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Abstract—Enabling closed control loops via wireless communi-
cation has attracted a lot of interest recently and is investigated
under the name cyber-physical systems. Under cyber-physical
systems one challenging scenario is multiple loops sharing a
wireless medium, and the age of the control information has
to be minimized without sacrificing reliability to guarantee the
control stability. The number of transmitting devices depends
on the control parameters thus, it is stochastic. Wireless uplink
resource allocation given low latency constraints for unknown
number of devices is a hard problem. For this problem, random
access is the most prominent way to minimize latency, but
reliability is sacrificed. However, as reliability is also critical for
such applications, improved random access algorithms with hard
latency guarantees are needed. Currently available random access
algorithms with hard latency guarantees have low throughput
and some of them are limited to low number of active devices.
In this work, we provide a high-throughput random access
algorithm with hard latency-constraints (SICQTA) that scales
to any number of active devices. This algorithm, making use of
feedback, has a varying throughput between 0.69 and 1 depending
on the number of devices, which is unprecedented in the state of
the art up to our best knowledge.

I. INTRODUCTION & BACKGROUND

One typical problem with latency-reliability constraints is
uplink resource allocation for cyber physical systems [1]. In
this problem, multiple control loops share the wireless medium.
Each loop is composed of a controller, actuator and a sensor.
The controller is located at a central entity while actuator and
sensor are both located at the device. The closed control loops
outputs actuation decisions in the controller from the input
of the sensing information. The devices transmit the sensing
information through uplink communication and get actuation
decision as downlink communication.

The downlink is broadcast to all actuators without the need
of coordination. However, depending on the state of the control
loop, only some of the sensors transmit state information
through uplink communication. As the transmission depend on
the state of the control, the number of devices transmitting at
a certain time is unknown. Thus, we have M active sensors
at a certain time out of N total sensors which have to
be allocated resources to optimize the control performance.
This problem is previously investigated with LTE scheduling
consisting of a scenario with multiple inverted pendulums in
[2]. However, the solution assumes the information of device
activity to overcome the over-dimensioning of scheduling. This
information is not available in reality and the inefficiency to
obtain this information has actually called for a new design of

LTE uplink resource allocation mechanism called as grant-free
[3], reusing the state of the art in random access area.

Grant-free focuses on a scenario where devices transmit
a single packet or multiple replicas to achieve the latency-
reliability constraints. This requires over-dimensioning of re-
sources to fulfill tight reliability constraints as it lacks the infor-
mation that is the number of active devices [4]. As a solution to
over-dimensioning, successive interference cancellation (SIC)
is integrated to the random access schemes.

SIC enables recovery of overlapping packets through signal
processing. This has increased the throughput of random access
algorithms from 0.5 packets per slot up to 1 packet per slot
with asymptotic number of devices, reaching the efficiency
of scheduling based solutions. The trade-off is the decoding
complexity. Through edge-cloud processing and distributed
computing, complexity is expected to be dealt with for radio
access algorithms [5].

Successive interference cancellation is initially explored for
tree algorithms in [6]. Through that work the throughput for
tree algorithms is increased to 0.69 from 0.35. In [6] the clean
packet for cancellation is guaranteed with feedback, forcing
devices to split from each other. However, too much structure
is inefficient and in [7] it is shown that the same structure can
be built through random decisions. The random decisions are
shaped with a degree distribution tailored to the number of
devices. It is shown that the algorithm reaches a throughput of
1 in the asymptotic region when M goes to infinity.

Another work [8] adapts that work to a frameless struc-
ture where the degree distribution is replaced with setting
a Binomial probability to transmit at each slot. Compared
to framed structure the results show that, [8] has a better
performance in the non-asymptotic region. However, neither of
these algorithms can provide a hard guarantee on the latency.
Also both of them are susceptible to varying number of active
devices. The hard guarantees can be provided via setting the
decisions uniquely for each device.

This problem is initially investigated by Massey under the
name ”protocol sequences” for de-synchronized devices in [9].
These algorithms are too pessimistic to be applied to tight
latency constraints as the offset between devices is the main
issue there and it is not the main problem anymore thanks
to improvement in hardware design. Recently, the unique
decisions for each device for hard guarantees is investigated
in [10] under the name ”access codes”, where each device
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transmits packets with respect to a unique code. The design
of these codes is of combinatorial complexity. The results are
limited, as we detail on later parts of the paper. Moreover, the
use of feedback is neglected in this work.

Uniqueness of the access decisions can be guaranteed
through feedback to overcome the complexity of proposed
protocol. Using addresses for such limitation is initially pro-
posed by [11] and adapted for RFID tags with Query Tree
Algorithms in [12]. However, this algorithm lacks behind in
throughput compared to SIC-capable algorithms. The idea to
use Interference Cancellation for Query Tree Algorithms is
introduced in [13]. However, the explanation of the algorithm
in [13] is unclear. The throughput they have shown is capped
to 0.69 which have already been shown by [6] for TA with
SIC capabilities. Hard guarantees for performance are not
investigated and the difference to [6] is unclear.

In our work we propose a novel Successive Interference
Cancellation for Query Tree Algorithm, SICQTA. We provide
analytical hard upper and lower bounds to latency and compare
it with simulations to show the validity. It is shown that the
algorithm easily extends to any number of active devices unlike
access codes, and it provides a higher throughput compared
to previous SIC based works. On top of that, hard latency
guarantees make it a suitable candidate as a solution of the
uplink resource allocation problem with unknown number of
active devices.

Our paper is organized as follows: In Sec. II we explain
the scenario and provide the problem formulation for reliable
access with latency constraints. In Sec. III we introduce shortly
the Query Tree Algorithm and Successive Interference Cancel-
lation Query Tree Algorithm. In Sec. IV the latency bounds are
given and we compare our solution to the access codes while
comparing the bounds with simulations. Further discussions are
given in Sec. V. Finally, the paper is concluded with possible
extensions of future work in Sec. VI.

II. SCENARIO & PROBLEM

We consider a star topology where the central entity is called
the gateway and leaf entities of the star are called devices.
We consider an uplink scenario where only devices transmit
a packet to the gateway. There are N devices attached to the
gateway. Considered resources in the system are slots of a
single channel with a TDM scheme.

Two different channel models are considered with and with-
out SIC. First one is a collision channel model where perfect
reception is assumed. If there is no contention, there is no loss
of packets [14]. Second one is for SIC scenario, we assume
perfect cancellation is possible if clean packets are received.
These assumptions are common in MAC layer research to focus
on a layer 2 based solution. Impact of more practical channel
models are discussed in Sec. V. Each device is synchronized
perfectly to the slots defined by the TDM structure. The devices
are randomly and sporadically activated and the number of
active devices at any slot is M , such that M ≤ N . The devices
have a homogeneous radio latency constraint L and reliability
constraint R. We investigate the multiple access problem of

maximizing throughput that we abstract as maximizing number
of successfully used slots.1

We define a frame structure consisting of d subsequent slots.
We investigate the problem of designing codes c that represents
the binary access decision of a device. The code c is of size d,
i.e., c = {c1, c2, · · · , cd} where ci ∈ {0, 1} ∀ i ∈ {1, . . . , d}.
The device that has the code ci = 1 will transmit its packet at
slot i.

The codebook C is a collection of all codes and is a matrix
with d columns and N rows where each row represents a
unique code for each device. An example is as follows:

C =

0 0 1 0
0 1 0 0
1 0 0 0


with N = 3 devices and a frame size d = 4. Each device is
sporadically active and the activity of all devices is represented
with a vector n with N elements, i.e., nj ∈ {0, 1} where
nj = 1 represents that the device j is active. We assume that
codebook C is ordered such that code of device j is in the
jth row of C. This assumption allows us to define a frame
outcome f as in,

n ·C = f . (1)

The frame outcome f represents the number of packets at
each slot of the frame. However, receiver is unaware of this
information such that f should be converted to MAC layer
success outcome s. An example for collision channel would
be,

fi

{
= 1 si = 1

o.w. si = 0.
(2)

Using the previous definitions we can define an optimization
problem for codebook design.

Given frame size d and number of devices N , maximize the
total success per frame through the codebook design C:

argmax
C
‖s‖2, (3)

s.t. n ∈ N , (4)
d ≤ L, (5)

E
[
‖s‖2

]
≥ RE

[
‖n‖2

]
. (6)

where N is the set of all possible activation combinations of
N devices, L and R are the latency and reliability constraint
respectively. The ‖.‖2 operation is the autocorrelation operation
that also gives the summation of binary vectors. This is
naturally a combinatorial problem and hard to solve, as n can
take any value. We can write ‖n‖2 = M , where M is the
number of simultaneously active devices per frame.

The problem definition is shared here for formalism. In the
following part of the paper we show that SICQTA solves this
problem with a distributed algorithm that is guided via a central
feedback. Optimality of the algorithm is not proven is an open
issue for future work.

1For simplicity we assume that the constraint can be expressed in terms of
slots. The reliability constraint here is the radio layer reliability, that can be
input to the end to end reliability model.



Algorithm 1 Query Tree Algorithm

1: procedure GENERATE QUERY
2: Q← {‘0’,‘1’} . Initialize Q list with ‘0’ and ‘1’
3: while Q is not empty do
4: q ← Q[0] . q is the first element of Q
5: Transmit query at the beginning of time-slot
6: Save received packets as r
7: f ← |r| . Number of received packets
8: Q.pop . Delete Q[0]
9: if f = 0 or f = 1 then . Idle or success slot

10: pass
11: else if f > 1 then . Collision slot
12: Q.append(‘q0’,‘q1’)

End

III. ALGORITHMS WITH FEEDBACK

A. Query Tree Algorithm
First, we shortly introduce the Contention Tree algorithm. At

the start of the algorithm, in binary contention tree algorithm
[11] any active device sets c1 = 1 and transmit. If more than
1 device is active, the gateway sends a feedback to devices,
informing that a collision has happened, and all the active
devices do a uniform random selection whether to set c2 = 1
and c3 = 0 or vice-versa. The devices that have set c2 = 1
transmit at slot 2. If again a collision is reported, only those
that have transmitted at slot 2 do a random uniform selection
for c3 and c4. Meanwhile, the devices that have previously set
c3 = 1, change the values via setting c3 = 0 and c4 = 1. Thus,
postponing their transmission. The process goes on until all
devices have transmitted successfully. Even though this process
stochastically guarantees that all access codes are unique, the
distribution, representing the latency of devices, has a long tail
and is not efficient for high reliability constraints.

To overcome this issue, Query Tree Algorithm (QTA) is
suggested in [12]. In QTA every device has a unique id formed
of u bits. This limits the total number of devices attached to
the gateway to N = 2u. In QTA, queries are used instead of
feedback but the overhead is the same. In QTA devices are
queried with respect to their id bits. The queries start with an
empty query. A single bit is appended to the list of queries
after each collision, starting from the left-most bit. Each new
collision append a new bit. As each device has a unique id,
this guarantees that two devices have a unique access decision
in worst-case after u transmissions (if all previous u − 1 bits
are the same for two devices). The gateway implementation of
QTA is given in Alg. 1, where the device implementation is
only answering to the queries matching its id.

A detailed example is given for M = 4 in Fig. 1a. We have
named the 4 devices as {A,B,C,D} with ids {000,001,100,101}
respectively. Each circle denotes a slot in the tree. The time-
wise progression of the tree is given with slots above the tree.
The id size, u is fixed to 3.

In the first slot, 4 devices transmit at the same time and
collide. Next slot, the address 0xx is queried. Only, A and
B transmit. It is again a collision. On the following slot, the

Algorithm 2 SICQTA

1: procedure GENERATE QUERY
2: Q← [ ], q ←‘0’, k ← ‘0’ . Initialization
3: while k − 1 6= |Q| do . End condition
4: Transmit query at the beginning of time-slot
5: Save received packets as r
6: qb ← [q1 . . . qn−1qn] . Invert last bit of q
7: f ← |r| . Number of received packets
8: if f = 0 then . Idle slot
9: q ←’qb0’ . Skipping collision

10: else
11: Q.append(qb)
12: if f > 1 then . Collision slot
13: q ← ‘q0’
14: else . Cancel clean packet and skip.
15: q ← Q[−k]+‘0’
16: Q← [Q[0], · · · , Q[−k − 1]]
17: . Skip most recent k − 1 queries thanks to SIC, k ≥ 1.

End

query for address 1xx is also a collision so the algorithm moves
one level down. The address 00x is queried and both devices
transmit. The query for 01x results in an idle slot. Queries
for address 001 and 000 is done on slot 6 and 7, respectively
and both are successes. The algorithm is completed after the
process is repeated for right branch.

B. Query Tree Algorithm with SIC (SICQTA)

SIC allows recovery of packets from a slot where a collision
is observed. If for instance device A and B have transmitted a
packet in slot 1, due to collision channel model, the outcome
”A+B”, is treated as a collision and slot is considered wasted.
However, if device B has transmitted its packet in slot 2,
the SIC model let us subtract B from ”A+B” and enables
recovery of A from slot 1. Instead of breadth first, the SICQTA
goes depth-first. After the initial success, it checks if it can
cancel the clean packet from previous collisions. If the packet
is successfully cancelled then the algorithm skips the direct
siblings of those slots. The algorithmic description of SICQTA
is given in Alg. 2.2

A detailed example for the worst-case behavior of SICQTA
is given in Fig. 1b for M = 4. In the first slot, all the devices
are queried and it is a collision. On the second and third
slot, addresses 0xx and 00x are queried, respectively. Both
are collisions. The following slot, 000 is queried and it is
a success. 001 is not queried, as the gateway recovered the
packet from slot 2 and 3. This results in k = 3 as 2 slots are
successfully recovered and this slot is a success. Ids in query
list Q: 001 and 01x is not queried and skipped. Thus, 10x is
queried, that results in a collision. Following, 100 is queried
and is a success. The gateway recovered D from slot 5 and the
algorithm is terminated.

2Open source Python implementation of the algorithms is availabe at:
https://github.com/tum-lkn/sicqta
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(a) QTA worst case with M = 4
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(b) SICQTA worst case with M = 4

Fig. 1: Worst-case example for Query Tree Algorithms with and without SIC with M = 4. u = 3 is set such that maximum number of
devices is N = 2u = 8.

IV. ANALYSIS & EVALUATION

In this section we will evaluate the latency of QTA and
SICQTA and give bounds to its performance. We will also
compare the performance of our work and [10] as we share
the same problem definition. Finally, mean delay is compared
with state of the art in tree algorithms to show that the stability
region is extended.
A. QTA

An upper-bound for latency y of QTA is given in [15]:

y ≤M (u+ 2− logM) , (7)

where M is the number of active devices. This is a tight bound
for M � N where with increasing M it has a slack. Using the
tree structure we can provide a tighter upper-bound for latency
y as,

y ≤
⌊
M

2

⌋
2

(
u+ 1−

⌊
log2

M

2

⌋)
− 1 (8)

Similarly, the tree structure can be used to provide a lower-
bound of latency as:

y ≥ 2M − 1. (9)

The proofs are given in App. A and B, respectively.
We explain why the example in Fig. 1a is the worst-case

of a QTA with M = 4 also shedding light on the proof of
the bounds. Four devices are separated into 2 groups of 2 as
close as possible to the root of the tree, so they cover as much
as non-overlapping slots as possible. Following, devices have
repeated the same collision, until the last level of the tree.
We observe that for this scenario the total number of slots is
y = 11. Using Eq. (7) we get 13. This shows that the bound
is valid and tight for this setting.

B. SICQTA

Intuitively, the efficiency of the [6] comes from the possi-
bility to skip some slots in the tree. As it is shown in [6],
the throughput of BTA is doubled. However, the throughput
is the expected number of slots and this result cannot be
directly translated to worst-case latency of SICQTA from

QTA. We have to adapt the Eq. (7) for SICQTA using the
skipping capability of SIC. The total number of skipped slots
S compared to worst-case of QTA, given M active devices can
be written as,

S =

⌊
M

2

⌋(
u− 1−

⌊
log2

M

2

⌋)
+

blog2Mc∑
i=1

⌊
M

2i

⌋
. (10)

The proof is given in C.
We can use this finding to provide an upper-bound for

latency of SICQTA using Eq. (8) and removing the skipped
slots,

y ≤
⌊
M

2

⌋
(u+ 4− blog2Mc)− 1−

blog2Mc∑
i=1

⌊
M

2i

⌋
. (11)

Intuitively, the algorithm needs at least M slots for M active
devices and a lower-bound for latency of SICQTA can be given
as y ≥M.

This is given without any proof, as in best-case no repetition
occurs such that every slot is recoverable from another.

The upper-bound for latency can be used for the throughput
calculation of the SICQTA. If number of active devices is the
same as the number of total devices, i.e., M = N = 2u. Then
we expect SICQTA to have a throughput of 1, as each slot in
the tree should be different from one another.

Eq. (11) is a relaxed bound, but it becomes tight for integer
values of log2M . Plugging in M = 2u we get,

2u ≤ y ≤ 2u+1 − 1− 2u+1 + 2u + 1 = 2u. (12)

Thus, we have a throughput of 1 as expected. The proof is
given in App. D.

We can check the bound via the example in Fig. 1b. We
see that in total 6 slots are used for SICQTA in the example.
Using Eq. (11) we get 6 showing that the bound is valid and
tight for this scenario.

In Tab. I we have compared the number of devices N
supported by CAC-SIC with SICQTA. The number of active
devices are fixed to M = 3 for CAC, because these are the only



Constraint L= 4 L= 5 L= 6 L= 7
CAC-SIC [10] 7 11 − −

SICQTA M = 3 8 16 32 64
SICQTA M = 4 4 8 8 16

TABLE I: Number of devices supported by CAC-SIC for fixed
number of active devices M = 3, with varying latency constraint,
compared to SICQTA.

available results in [10]. For SICQTA, we see that with relaxed
delay constraint the number of devices supported increases
exponentially. And even though the results are similar for low
latency constraints, the difference increases with increasing L.
Also the results for SICQTA is easily extensible to other M
values, while an exhaustive search is required to build codes
for CAC-SIC. On the other hand effect of feedback is neglected
in this analysis.

C. Simulations

We have done Monte Carlo experiments on a python based
discrete event simulator 106 samples for each experiment
varying the number of active devices.

In Fig. 2 we have plotted the bounds versus simulation for
SICQTA. x-axis depicts the varying active number of devices
M and the y-axis presents the latency. We have set u = 6
so implicitly N = 64, and we have varied the number of
active devices M . We see that with 104 iterations for each
data point in simulations the bounds are never surpassed and
the difference between the lower and the upper bound is quite
low.

As we deal with worst-case latency, this is the latency of
the last device. In Fig. 2b we have evaluated the throughput
with varying active number of devices M . Mean throughput is
almost always above 0.8 while the tail is also quite constrained,
especially with increasing M .

In Fig. 3 we extend the delay vs throughput comparison in
[6] with SICQTA. In this simulation scenario continous arrivals
are considered. If a device gets a packet to transmit while
there is an on-going resolution, the device is queued until the
end of that resolution, reflecting the setting in [6]. We see
that SICQTA enables a new throughput region that extends to
throughput of 0.93 with u = 4. Also with u = 6 the throughput
with stable latency is around 0.86. Of course SICQTA becomes
similar to SICTA with increasing u value. This is logical as
SICTA can be considered as a special setting of SICQTA with
u = ∞. Here, it is shown that with u = 10 the behavior is
almost the same as SICTA. It is worth mentioning that the
average resolution time is increased as we see a shift on the
y-axis compared to SICTA. We have also simulated higher
values of u, i.e., u = 16 and did not observe any difference so
they are not plotted here to avoid clutter. For decreasing u the
throughput is expected to increase further reaching 1.

V. DISCUSSIONS

One important point for SICQTA compared to QTA is that
the knowledge of M does not improve the upper-bound of
latency. The knowledge of M would be used in this case to
skip to level blog2Mc. However, in the worst-case all collisions

(a) Latency

(b) Throughput

Fig. 2: Excessive simulations show the validity of the bounds. The
maximum number of levels is set to u = 6, N = 64 and M is varied
(x-axis).

happening before this level consist of different devices, and
under a SIC framework, they can all be recovered from each
other to obtain useful slots. So the number of skipped slots with
knowledge of M would be equal to those skipped due to SIC.
However, application of knowledge of M to QTA can improve
the worst-case performance and bring it close to SICQTA.

We have compared the feedback based algorithms to non-
feedback based algorithms here. However, we assumed that
the feedback is instantaneous and costless. In reality that is
not the case. The latency incurred due to transmission and
reception may even involve hardware delays such as switching
from transmit to receive and vice-versa. We leave this open for
future work.

We are also working on prototyping this algorithm through
IEEE 802.15.4 capable sensors and SDRs. One observation
we have is that depending on the quality of the sensor device,
the phase noise accumulates through successive interference
cancellation and this makes collisions of 6 packets, a wasted
slot as cancellation fails due to accumulated phase noise.
Algorithmic solutions, such as starting the queries from level
u − 33, should be considered to overcome such hardware
constraints. Curious reader can refer to [16] for a theoretical
model that incorporates variances in the hardware to the SIC
capacity and to [17] for practical characterization of causes for
hardware variances.

VI. CONCLUSION

In this work we have evaluated the problem of uplink
resource allocation for unknown number of active devices.
We believe that this problem represents the important uplink
resource allocation problem for multiple control loops sharing
the same wireless network. As a solution we present the
algorithm Successive Interference Cancellation Query Tree Al-
gorithm (SICQTA). The advantage of the algorithm compared

3This will cap the maximum number of collided devices to 8.



to previous algorithms is the high-throughput performance and
the hard latency guarantees. The bounds for the performance
are proven analytically and further validated with simulations.

Future work can investigate relaxing the assumptions made
for easy investigation of the protocol. Firstly, the feedback is
assumed instantaneous and costless, accumulation of feedback
messages should be considered to decrease this bottleneck
as much as possible. Secondly, we assumed that SIC works
perfectly. However, due to accumulated phase noise some
collisions cannot be recovered via SIC and indeed result in
wasted slots. This should be evaluated and incorporated into
the protocol design. Thirdly, even though it is intuitive that
decreasing latency and increasing reliability helps for the
cyber-physical systems, an integrated evaluation of control and
communication should be done to provide concrete results.

APPENDIX

A. Proof for upper-bound for latency of QTA

The worst-case for QTA is illustrated in Fig. 4. An intuitive
explanation is as follows: A device can re-transmit at maximum
u times in the worst-case as that is the size of addresses and
every device has a unique address. In this case the device is
successful with the uth transmission and it has experienced
u− 1 collisions. In order to have a collision we need at least
2 devices, and at the worst-case all devices are grouped into
two, thus bM2 c groups. Each group collides separately for u−1
times, where there will be idles on the unexplored slots so
2 · (u− 1) slots, followed with 2 transmissions for success of
each device, we get

y ≤
⌊
M

2

⌋
2 · (u− 1 + 1) (13)

slot uses in total. We take into account, the activity of the
groups of two only after the level

⌊
log2

M
2

⌋
. As the initial

levels have a lot of overlap, we can remove these levels and
consider them separately as

y ≤
⌊
M

2

⌋
2 ·
(
u−

⌊
log2

M

2

⌋)
+R, (14)

where R represents the overlapping slots. The number of
overlapping slots can be calculating by summing the total
number of slots up to level log2

M
2 ≥

⌊
log2

M
2

⌋
of the tree.

We can calculate the total number of nodes in this upper part
of the tree as,

R ≤ 2m+1 − 1 = 2log2
M
2 +1 − 1 = M − 1. (15)

Plugging this in Eq. (14) we get,

y ≤
⌊
M

2

⌋
2 ·
(
u−

⌊
log2

M

2

⌋)
+M − 1, (16)

≤
⌊
M

2

⌋
2 ·
(
u+ 1−

⌊
log2

M

2

⌋)
− 1. (17)
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Fig. 3: Delay vs throughput of feedback based random access
algorithms.

B. Proof for lower bound for latency of QTA

The best-case in the tree with M devices, is that they are
organized as a triangle, guaranteeing they are as close as
possible to the root. So the level of the successes are almost the
same. However, the level of the devices can be the same only if
log2M is an integer. If it is not an integer, the best-case would
be some of the devices are successful at level l1 = dlog2Me
and the others are at l2 = blog2Mc. In order to have a complete
triangle we would need that devices at level l2 would each have
2 children at l1. So the number of slots at l1 is equal to the sum
of number of devices at l1 plus twice the number of devices
at l2. The number of slots at a level can also be written as 2l

so we can write,

2l1 = Ml1 + 2 ·Ml2 (18)

where Ml1 and Ml2 is the number of devices successful in l1
and l2 respectively. We know that the total number of devices
is M = Ml1 +Ml2 . so we can re-write Eq. (18) as

Ml1 = 2 ·M − 2l1 . (19)

If we do not consider the level l1, the tree is a full triangle
up to level l2. We can calculate the total number of slots in
the tree for the best-case yLB through calculating the number
of slots for the full tree up to l2 and adding Ml1

yLB = 2l2+1 − 1 +Ml1 . (20)

By definition of flooring and ceiling operation l2 + 1 = l1 if
log2M is not an integer. And we can plug Eq. (19) in to get,

yLB = 2l1 − 1 + 2 ·M − 2l1 = 2 ·M − 1. (21)

When log2M is an integer the lower-bound is directly given
with 2log2M+1 − 1, which is equal to the result so we do not
mention it separately.

C. Proof for number of skipped slots S

The skipping in SICQTA consists of two different parts. First
part is skipping the idles SI and second part is skipping the
canceled slots SC . So we can write S = SI + SC .



Fig. 4: The worst-case tree structure for Query Tree Algorithm.

The upper-bound for latency of QTA is derived using groups
of 2 devices sticking together until the last level of the tree. At
the last level they transmit separately, each as a success. The
idles occur after separation from the top triangle until the end
of the tree. We have

⌊
M
2

⌋
collisions and the number of levels

until the end of the tree gives us the number of skipped idle
slots as

SI =

⌊
M

2

⌋(
u− 1−

⌊
log2

M

2

⌋)
. (22)

Thanks to SIC, after one success the other device does not
have to transmit anymore, as after one success the other device
can be recovered from the previous collision. Thus, at least M

2
slots are skipped for the last level of the tree.

This skipping can be applied to also formation of groups
of 2. Groups of 2 are formed from groups of 4. Thus, for the
first group formed out of 4 devices, the other group can be
recovered from the collision, so one slot can be saved for each
separation. In this step we can save M

4 slots. This logic can
be extended up to dlog2Me separations as we have a binary
splitting process. This gives us,

SC =

blog2Mc∑
i=1

⌊
M

2i

⌋
. (23)

Finally, we can write,

S =

⌊
M

2

⌋(
u− 1−

⌊
log2

M

2

⌋)
+

blog2Mc∑
i=1

⌊
M

2i

⌋
. (24)

D. Proof for number of skipped slots with M = 2u

We plug in M = 2u to Eq. (23)

S =

⌊
2u

2

⌋(
u− 1−

⌊
log2

2u

2

⌋)
+

blog22
uc∑

i=1

⌊
2u

2i

⌋
=

u∑
i=1

2u−i.

(25)

S =

u∑
i=1

2u−i = 2u

(
u−1∑
i=0

2−i − 1 + 2−u

)

= 2u
(
1− 2−u

1− 2−1
− 1 + 2−u

)
= 2u+1 − 2u − 1, (26)

is what we get, as u is the number of maximum levels and is
an integer we can remove the floor operation. So we can plug
Eq. (26) in Eq. (11) to get,

y ≤
⌊
2u

2

⌋
(u+ 4− blog22

uc)− 1− 2u+1 + 2u + 1. (27)
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