
HAL Id: hal-04282298
https://hal.science/hal-04282298v1

Submitted on 13 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Enhanced Pathfinding and Scalability with
Shortest-Path Tree Routing for Space Networks

Olivier de Jonckère, Juan A Fraire, Scott Burleigh

To cite this version:
Olivier de Jonckère, Juan A Fraire, Scott Burleigh. Enhanced Pathfinding and Scalability with
Shortest-Path Tree Routing for Space Networks. ICC 2023 - IEEE International Conference on
Communications, May 2023, Rome, Italy. pp.4082-4088, �10.1109/ICC45041.2023.10279514�. �hal-
04282298�

https://hal.science/hal-04282298v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Enhanced Pathfinding and Scalability with
Shortest-Path Tree Routing For Space Networks

Olivier De Jonckère∗ Juan A. Fraire†‡, Scott Burleigh§
∗Technische Universität Dresden, Dresden, Germany

†Univ Lyon, Inria, INSA Lyon, CITI, F-69621 Villeurbanne, France
‡CONICET - Universidad Nacional de Córdoba, Argentina

§ D3TN U.S. Corp., Florida, 444 Brickell Avenue, Miami, FL 33131, USA

Abstract—Contact Graph Routing (CGR) is the state-of-the-
art deterministic routing approach for scheduled space Delay-
tolerant Networks (DTN). Indeed, CGR outlined the Schedule-
Aware Bundle Routing (SABR) recommended standard from the
Consultative Committee for Space Data Systems (CCSDS). The
core approach exploits the predictability of space node mobility
patterns and link availability, which is imprinted in time-varying
graphs fed to Dijkstra and Yen’s algorithms for route compu-
tation (pathfinding). This paper addresses the scalability issues
CGR faces when computing routes over large-scale contact plans
spanning several nodes and long-term planning horizons. After
an in-depth analysis of the main CGR computation limitations,
we propose multipath-tracking and tree-caching embedded in the
Shortest-Path tree routing for Space Networks (SPSN) routing
scheme. Simulation results show that SPSN’s route computation
time does not increase with increasing contact plan horizon while
slightly improving on CGR’s delivery rate.

Index Terms—Contact Graph Routing, Shortest-Path Tree
Routing for Space Networks, Delay-Tolerant Networks, Schedule-
Aware Bundle Routing

I. INTRODUCTION

Derived from Contact Graph Routing (CGR) [1], Schedule-
Aware Bundle Routing (SABR) [2] is standardized by the
Consultative Committee for Space Data Systems (CCSDS)
as the recommended routing approach in space network with
predictable topologies. Furthermore, SABR is identified as es-
sential for the service management function by the Interagency
Operations Advisory Group (IOAG), as noted in the report for
the future Mars Communications Architecture [3].

In the context of SABR, a “route” is a list of successive
forwarding episodes (”hops”) from a source to a destination
node. SABR defines a procedure for route selection among
a list of pre-computed routes stored in a routing table. The
strategy by which the routing table is populated is therefore
critical, not only for accuracy but also from a processing
time perspective. In particular, recent research showed CGR
computational complexity can increase beyond practical limits
in large topologies [4], [5].

The computational load of CGR derives in part from Yen’s
algorithm complexity but is exacerbated by other considera-
tions that are so far only partially understood. In this paper, we
expose and dive deep into these undetected and intricate CGR
peculiarities including a) path distance metric, b) optimal path
identification requirements, and c) ordered route computation
in Yen’s algorithm.

The remainder of this paper is organized as follows. Section
II reviews the operational context of scheduled DTN and
CGR, including a characterization of the issues specific to
space DTN pathfinding and route management. Section III
introduces multipath-tracking and tree-catching in the context
of the Shortest-path Tree Routing for Space Networks (SPSN).
Section IV discusses the simulation results that validate SPSN
is able to improve CGR’s state of the art. Conclusions are
summarized in Section V.

II. BACKGROUND

A. Space Delay-Tolerant Networking

A space DTN is characterized by lengthy end-to-end delays,
due to both the intermittent nature of the links and the signal
propagation delays resulting from operating communication
links over interplanetary distances.

Support for tolerating disruptions and delays is provided
by the DTN architecture [6] and more specifically by the
bundle protocol (BP) [7]. The entities that issue, forward,
and consume the data flowing through a BP network are
termed nodes. BP relies on nodes’ ability to store messages
while awaiting onward transmission opportunities. Protocol
data units of arbitrarily large and variable size, called bundles,
flow through an overlay network layer implemented by BP.
(“Bundles” are so named because they commonly bundle
data together with any metadata that the data recipient might
need in order to consume the data productively, eliminating
conversational negotiation of transmission parameters that is
undesirable over lengthy end-to-end communication delays.)
The protocols underlying BP, at what is termed the “conver-
gence layer”, may form one or more sub-networks of the DTN
network or may constitute lower-layer communication links.

In a scheduled DTN, the intervals of communication op-
portunity between the nodes, called contacts, are known in
advance and can be enumerated in documents called “contact
plans”. A contact is a unidirectional transmission opportunity
between two nodes, for a predicted time interval, characterized
by a data transmission rate also known a priori. Contacts
commonly (but not always) occur in pairs, constituting bidirec-
tional communication. The contact plan also notes the distance
in light seconds (the “range”, equating to signal propagation
delay over a direct link) between any two nodes for which
contacts are predicted.

B. Contact Graph Routing

CGR presents a route construction process and a route
selection process. The route selection process is described by
the SABR standard, while only suggestions and terminology
are provided for the route computation process.

The route computation process can be further divided into
two mechanisms: the shortest-path search procedure, imple-
mented by an adaptation of Dijkstra’s algorithm, and the
alternative route search procedure, typically implemented by
an adaptation of Yen’s algorithm (as suggested by the SABR
standard and implemented within the Interplanetary Overlay
Network (ION) [8] software distribution).

The shortest path from a source node to a destination node,
as found by Dijkstra, will minimize the arrival time of a bundle
in the most general case: the algorithm explores the graph from
the source node, starting at the current time, for an abstract
bundle of size zero, and any prior allocation of transmission
capacity to other bundles is ignored. But the properties of a
given bundle may make it impossible for that bundle to be
forwarded on that shortest path: bundles already allocated to
that path may leave too little residual transmission opportunity
for the bundle, given its size. In this event, the shortest suitable
alternative path must be found.

Yen’s K-shortest-path algorithm may be used for this pur-
pose, but it suffers from polynomial complexity and invokes
Dijkstra’s algorithm within its inmost nested loop. This com-
pound complexity, amplified by the polynomial complexity of
Dijkstra’s algorithm itself, contributes significantly to CGR’s
computational cost [5].

A first step toward reducing this cost is to reduce the
Dijkstra algorithmic complexity by replacing the contact graph
with a node graph: instead of a graph in which the vertices are
contacts (between nodes) and the arcs are periods of bundle
retention between contacts, we have a graph in which the
vertices are nodes and the arcs are lists of contacts between
nodes. This modification has proven to be effective, as reported
in [9] and [10].

A further problem with the use of Yen’s algorithm is the
difficulty of selecting a value for K, the number of alternative
shortest paths to compute: K cannot be infinite, but if K is
too small, then none of the computed paths may be suitable
for forwarding a given bundle. So the second step toward
computational cost reduction in space DTN routing is to
compute new routes only when needed. We can “set” K to
infinity but “pause” the algorithm until a search for a suitable
route for a given bundle is unsuccessful, and then “resume” it
only until one suitable route has been inserted into the table.
This adaptive Yen mechanism was implemented in ION to
reduce computational pressure during initial route computation
and subsequent route selection.

Additionally, two alternative CGR mechanisms were devel-
oped in [11]. One approach was modifying the Dijkstra search
to consider bundle size and contact capacity consumption
while searching to enable route computation and selection in
a single operation. The other approach was the replacement of

Yen’s algorithm with a contact-limiting mechanism, suppress-
ing one contact before each iteration of the path-finding loop.
This enabled another route to be found in a single invocation
of Dijkstra. In contrast, the number of Dijkstra invocations
required by Yen’s algorithm was approximately equal to the
average path length. However, alternative routes that included
any of the suppressed contacts were rendered undetectable.
Finally, authors in [12] presented hop count as an alternative
CGR optimization method.

C. DTN pathfinding challenges and issues

It is commonly assumed that the limit on the scalability of
CGR is its sensitivity to contact plan length. However, reduc-
ing the sensitivity to the contact plan length as in [10] is not
sufficient. Instead, the use of Yen’s algorithm to find alternative
routes remains a main contributor to computation cost in large
intermittently-connected space network networks [9]. In the
following, we discuss the main CGR scalability issues.

a) Path distance metric: The first peculiarity is the
definition of the path distance in the context of SABR. An
analogy would be the booking of train tickets between two
train stations. One customer might prefer to minimize the
transit time and book train tickets with fewer connections
by delaying his departures to catch direct trains. A second
customer might prefer to minimize the arrival time, even if this
implies more connections. The arrival time of this customer
might be constrained by the connections between the final
station and the previous one, if the destination is less connected
to the train network, i.e. connections for this destination are
less frequent.

SABR behaves in the latter manner, by always prioritizing
earlier arrival times when selecting a route. The arrival time
at a destination might be heavily constrained by the contacts
between the penultimate and the last node (the destination)
of the path. If such a configuration occurs, an arbitrarily high
number of paths sharing the last contact of the best route might
exist, and thus those routes share the same arrival time (see
contact the case of C1 in figure 1). This statement still holds
true if pathfinding takes into account the size of a given bundle
to schedule, i.e. the delays between the first and last bytes
transmission times.

In the case of the first customer discussed above, we could
also find an arbitrarily high number of trips sharing this
minimum transit time, but they would be unlikely to share
the same last connection. A similar set of connections can be
available the next day but would be translated by different
contacts in the context of SABR.

This aspect is independent of the algorithmic complexity.
b) Optimal path requirements: The second peculiarity

is the importance of maximum utilization of all transmission
opportunities. The SABR standard imposes exacting require-
ments on the determination of the best route for a bundle. First,
the best route is the one that results in the earliest arrival time.
If two routes result in the same arrival time, the one comprising
fewer “hops” (that is, involving fewer forwarding nodes) is
considered the best. If two routes are characterized by the same

S

G

D

Two ends of a very dense section of the network

C1 C2

Fig. 1. A very dense network as seen by the local node S, with node D being
accessible only via the consecutive contacts C1 and C2 from a “gateway”
node G. Contact C2 ends later than C1, and C1 ends later than the other
contacts.

earliest arrival time and minimal number of hops, the route that
expires last (i.e., whose earliest-expiring constituent contact
has the latest “stop” time) is best. These rules help maximize
the volume of data that can be conveyed by the network
while still minimizing the arrival time. But the optimal path
cannot always be detected in one search. Instead, a number of
searches might be required to find the best route for a given
bundle, which may result in excessive computational costs. In
Dijkstra’s algorithm, the limiting factor when using a node
graph is that a vertex can only have a single parent, while
in the context of a contact graph, the limiting factor is the
interruption of the exploration as soon as the destination is
reached (to lower the computational pressure). In both cases,
this can inhibit the detection of the best existing path in the
sense of SABR.

c) Ordered route computation: The ordered route com-
putation at the core of Yen’s algorithm aggravates issues a)
and b) from a compute effort perspective. If the end destina-
tion node is reachable via multiple paths that share the last
contact (issue a), figure 1), multiple (ordered) Yen’s iterations
will be needed to revise all paths. However, most of these
computations will be performed in vain because higher hop
counts and/or limited effective volume limits will violate the
optimal path condition in the route selection phase (issue b)).
If the adaptive strategy implemented in ION is leveraged, this
computation loop might block the forwarding of an incoming
bundle for several seconds. In this case, the limitation of the
“K” Yen’s parameter might result in an early termination of
the algorithm thus missing the real optimal path.

III. SHORTEST-PATH TREE ROUTING

In this section, we propose two approaches to overcome the
aforementioned issues. The solution is integrated into Shortest-
Path tree routing for Space Networks (SPSN). SPSN was intro-
duced in [10] as an alternative route construction mechanism

leveraging node multigraphs, volume-aware pathfinding, and
shortest-path tree construction. Please refer to this previous
publication for details. For shortest-path tree implementations
please refer to [13].

A. Multipath-tracking

To address the issue described in section II-C-b), we extend
SPSN with a feature coined “multipath-tracking”. This feature
intends to find routes that might be missed with a single
Dijkstra invocation.

The core functionality of multipath tracking is to simultane-
ously track several routes generated by SPSN’s shortest-path
tree construction process. For example, in figure 2, the orange
and blue paths (respectively the best existing routes to D1
and D2) are simultaneously tracked in the SPSN tree during a
single Dijkstra call. Specifically, node E would carry 2 distinct
predecessors for 2 different routes, while a classic Dijkstra
exploration in CGR only allows for a single predecessor. This
principle is integrated into SPSN as follows.

During the tree construction, the exploration information to
a receiver node (parent, arrival time, hop count, expiration,
etc.) is not attached to the node graph vertices directly but
stored as a “RouteStage” work area inserted in a list of
“RouteStages” for this node. The parent of a RouteStage is also
a route RouteStage. By identifying the best RouteStage to a
node, the shortest path can be reconstructed from the shortest-
reverse-path starting from this RouteStage to the RouteStage
of the source thanks to the parenting information. A shortest-
reverse-path tree consequently provides the best RouteStage
for each reachable destination.

The lists of RouteStages enable SPSN to implement
multipath-tracking: instead of just replacing the RouteStage
of a node during exploration. The lists are ordered following
the same rules defined for the selection phase of SABR. As
mentioned above, a RouteStage holds the metrics required to
enable such ordering.

Insertion of a candidate RouteStage in a list should be al-
lowed in cases where existing RouteStages (previously inserted
during exploration) in the list are better than the candidate for
a higher-ranking selection metric but not for a lower-ranking
one.

This mechanism permits to track simultaneously the best
paths (first element of each list) without discarding other paths
being dependencies of those best paths (e.g. in figure 2, the
RouteStage to E having the RouteStage to S as parent).

To wrap up, multipath-tracking is implemented as a single
function that tries to insert a RouteStage candidate into the
RouteStage list of a node. This function also takes care to
update the accumulator of Dijkstra’s main loop and discard
other candidates from the list (and the accumulator) if those
RouteStages are irrelevant anymore. A diagram depicting a
simplified version of this workflow is presented in figure 3.

B. Tree Caching

This section proposes a solution to embed shortest-path
tree pathfinding within a routing algorithm. Tree caching is a

start: 1
end: 2

B C

D2

D1

start: 30
end: 31

start: 10
end: 11

start: 7
end: 8

start: 5
end: 6

start: 3
end: 4

A

start: 20 end: 21

E

arrival time
at E: 20
(via S)

arrival time
at E: 7
(via C)

S

This contact would never be retained after a classic Dijkstra pathfinding because
 exploration of the orange path would overwrite the predecessor of E.

With multipath-tracking, both predecessors C and S can be tracked simultaneously.

Fig. 2. The orange route is the best route to E and D1, showing an earlier arrival time, while the blue route is the best route to node D2, showing a fewer
hop count. Dijkstra’s algorithm constraints parenting to a single vertex, the parent node of E being C. With standard Dijkstra, the blue route is not detected.

Set index to 0
Set insert to False

INSERTION DECISION

P[V] is empty

False

Push or update R to/in Acc
set R as the best
RouteStage to V

Insert R in P[V] at position 0

True

insert is True

inserted

not inserted
False

INSERTION HELPER

Push or update R to/in Acc
Insert R in P[V] at position index

For each RouteStage N
having a higher index than R
in P[V], remove N from P[V] if
N is worse than R for both the
arrival time and the hop count

inserted

Set R as the
best RouteStage

to V
R was inserted at

position 0

True

False

According to the flavors' policy, find
the correct insertion index for R,

e.g. if the hop count is better than an
existing RouteStage, the candidate can be

tracked

Candidates are inserted in the SABR
ordering style

insert is set to false if the irrelevance of

the candidate is detected

Fig. 3. Insertion mechanism of multipath-tracking. Conditionals are in red,
parameters and containers are in blue, and internal variables are in green.
P [V] is the list of RouteStages to node V. R is a new candidate RouteStage
to V . Acc the is Dijkstra’s priority queue.

replacement for CGR’s routing tables in the context of SPSN’s
trees. The goal is to allow tree reuse to decrease the com-
putational pressure. SPSN implements volume-aware search,
similar to the one-route approach from [11], by computing
a single tree for a given bundle size. This ensures that no
useless Dijkstra invocation will ever be processed. Indeed, a
newly computed tree is at least used once for the incoming
bundle. On the other hand, as discussed, Yen’s solution in
CGR might run into multiple useless iterations, complicating
the consideration of route volume occupation.

To compute a tree, SPSN requires a bundle size for the

Algorithm 1: Adapted version of the route method of
the SpanningTreeRouter class from SPSN’s python
implementation.
Data: curr time, bundle destination, bundle size,

bundle expiration time, the excluded nodes
exclusions.

Result: Updates the intervals of available bandwidth
and split them if needed along the scheduled
bundle path.

1 if destination in self.size max then
2 if self.size max[destination] <= size then
3 return None
4 if not size < self.previous size and

self.current exclusions == exclusions then
5 if self. schedule(curr time, destination,

size, expiration) then
6 return self. first hop contact(destination)
7 self.routes = self.spsn.compute(self.source node,

curr time, size, exclusions)
8 self.current exclusions = exclusions
9 self.previous size = size

10 if destination not in self.routes then
11 self.size max[destination] = size
12 return None
13 if self. schedule(curr time,

destination, size, expiration) then
14 return self. first hop contact(destination)
15 return None

volume-aware search and a node exclusion list relative to
the bundle destination [10]. The exclusion list serves as a
countermeasure against network loops, while the bundle is
used to ensure the constructed tree has the required data
volume capacity to reach the destination.

The baseline SPSN algorithm computes one tree for each
new bundle [10]. However, the core idea behind tree-caching
is to allow the re-utilization of previously computed trees
for subsequent bundles with different sizes and exclusion list
requirements.

To this end, we define a tree as reusable for a given bundle
if the node exclusion list supplied to SPSN for this tree
construction is identical to the exclusion list for this bundle’s

destination. Moreover, the required bundle size supplied for
the new tree construction shall be less than the bundle size for
the existing tree. Indeed, if the existing tree can accommodate
a small bundle, an attempt can be conducted for a larger
one. However, if the tree was constructed for a large bundle,
existing paths suitable for smaller bundles might have been
ignored.

However, the tree-caching approach will not choose the best
existing path in all cases. As long as a tree is suitable, the tree
will be reused, even if an alternative route becomes preferable
(booking bundle to a path increase the arrival time for the
next bundles booked for the same path). As a result, and
similarly to CGR with Yen’s, scheduling bundles for a path
pushes forward the projected arrival time for the next bundle
scheduled for the same path. However, SPSN differs because
trees are relevant for all destinations. Specifically, when the
tree becomes invalid for a given destination and is replaced,
the routes for all destinations shall be updated in forwarding
time. In CGR, this can only occur if a route to A exhausts the
residual volume of a contact shared by another route to B,
triggering the resume of Yen’s algorithm for the routing table
of B.

Furthermore, the caching mechanism loads and stores trees
on an exclusion list basis. If a tree is loaded but unsuitable, it
is recomputed, and the new tree replaces the former one for
this exclusion list.

A simplified scheduling approach is presented in algorithm
1. It assumes the cache has a single tree (it does not include
tree selection based on the exclusion list). The router first
checks if failure to find a route has already occurred for
a bundle of equal or lesser size. The method would return
nothing if this were already the case (lines 1-3). The cached
tree can then be used right away if the following criteria are
met (line 4):

• The bundle size is superior to the previously required
size for tree construction, i.e. verify that no routes are
discarded by volume.

• The exclusion list is identical to the exclusion list used
when computing the cached tree, i.e. verify that no routes
are discarded due to exclusions.

If a forwarding decision is reached, the first hop contact for
the current route to the destination is returned (lines 5-6).
Otherwise, the cached tree is invalidated, and a new one is
computed, with the current time, the current bundle size, and
the exclusion list as parameters (line 7). Note that the bundle
expiration time is not required, as the fastest route is preferred
by design with multipath-tracking. When a new tree is cached,
the previously required size and the exclusion list used to
create the tree are updated accordingly (lines 8-9). Once the
best possible tree is available for the current bundle, a first
check is performed to verify that the destination is reachable
(line 10). If the node is unreachable, the router will not try
to schedule other bundles of equal or greater size for this
destination, and the method terminates without choosing a
next hop node (lines 11, 12). Otherwise, a new scheduling
attempt occurs. In this case, the first hop contact for the

current route to the destination is returned, and the algorithm
terminates (line 14). Suppose the expiration time is earlier than
the computed best arrival time. In that case, the bundle will be
found ineligible for forwarding, and the tree-caching method
will terminate without choosing a next-hop node (line 15).

IV. EVALUATION

A. Simulator

In order to evaluate the multipath-tracking and tree-caching
mechanisms, simulations were conducted with aiodtnsim [9],
[14], [15]. This python simulator permits reproducible simu-
lations with asyncio, by providing bundle injection plans at its
initialization. Its intuitive design permits the implementation
of new routers by inheritance of the available minimal node
implementations provided. The platform used for running
the simulation is a virtual machine with a 24-core Intel(R)
Xeon(R) Gold 6136 CPU @ 3.00GHz.

B. Scenarios

A Ring Road Network (RRN) comprises orbiting satellites
and ground assets. RRNs allow delay-tolerant communications
with nodes that would be difficult or impossible to serve
with wired connections. Indeed, the future Mars networking
architecture includes a Martian RRN. The RRN scenarios
are generated with the open-source tvgutil [16]. This toolkit
permits the creation of a) realistic RRN scenarios using
CelesTrak CubeSat data [17] and b) bundle injection plans
for aiodtnsim. Furthermore, to further stress the size of the
network topology, we included urban transport scenarios with
a large number of nodes. The list with the specifics of the
scenarios is as follows:

1) rr9/10: RRN scenario with 19 nodes, 9 LEO satellites,
and 10 ground stations. Two flavors are leveraged (lw and hg)
to study low and high traffic loads.

2) rr15/15: RRN scenario comprised by 30 nodes, 15 LEO
satellites, and 15 ground stations.

3) fg: Public transportation scenario from the city of
Freiburg composed of 206 nodes, 89 stations, and 117 buses.
Three flavors (5mb+lw, 1mb+av, and 1mb+hg) are used to
simulate low, average, and high traffic loads. Moreover, the
contact data rates are also 5 times lower for the average and
high load sub-scenarios.

Table I summarizes the parameters used for each scenario.
Each scenario is simulated with 20 randomly generated injec-
tion plans.

C. Algorithms

We compare our solution with the following CGR algorithm
flavors, each leveraging a node-based graph structure.

a) cgr-yen-ion: CGR algorithm leveraging an adaptive
Yen’s algorithm strategy. We mimic its implementation in ION
but with configured computational breaks to avoid processing
exhaustion. The bundle is dropped after 2 attempts to find an
alternative route. The internal Yen’s value of K is set with an
upper limit of 1000.

TABLE I
SIMULATION PARAMETERS

rr9/10+lw rr9/10+hg rr15/15 fg5mb+lw fg1mb+av fg1mb+hg
message sizes (bits) 1638400 16777216 100000 8500000 8500000 45000000

injection interval (secs) 273 112 2 5 3 1
total messages 2500 6150 25000 5750 9500 28700

node count 19 19 30 206 206 206
contact count 10348 10348 3460 16138 16138 16138

TABLE II
SHORTEST-PATH TREE CONSTRUCTION TIME

MPT tree construction mean time in seconds
Contacts 120000 160000 200000
20 nodes 0.00998 0.00854 0.00826
40 nodes 0.02677 0.02861 0.02908
60 nodes 0.05020 0.04989 0.05592

b) cgr-1st-end: First ending CGR algorithm implement-
ing the limiting contact approach, suppressing the earliest
ending contact of the last found route.

c) cgr-cs-1st-end: CGR with contact segmentation and
the first ending contact removal is also considered in the anal-
ysis. This scheme isolates the impact of contact segmentation,
the volume management technique used by SPSN.

d) cgr-cs-hop: CGR-hop, as defined in [12] with con-
tact segmentation. CGR-hop relaxes delivery time to reduce
contact utilization (shorter paths in terms of hop count are
honored).

We then consider two SPSN flavors based on [18].
e) spsn-mpt: SPSN algorithm with multipath-tracking.
f) spsn-hop: SPSN version of CGR-hop following the

same optimization principles than [12], but leveraging SPSN’s
shortest-path tree construction.

D. Results

Previous publications showed that SPSN was relatively
insensitive to the contact plan length [10], suggesting ap-
pealing scaling properties. Table II summarizes the primary
outcome of our simulations. It proves that this scalability
advantage for SPSN still holds when leveraging multipath-
tracking regardless of the contact plan horizon.

For the following, we consider simulation time as an indi-
cation of the computing effort required for each algorithm.
Nevertheless, this time also includes simulation overhead,
which is similar in each simulation execution.

Simulation results in figure 4 show that cgr-yen-ion uses
a mean simulation runtime of 84 hours in the fg1mb+hg sce-
nario. Considering ≈25K transmissions took place, an average
scheduling decision time of ≈12 seconds per transmission
was derived. On the other hand, the mean simulation runtime
for spsn-hop was less than 7 minutes, leveraging a far larger
amount of transmissions (≈75K). This is evidence of the
relative performance between the extended SPSN and CGR.

We also observe that all CGR flavors, especially cgr-yen-
ion, present higher bundle drop rates, as plotted in figure
5, especially for the most challenging fg1mb+hg scenario.

rr9/10+lw rr9/10+hg rr15/15 fg5mb+lw fg1mb+av fg1mb+hg
scenario

10 1

100

101

102

103

104

105

106

107

av
er

ag
e

si
m

ul
at

io
n

ru
nt

im
e

/ s

cgr-cs-1st-end.
cgr-cs-hop
cgr-1st-end.
cgr-yen-ion
spsn-hop
spsn-mpt

Fig. 4. Simulation runtime (log scale).

rr9/10+lw rr9/10+hg rr15/15 fg5mb+lw fg1mb+av fg1mb+hg
scenario

0

20

40

60

80

100

120

140

160

de
liv

er
y

ra
te

 /
%

cgr-cs-1st-end.
cgr-cs-hop
cgr-1st-end.
cgr-yen-ion
spsn-hop
spsn-mpt

Fig. 5. Delivery rate

Simulation debugging showed that the main drop reason was
the incapacity of finding suitable alternative routes. In fact,
dropping messages directly at the source reduces the load on
the network, giving more space for other messages and thus
reducing congestion.

The simulations run-times in figure 4 show that the SPSN
flavors are faster when compared to CGR in all scenarios,
except rr15/15. In the rr15/15 case, non-Yen CGR approaches
are comparable with spsn-mpt. We explain this effect by the
aforementioned premature bundle drops in combination with
the fact that we scale the load with bundle count and not
bundle sizes. The premature drops reduce congestion for other
bundles, while the relatively early contact plan horizon (24
hours) permits CGR to still show good processing times. In
the end, the average runtime per transmission is inferior to 1

rr9/10+lw rr9/10+hg rr15/15 fg5mb+lw fg1mb+av fg1mb+hg
scenario

2

4

6

8

10

12

14
av

er
ag

e
de

la
y

/ h
ou

rs
cgr-cs-1st-end.
cgr-cs-hop
cgr-1st-end.
cgr-yen-ion
spsn-hop
spsn-mpt

Fig. 6. End-to-end delays.

rr9/10+lw rr9/10+hg rr15/15 fg5mb+lw fg1mb+av fg1mb+hg
scenario

2

4

6

8

10

12

14

16

av
er

ag
e

tr
an

sm
is

si
on

s
pe

r
bu

nd
le

cgr-cs-1st-end.
cgr-cs-hop
cgr-1st-end.
cgr-yen-ion
spsn-hop
spsn-mpt

Fig. 7. Average path length.

millisecond for both approaches for this horizon.
On the fg1mb+hg scenario, we can observe a clear superior-

ity of the SPSN flavors, with delivery rates of 57.73% against
53.96% for cgr-cs-1st-end., as illustrated in figure 5.

Finally, the end-to-end delays and average path lengths are
summarized in figures 6 and 7. We observe that, in general,
these metrics are improved with spsn-hop and cgr-cs-hop.
However, the delays can be slightly higher with spsn-mpt
compared to the non-Yen CGR flavors. The reason for this is
that SPSN tries as long as possible to transmit the bundle to the
destination, inducing some possible redirections. On the other
hand, CGR presents premature drops even though suitable
routes exist (but undetectable without Yen’s algorithm), reduc-
ing virtually the congestion with a reduced contact utilization:
76.15% for cgr-cs-1st-end against 85.89% for spsn-mpt, both
in the rr15/15 scenario. The cgr-cs-hop shows similar delivery
rates if compared with spsn-hop. Those two approaches do not
implement the SABR standard and trade end-to-end delays for
reduced congestion. Additionally, the alternative route search
for cgr-cs-hop is implemented with the first ending approach
and therefore suffers from the same premature drops issue.

V. CONCLUSION

This paper dove into a deep characterization of CGR’s
scalability issues rooted in the way in which Dijkstra’s and

Yen’s algorithms are utilized. To address the identified issues,
we presented multipath-tracking and tree-catching strategies,
which have been integrated into SPSN. Simulation results
showed that the extended SPSN solution exhibits a more effi-
cient use of the computational effort when compared to legacy
CGR, without penalizing other network metrics. The long-term
impact of this work involves the consideration of large-scale
space DTN topologies, spanning more nodes and longer time
horizons. Future work includes the development of alternative
SPSN caching strategies to conserve precious transmission
opportunities in resource-constrained space networks.

VI. ACKNOWLEDGMENT

This research was conducted with continuous support and
counsel from Marius Feldmann and Felix Walter. This work
has received support from the Project STARS STICAMSUD
21-STIC-12 Code STIC2020003 and the MISSION project
from the European Union’s Horizon 2020 research and in-
novation program under the Marie Skłodowska-Curie grant
agreement No 101008233.

REFERENCES

[1] S. Burleigh, “Contact graph routing,” 2009. [Online]. Available:
http://tools.ietf.org/html/draft-burleigh-dtnrg-cgr-00

[2] B. Book, “Schedule-aware bundle routing,” Consultative Committee for
Space Data Systems, 2019.

[3] “The future mars communications architecture,” In-
teragency Operations Advisory Group, 2022. [On-
line]. Available: https://www.ioag.org/Public\%20Documents/MBC\
%20architecture\%20report\%20final\%20version\%20PDF.pdf

[4] G. Wang, S. C. Burleigh, R. Wang, L. Shi, and Y. Qian, “Scoping
contact graph-routing scalability: investigating the system’s usability
in space-vehicle communication networks,” IEEE Vehicular Technology
Magazine, vol. 11, no. 4, pp. 46–52, 2016.

[5] J. A. Fraire, O. De Jonckère, and S. C. Burleigh, “Routing in the
space internet: A contact graph routing tutorial,” Journal of Network
and Computer Applications, vol. 174, p. 102884, 2021.

[6] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall,
and H. Weiss, “Rfc 4838,” Delay-Tolerant Networking Architecture,
IRTF DTN Research Group, April, 2007.

[7] S. Burleigh, K. Fall, and E. J. Birrane, “Bundle Protocol Version 7,”
RFC 9171, Jan. 2022. [Online]. Available: https://www.rfc-editor.org/
info/rfc9171

[8] S. Burleigh, “Interplanetary overlay network: An implementation of the
dtn bundle protocol,” 2007.

[9] F. Walter, “Prediction-enhanced Routing in Disruption-tolerant Satellite
Networks,” Doctoral Dissertation, Technische Universität Dresden,
2020. [Online]. Available: https://nbn-resolving.org/urn:nbn:de:bsz:
14-qucosa2-721622

[10] O. De Jonckère and J. A. Fraire, “A shortest-path tree approach for
routing in space networks,” China Communications, vol. 17, no. 7, pp.
52–66, 2020.

[11] J. A. Fraire, P. G. Madoery, A. Charif, and J. M. Finochietto, “On route
table computation strategies in delay-tolerant satellite networks,” Ad Hoc
Networks, vol. 80, pp. 31–40, 2018.

[12] F. D. Raverta, J. A. Fraire, P. G. Madoery, R. A. Demasi, J. M.
Finochietto, and P. R. D’argenio, “Routing in delay-tolerant networks
under uncertain contact plans,” Ad Hoc Networks, vol. 123, p. 102663,
2021.

[13] B. Y. Wu and K.-M. Chao, Spanning trees and optimization problems.
Chapman and Hall/CRC, 2004.

[14] F. Walter and M. Feldmann, “Leveraging Probabilistic Contacts in
Contact Graph Routing,” in IEEE Global Communications Conference
(GLOBECOM), Waikoloa, HI, USA, 2019.

[15] https://gitlab.com/d3tn/aiodtnsim.
[16] https://gitlab.com/d3tn/dtn-tvg-util.
[17] http://www.celestrak.com.
[18] https://bitbucket.org/olivier-dj/pyspsn.

