding at
sink nodes with such general demands is studied in this paper.

We represent a network by a finite directed acyclic graph
N = (V,E), where V is the set of vertices or nodes
and E ⊆ V × V is the set of directed links or edges
between nodes. All links are assumed to be error-free. Let
[n] = {1, 2, . . . , n}. The network hasJ sources,Sj, j ∈ [J ],
and K sinks, Tk, k ∈ [K]. The sourceSj generatesωj
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Fig. 1. Butterfly Network (a) A network code and (b) Global encoding
vectors

messages,∀j ∈ [J ]. Let ω =
∑J

j=1 ωj be the total num-
ber of source messages. Theω-tuple of source messages is
denoted byx[ω] = (x1, x2, . . . , xω), wherexi ∈ F, ∀i ∈ [ω]
and F is a finite field. By x = (x1, . . . , xω)

T we denote
the column vector of the source messages. The demand of
the kth sink node is denoted byDk ⊆ [ω]. Given a set
I = {i1 . . . , il} ⊆ [ω], let xI = (xi1 , . . . , xil), i.e., x[ω]

restricted to I. Let {xI} = {xI : xI ∈ F I}, i.e., the set of all
I-tuples overF . For a multi-variable binary-valued function
f(x1, . . . , xω), the subset ofFω whose elements are mapped
to 1 by f(x1, . . . , xω) is called its support and is denoted by
supt(f(x[ω])) and suptI(f(x[ω])) denotes the|I|-tuples in
the support restricted toI. A source message is denoted by
edges without any originating node and terminating at a source
node. Data on a linke ∈ E is denoted byye.

A network code (NC) is a set of coding operations to
be performed at each node such that the requisite source
messages can be faithfully reproduced at the sink nodes. It
can be specified using either local or global description [1].
The former specifies the data on a particular outgoing edge
as a function of data on the incoming edges while the latter
specifies the data on a particular outgoing edge as a function
of source messages. Throughout the paper we use global
description for our purposes.

Definition 1: Global Description of an NC [1]: Anω-
dimensional NC on an acyclic network over a fieldF consist
of |E| global encoding maps̃fe : Fω → F, ∀e ∈ E (i.e.,
f̃e(x) = ye).

http://arxiv.org/abs/1510.03634v1


Let ei, i = 1, . . . , ω, be the incoming edges at the source, then
yei = xi.

When the intermediate nodes perform only linear encoding
operations then such an NC is said to be a linear network code
(LNC).

Definition 2: Global Description of an LNC [1]: Anω-
dimensional LNC on an acyclic network over a fieldF consist
of |E| 1 × ω global encoding vectorsfe, ∀e ∈ E such that
fe · x = ye.
The global encoding vectors for the incoming edges at the
source are standard basis vectors for the vector spaceFω.
The global encoding vectors of the LNC for butterfly network
is given in Fig. 1(b).

Hereafter we assume that the network is feasible,i.e., de-
mands of all sink nodes can be met using network coding and
the global description of a network code (linear or non-linear)
is given. If a sink node demandsω′ (≤ ω) source messages, it
will have at leastω′ incoming edges. The decoding problem
is to reproduce the desired source messages from the coded
data received at the incoming edges. Thus, decoding amounts
to solving for a specified set ofω′ unknowns using a set of
at leastω′ simultaneous equations inω unknowns. Hence, the
global description of the NC is more useful for decoding.

While decoding of non-linear NC has not been studied,
the common technique used for decoding a LNC is to per-
form Gaussian elimination [2], [3], which requiresO(n3)
operations, followed by backward substitution, which requires
O(n2) operations (n is the number of variables) [4]. This
is not recommendable when the number of equations and/or
variables is very large. In such cases, iterative methods are
used. Convergence and initial guess are some issues that arise
while using iterative methods [5].

We propose to use the sum-product (SP) algorithm to
perform iterative decoding at the sinks. A similar scheme for
decoding multicast network codes using factor graph [6] was
studied in [7]. The authors considered the case of LNC. The
problems associated with the proposed decoding scheme in [7]
are:

• In order to construct the factor graph, full knowledge
of network topology is assumed at the sinks which
is impractical if the network topology changes. For a
particular sink node (sayT ), the factor graph constructed
will haveω+ |E| variable nodes and|E|+ |In(T )| factor
nodes, whereIn(T ) is the set of incoming edges at node
T .

• Complete knowledge of local encoding matrix [1] of each
node is assumed at the sinks which again is impractical
since local encoding matrix for different nodes will have
different dimensions and hence variable number of over-
head bits will be required to communicate to downstream
nodes which will incur huge overhead.

We also point out that the motivating examples,viz., Examples
1 and 4, given in [7] for which the proposed decoding
method claims to exploit the network topology admits a simple
routing solution and no network coding is required to achieve

maximum throughput. Solving linear equations in boolean
variables is also studied in [8].

The contributions and organization of the paper are as
follows:

• In Section III-A we pose the problem of decoding of
linear and non-linear NC asmarginalize a product func-
tion problem(MPF) and construct factor graph using the
global description of network codes. For a particular sink
node, the constructed graph will have fewer vertices than
in [7] and hence the number of messages and opera-
tions performed will also be fewer. Unlike in [7], our
scheme requires only the knowledge of global encoding
maps/vectors of incoming edges at a sink node and not the
entire network structure and coding operation performed
at each node.

• In Sections III-B, we utilizetracebackinstead of running
multiple-vertex version of algorithm, thus, further reduc-
ing the number of operations. Some examples illustrating
the proposed techniques are given in Section III-D.

• We discuss utility and computational complexity of the
proposed technique in Section III-C. For sink nodes
which demand all the source messages, the notion of
fast decodable network codesis defined and a sufficient
condition for the same is identified.

We present a brief overview of the SP algorithm in Section II
and conclude the paper with a discussion on scope for further
work in Section IV.

II. T HE SUM-PRODUCT ALGORITHM AND FACTOR

GRAPHS

In this section, we review the computational problem called
the MPF problem and specify how SP algorithm can be used
to efficiently solve such problems. An equivalent method to
efficiently solve MPF problems is given in [9] and is called
the generalized distributive law(GDL) or the junction tree
algorithm. The simplest example of SP algorithm offering
computational advantage is the distributive law on real num-
bers, a · (b + c) = a · b + a · c; the left hand side of
the equation requires fewer operation than the right hand
side. Generalization of addition and multiplication is what is
exploited by the SP (or the junction tree) algorithm in different
MPF problems. The mathematical structure in which these
operations are defined is known as commutative semirings.

Definition 3: A commutative semiring [9] is a setR, to-
gether with two binary operations “+” (addition) and “·”
(multiplication), which satisfy the following axioms:

1) The operation “+” satisfies closure, associative, and
commutative properties; and there exists an element “0”
(additive identity) such thatr + 0 = r, ∀r ∈ R.

2) The operation “·” satisfies closure, associative, and com-
mutative properties; and there exists an element “1”
(multiplicative identity) such thatr · 1 = r, ∀r ∈ R.

3) The operation “·” distributesover “+”, i.e., r1 · r2+ r1 ·
r3 = r1 · (r2 + r3), ∀r1, r2, r3 ∈ R

For different problems, we use different semirings with
different notion of “+ and·”. Some examples are listed below.



1) Application of the SP algorithm to Fourier transform
yields the FFT algorithm; the semiring is the set of com-
plex numbers with the usual addition and multiplication
[6], [9].

2) ML decoding of binary linear codes is also an MPF
problem and application of SP algorithm yields the
Gallager-Tanner-Wiberg decoding algorithm over a Tan-
ner graph; the semiring is the set of positive real numbers
with “min” as sum and “+” as product, called the min-
sum semiring [6], [9]. The BCJR algorithm for decoding
turbo codes and LDPC deocoding algorithm are some
other applications of SP algorithm.

3) Application to the ML sequence estimation, for instance
in decoding convolutional codes, yields the Viterbi algo-
rithm [9]; the semiring is again the min-sum semiring.

4) Recently, the GDL has been shown to reduce the ML
decoding complexity of space-time block codes in [10];
the semiring applicable is the min-sum semiring of com-
plex number. The authors introducedtracebackfor GDL
and used it to further lower the number of operations.

Thus, both these algorithms subsume as special cases many
well known algorithms.

A. MPF Problems in Boolean Semiring

A Boolean semiring is the set{0, 1} together with the usual
Boolean operations∨ (OR) and∧ (AND). We denote it by
R = ({0, 1},∨,∧). The elements0 and 1 are theadditive
and multiplicative identitiesrespectively. The MPF problem
defined for this semiring is described below. Letxi, i ∈ [n]
be n variables taking values in finite alphabetsAi, i ∈ [n].
For I = {i1, . . . , ik} ⊆ [n], let xI = (xi1 , . . . , xik) AI =
Ai1 × . . . × Aik . Let S = {S1, S2, . . . , SM}, Sj ⊆ [n], such
that for eachj ∈ [M ], there is a functionαj : ASj

→ R. The
functionsαjs are called thelocal kernels, the set of variables
in xSj

is called thelocal domainassociates withαj andASj

is the associatedconfiguration space. The global kernel, β :
A[n] → R and its ith marginalization, βi : ASi

→ R, are
defined below.

β(x1, x2, . . . , xn) =

M∧

j=1

αj(xSj
)

βi(xi) =
∨

{x[n]\i}

β(x1, x2, . . . , xn) (1)

B. The SP Algorithm

Brute force computation of marginalizations (1) require
O(A[n]) computations; the SP algorithm is an efficient way of
computing these. It involves iteratively passingmessagesalong
the edges of thefactor graph, G = (V ∪ F , E), associated with
the given MPF problem. The factor graph is a bipartite graph.
Vertices inV are called variable nodes; one for each variable
xi, ∀i ∈ [n] (|V| = n). The vertices inF are called the factor
nodes; one for each local kernelαj , ∀j ∈ [M ] (|F| = M ).
A variable nodexi is connected to a factor nodeαj iff xi

is an argument ofαj . For convenience we assume that for a

variable nodex the local domain and local kernel arex and
1 respectively.

Let N(xi) denote the set of factor nodes adjacent to the
variable nodexi, i.e., set of local kernels withx as an argument
andN(αj)(= xSj

) denote the set of variable nodes adjacent
to the factor nodeαj , i.e., the local domain ofαj . The directed
message passed from a variable nodexi to an adjacent factor
nodeαj and vice versa are as follows:

µxi→αj
(xi) =

∧

α′∈N(xi)\αj

µα′→xi
(xi) (2)

µαj→xi
=

∨

{xSj\i
}

αj(xSj
)

∧

x′∈{xSj\i
}

µx′→αj
(x′) (3)

Depending on the requirement, we may need to evaluate
marginal(s) at only one, a few or all variable nodes. The
algorithm starts at the leaf nodes (nodes with degree one) with
the leaves passing messages to the adjacent nodes. Once a
vertex has received messages from all but one of its neighbor,
it computes its own message and passes it to the neighbor
from which it has not yet received the message. This message
passing terminates when all the variable nodes at which
marginals are required to be evaluated have received from all
its neighbors. A node after receiving messages from all of
its neighbors, computes itsstateas the product of messages
received from all the adjacent nodes. For a variable node,xi,
it is denoted byσi(xi) and is given as follows:

σi(xi) =
∧

α′∈N(xi)

µα′→xi
(xi), (4)

Similarly, the state for a factor node is computed as follows:

σαj
(xSj

) = αj(xSj
)

∧

x′∈{xSj
}

µx′→αj
(x′), (5)

As stated in [6], [9], after sufficient number of messages
have been passed, the state of a variable nodexi will be equal
to βi(xi).

To obtain the correct value of the required marginal(s), it is
essential that the factor graph be free of cycles. If there are
cycles these may not be the correct values. The cycles can be
eliminated bystretchingvariable nodes orclusteringvariable
or factor nodes (refer to [6, Sec. VI] for a detailed description).
These methods are exemplified in Section III-D.

Both these graph transformations lead to enlargement of
the local domain(s), and hence the configuration space of the
node(s). In the new graph, the directed message passed from
a vertexv to w is

µv→w(xSv∩Sw
) =

∨

{xSv\Sw}

αv(xSv
)
∧

v′∈N(v)\w

µv′→v(xSv′∩Sv
), (6)

whereN(v) is the set of neighboring vertices ofv and its state
σv(xSv

) is

σv(xSv
) = αv(xSv

)
∧

v′∈N(v)

µv′→v(xSv′∩Sv
) (7)



These are the general forms of messages and states; (2)-(5)
can be obtained from these.

Let v∗ be the node with the largest configuration spaceAv∗

(choose any one if there are multiple such nodes). Then the
number of operations required for computing messages and
states in the SP algorithm will beO(Av∗). Thus, at the cost
of possibly increased computational cost, the SP algorithmon
the transformed graph yields the exact value of the marginals.
In the sequel, we assume that the factor graph is acyclic.

III. D ECODING NETWORK CODES USING THE

SUM-PRODUCT ALGORITHM

In this section, we show that decoding a NC is an MPF
problem over a Boolean semiring. We provide a method to
construct factor graph for decoding at a sink node using the
SP algorithm.

Though the factor graph approach and the junction tree
approach are equivalent formulations to solve MPF problems,
we prefer the former because of the amount of preprocessing
required to obtain junction tree as argued below:

1) The construction of a junction tree for an MPF problem
requires: (a) construction of amoral graph, (b) its
minimum complexity triangulationif it is not already
triangulated,(c) construction of theclique graphof the
triangulated moral graph, and(d) finding a spanning
tree which leads to minimum computational cost. To the
nodes of this clique tree the local kernels and variables of
the MPF problem are attached [9] to obtain the junction
tree (a kernel or a variable is attached to a node of clique
tree iff its local domain is a subset of the local domain of
the said clique tree node). Thus, the GDL always gives
the exact solution of the MPF problems.

2) A factor graphs is easily described by the local kernels
associated with the MPF problem; it is a bipartite graph
involving set of variable and a set of local kernels of the
MPF kernels as the two vertex sets. If it is acyclic, then
the SP algorithm gives the exact solution, if not, it gives
an approximate solution. The SP algorithm is known to
perform well even if the factor graph has cycles, for
example, in decoding of LDPC and turbo codes. Factor
graphs with cycles can be transformed into acyclic ones
to obtain exact solutions [6, Sec. VI].

A. NC Decoding as an MPF Problem

Given an acyclic networkN = (V,E), the demands at each
sink,Dk, k ∈ [K] and a set of global encoding maps,{f̃e : e ∈
E}, that satisfy all the sink demands, the objectives at a sink,
saykth, is to find the instance ofxDk

that was generated by
the source(s) using the data it receives on its incoming edges,
i.e.,

x∗
Dk

= supt
Dk

∨

x[ω]∈Fω

∧

e∈In(Tk)

δ
(

f̃e(x[ω]) , ye

)

︸ ︷︷ ︸

β(k)(x[ω])

(8)

Hereβ(k) is the global kernel of the MPF problem at thekth

sink andδ is a function that indicates whether its two input
arguments are equal or not,i.e. ,

δ(a, b) =

{

0, if a 6= b

1, if a = b

For LNC, (8) becomes

x∗
Dk

= supt
Dk

∨

x∈Fω

∧

e∈In(Tk)

δ (fe · x , ye)

Thus, decoding a NC has the form of a special class of MPF
problems over Boolean semiring wherein we are interested
only in some coordinates (specified byDk) of theω-tuples in
the support set and not the value of the global kernel.

Since the solutionx∗
Dk

is unique, individual coordinatesj ∈
Dk can be separately computed,i.e.,

x∗
j = supt

j

∨

xj∈F

β
(k)
j (xj)

β
(k)
j (xj) =

∨

{x[ω]\j}

β(k)(x[ω]),
(9)

whereβ(k)
j (xj) is thejth marginalization of the global kernel

β(k).
The factor graph for decoding at sinkTk, k ∈ [K] is

constructed as follows:
1) Install ω variable nodes, one for each source message.

These vertices are labeled by their corresponding source
messages,xi.

2) Install |In(Tk)| factor nodesand label themf̃e, e ∈
In(Tk). The associated local domain of each such
vertex is the set,S ⊆ x[ω], of source messages that
participate in that encoding map and the local kernel
is δ(f̃e(x[ω]) , ye). These vertices are labeled by their
corresponding local kernels,̃fe.

3) A variable node is connected to a factor node iff the
source message corresponding to that variable node
participates in the encoding map corresponding to the
said factor node.

We use thicker lines for factor nodes to differentiate them
from variable nodes. The factor graph so constructed will be
a bipartite graph. General form of a factor graph and the same
for the two sink nodes of the butterfly network are given in
Fig. 2 (cf. [7, Fig. 3]).

Messages and states are computed using (6) and (7) respec-
tively. As stated before, once a node (sayv), has received
message from all the adjacent nodes, its state,σv(xSv

), can
be computed. LetxDk

∩ xSv
= xB . The value of the subset

B of the requisite source messages at thekth sink node is

x∗
B = supt

B

∨

{xSv}

αv(xSv
)

∧

v′∈N(v)

µv′→v(xSv′∩Sv
) (10)

As specified in Section II, the SP algorithm yields the
correct value of the source messages if the factor graph is
a tree. If not then the cycles in the factor graph will have to
be removed.
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Fig. 2. (a) General form of a factor graph (b) Factor graphs for T1 and (c)
T2 of the butterfly network. Local kernels are given adjacent tothe function
vertices.

B. Traceback

Since we are interested in the value of the source messages
and not the value of the marginalizations of the global kernel,
we can usetraceback [10] to further lower the number of
computations.

Assume that the single-vertex SP algorithm is run with
vertexv as the root (all messages are directed towardsv) and
the valuex∗

Sv
⊆ xDk

of some source messages in the demand
set of thekth sink has been ascertained. Now, partition the
local domain of a neighboring nodew, asxSw

= xA ∪ xB,
whereA = Sw\Sv andB = Sw ∩ Sv. Sincex∗

Sv
is known,

the valuex∗
B that causesσw(xA, xB) to take value1 is also

known. The value of the source messagesx∗
A can then be

obtained using (7) as follows:

x∗
A = supt

A

∨

{xA}

σw(xA, x
∗
B)

= supt
A

∨

{xA}

µv→w(x
∗
B) λw(xA, x

∗
B)

= supt
A

∨

{xA}

λw(xA, x
∗
B),

(11)

where

λw(xA, xB) = α(xSw
)

∧

v′∈N(w)\v

µv′→w(xSv′∩Sw
)

is the partial state computed atw while passing the message
µw→v(xB) to the rootv. Thus,µv→w(x

∗
B) does not need to

be computed or passed, leading to saving of operations.
Here we have exploited the fact that we require only

suptA

∨

xA
σw and not the value ofσw which would have

required passing of the messageµv→w(x
∗
B) from v to w

too. Hence, the traceback step reduces the computational
complexity.

The traceback step can be used repeatedly until values of all
the source messages inxDk

are obtained. This can be done
by using (11) on other neighbors ofv and then neighbors
of neighbors ofv and so on. This can lead to considerable

reduction in number of operations and is exemplified in
Section III-D.

C. Computational Complexity

We suggest using SP algorithm for decoding a network
code only when the code is either non-linear or it is linear
but the number of messages is very large. For linear network
codes with manageable value ofω, Gaussian elimination with
backward substitution is advisable. If using SP algorithm for
decoding network codes (when warranted) leads to compu-
tational complexity strictly better than brute-force decoding
complexity, then the code is calledfast decodable network
code.

We now discuss the computational complexity of SP algo-
rithm based decoding of network codes. As in [6], by com-
plexity we mean the number of semiring operations required
to obtain the desired source message. For convenience, we
assume that all the source messages take value from aq-ary
alphabet; results for variable alphabet size can be obtained
similarly.

As stated above, in order to recover the requisite source
messages at a sink we need only run single-vertex SP algo-
rithm followed by traceback steps. For a given sink node,
if the factor graph constructed using the method given in
Section III-A is cycle-free and the network code is such that
the local domains of all factor nodes have cardinality at most
l (< ω), then the number of operations required for decoding
using the SP algorithm isO(ql). If the sink demands all the
source messages, then the brute-force decoding would require
O(qω)(> O(ql)) operations. Thus, an acyclic factor graph
with at most l (< ω) variables per equation is a sufficient
condition for fast decodability of the network code at a sink
which demands all the source messages.

If the graph is not cycle-free then we remove the cycles
using the methods specified above and letm 6 ω be the
size of maximum cardinality local domain in the transformed
cycle-free factor graph. The number of computations required
now will be O(qm) 6 O(qω) and the code is fast decodable
iff m < ω.

D. Illustrations

We now present some examples illustrating use of the SP
algorithm to decode NC.

Example 1:Consider the butterfly network of Fig.1. Here
q = ω = 2. The factor graphs for two sink nodes are given in
are given in Fig. 2(b) and (c). The messages passed and state
computations for decoding atT1 are as follows:

µx2→fV4−T1
(x2) = 1

µfV1−T1→x1(x1) = δ(x1, yV1−T1)

µfV4−T1→x1(x1) =
∨

x2

δ(x1 + x2, yV4−T1)

µx1→fV4−T1
(x1) = µfV1−T1 ,x1(x1)

σx1(x1) = µfV1−T1 ,x1(x1) µfV4−T1→x1(x1)
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Fig. 3. (a) Combination network (b) Factor graph with cyclesfor T495 and (c) one obtained by clustering equation nodesf̃6 − f̃12 (f̃ =
∧

12

i=6
f̃i)

µfV4−T1→x2(x2) =
∨

x1

δ(x1 + x2, yV4−T1) µfV1−T1→x1(x1)

σx2(x2) = µfV4−T1 ,x2(x2)

It is easy to verify thatσxi
(xi) = βi(xi), i = 1, 2. Hence,

x∗
i = suptxi

∨

xi
σxi

(xi), i = 1, 2. Similar computations
apply for T2 also. This network code is not fast decodable
since the number of computations required isO(qω). �

Now we present a multicast network which admits no linear
solution overF2, but a non-linear solution exists.

Example 2:Consider the multicast combination network
given in Fig.3(a). All messages take value fromF2. Each
sink is connected to a distinct size8 subset of intermediate
node. Multicast, inF2, is feasible over such a network iff
a (12, 32, 5) binary error correcting code exists [11]. The
Nadler’s code is one such systematic code with the requisite
parameters. Note that since there exist no(12, 32, 5) binary
linear code, the above multicast network, admits no linear
solution overF2.

Apart from the systematic part of the Nadler’s code, the7 re-
dundant bits are encoded using non-linear functions [12];these
are:

f̃i = xi, i ∈ [5]

f̃6 = x1 + x2 + x3 + (x1 + x5)(x3 + x4)

f̃7 = x1 + x2 + x4 + (x1 + x3)(x4 + x5)

f̃8 = x1 + x2 + x5 + (x1 + x4)(x3 + x5)

f̃9 = x2 + x3 + x4 + x1x4 + x4x5 + x5x1

f̃10 = x2 + x3 + x5 + x1x3 + x3x5 + x5x1

f̃11 = x2 + x4 + x5 + x1x3 + x3x5 + x5x1

f̃12 = x1 + x2 + x3 + x4 + x5 + x3x4 + x4x5 + x5x3

These functions are the global encoding maps of the12 source
to intermediate node links. The intermediate nodes simply
route the data on incoming edges to the connected sink nodes,
hence, the global encoding maps of the incoming and outgoing
edges of an intermediate node is same.

Consider decoding at the495th sink whose global encoding
maps of incoming edges arẽfi, i = 5, . . . , 12. The factor
graph constructed using the method stipulated above will
have cycles (Fig. 3(c)). To eliminate the cycles, we cluster
f̃i, i = 6, . . . , 12 function vertices into a single one with
the local kernel as the product of7 original ones (Fig. 3(c)).
The computational complexity of SP decoding is same as that
of brute-force decoding (O(q5)). This is true for all the sink
nodes and hence this code is not fast decodable for any of the
sinks. �

In the next example we present a network with general
demands at sinks and employ the SP algorithm for decoding a
vector non-linear network code for it. We also demonstrate
usefulness of traceback for saving computations of some
messages in the factor graph.

Example 3:Consider the network given in Fig. 4. The sinks
(nodes37− 46) have general demands which are specified by
variables below them. In [13], the authors showed that this
network admits no linear solution over any field and gave a
vector non-linear solution. The source messagexi, i ∈ [5] are
2-bit binary words (q = 4, ω = 5), + denotes addition in ring
Z4, ⊕ denotes the bitwise XOR and the functiont(·) reverses
the order of the 2-bit input.

The factor graphs for nodes37, 40 and 43, denoted by
G37,G40 and G43 respectively, are given in Fig. 5; the same
for other nodes have similar structure and can be constructed
using method given in Section III-A. Note thatG40 has a cycle
of length4 andG43 has two cycles of length6 each. The cycles
are removed as follows:

• The cycle inG40 is removed by clustering the variable
verticesx1 andx2; the local domain and kernel of the new
variable vertex are(x1, x2) (union of the local domains of
the clustered vertices) and1 (product of the local kernels
of the clustered vertices) (Fig. 5).

• The cyclesC1 and C2 in G43 are removed by deleting
the dotted edges andstretchingvariable vertexx3 around
the respective cycles; this involves adding the stretched
variable to all the local domain in the cycle and leaving
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Fig. 4. The networkN3 of [13].

the local kernels unchanged (Fig. 5).

We infer fromG43 that the number of computations required
to reproduce all the source messages atV43 is only O(q3) in-
stead ofO(q5) (as brute-force decoding would have required)
and hence this code is fast decodable forV43. The decoding
process atV43, using single-vertex SP algorithm with node “f”
in G43 as root followed by traceback to computex1, x2, x4, x5,
is demonstrated below:

µk→j = µj→i(x3, x5) = δ(t(x3) + x5, y35−43)

µa→b = µb→c(x2, x3) = δ(x2 + x3, y33−43)

µi→h = µh→g(x3, x4) =
∨

x5

δ(x4 + x5, y36−43)µj→i(x3, x5)

µc→d = µd→e(x1, x3) =
∨

x2

δ(x1 + x2, y31−43)µb→c(x1, x2)

µe→f (x3) =
∨

x1

δ(x1 + x3, y32−43)µd→e(x1, x3)

µg→f (x3) =
∨

x4

δ(t(x3) + x4, y34−43)µh→g(x3, x4)

At “f”, decoding of x3 is performed as follows:

x∗
3 = supt

x3

∨

x3

σf (x3) = supt
x3

σf (x3)

= supt
x3

µe→f (x3)µg→f (x3)

We can now use traceback (11) to computex1 andx2 without

having to computeµf→e, µe→d or µd→c as follows:

x∗
1 = supt

x1

∨

x1

σe(x1, x
∗
3) = supt

x1

λe(x1, x
∗
3)

= supt
x1

δ(x1 + x∗
3, y32−43)µd→e(x1, x

∗
3)

x∗
2 = supt

x2

∨

x2

σc(x
∗
1, x2, x

∗
3) = supt

x2

λc(x
∗
1, x2, x

∗
3)

= supt
x2

δ(x∗
1 + x2, y31−43)µb→c(x2, x

∗
3)

Note thatµd→e and µb→c were already computed. Without
traceback,x1 andx2 are decoded at variable nodes “d” and
“b” respectively as follows:

µf→e(x3) = µg→f (x3)

µe→d(x1, x3) = µf→e(x3)δ(x1 + x3, y32−43)

x∗
1 = supt

x1

∨

x3

µe→d(x1, x3)µc→d(x1, x3)

µd→c(x1, x3) = µe→d(x1, x3)

µc→b(x2, x3) =
∨

x1

µd→c(x1, x3)δ(x1 + x2, y31−43)

x∗
2 = supt

x2

∨

x3

µc→b(x2, x3)µa→b(x2, x3)

Similarly x4 andx5 can be obtained. The number of semiring
operations required to compute all the messages passed and
states computed is given in Table I.

The number of computations required with traceback are 2
(C1+C2+. . .+C5)+C6+C7+C8 which is2(q3+q2)+5q = 180
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Fig. 5. The factor graphs for sinks with labels37, 40 and43 in network of Fig. 4.

Messages/States No. of
∧

No. of
∨

C1 µk→j , µj→i 0 0
C2 µa→b, µb→c 0 0
C3 µi→h, µc→d q3 q2(q − 1)
C4 µh→g, µd→e 0 0
C5 µe→f , µg→f q2 q(q − 1)
C6 x∗

3 q 0
C7 x∗

1, x
∗
4 q 0

C8 x∗
2, x

∗
5 q 0

C9 µf→e, µf→g 0 0
C10 µe→d, µg→h q2 0
C11 x∗

1 q2 q(q − 1)
C12 µd→c, µh→i 0 0
C13 µc→b, µi→j 0 0
C14 x∗

2 q2 q(q − 1)

TABLE I

products (∧) and 2(q2(q − 1) + q(q − 1)) = 120 sums
(∨).Without traceback, the number of operations required are
2(C1. . .+C5)+C6+2(C9+C10)+C11+2(C12+C13)+C14 which
is 2q3+6q2 = 224 products and2q2(q−1)+4q(q−1) = 144
sums. Thus, running single-vertex SP algorithm followed by
traceback step affords computational advantage over multiple-
vertex version.

�

IV. D ISCUSSION

In this paper, we proposed a SP algorithm based decoder
for decoding NC. Subsequently, a method for constructing the
factor graph for a given sink node using the global encoding

maps (or vectors in case of LNC) of the incoming edges and
demands of the sink was provided. The graph so constructed
had fewer nodes and led to fewer message being passed
lowering the number of operations as compared to the scheme
of [7]. Next we discussed how cycles in factor graph affect
the solution of the MPF problem and illustrated with examples
how to circumvent them. We introduced and discussed the
advantages of traceback over multiple-vertex SP algorithm.
Next, for the sinks demanding all the source messages, we
introduced the concept of fast decodable network codes and
provided a sufficient condition for a network code to be fast
decodable.
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