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Abstract—We propose an over-the-air digital predistortion
optimization algorithm using reinforcement learning. Based on
a symbol-based criterion, the algorithm minimizes the errors
between downsampled messages at the receiver side. The
algorithm does not require any knowledge about the underlying
hardware or channel. For a generalized memory polynomial
power amplifier and additive white Gaussian noise channel,
we show that the proposed algorithm achieves performance
improvements in terms of symbol error rate compared with an
indirect learning architecture even when the latter is coupled with
a full sampling rate ADC in the feedback path. Furthermore, it
maintains a satisfactory adjacent channel power ratio.

I. INTRODUCTION

Digital predistortion (DPD) is a technique to linearize the
nonlinear power amplifier (PA) in a radio frequency (RF) chain
to achieve the best energy efficiency while maintaining the
spectral mask requirement [1]. It is customary to implement
DPD using parametric models. For simplicity, DPD parameters
are mostly optimized at the transmitter side, which requires
a feedback data acquisition path to collect the PA output
signal [2]. To capture the full-band behavior of the PA for DPD
optimization, high sampling rate feedback analog-to-digital
converters (ADCs) in the feedback path are needed, which is
challenging for wideband signals. High sampling rate ADCs
add a huge cost, which increases linearly with the number of RF
chains in massive multiple-input multiple-output (MIMO) [3],
where each RF chain may require a separate feedback path [2].

To tackle the high cost problem of the feedback path,
recent works have shifted toward low sampling rate ADC
methods [4]–[7], where the feedback path is coupled with a
low sampling rate ADC. These works focus on recovering the
full-rate PA output signal from the undersampled output signal
of the low-rate ADC, and the recovered signal is then used
for DPD optimization. To reduce the cost of the feedback path
further, over-the-air (OTA) methods have become a promising
solution for the DPD optimization [8]–[10]. Instead of using a
feedback path, OTA methods utilize an observation receiver
to acquire the PA output signal over the channel for DPD
optimization. Such methods achieve promising linearization
performance and cost savings compared with methods using
the feedback path.

Several parametric models for DPD have been utilized, e.g.,
Volterra-series-based [4]–[11] or neural network (NN)-based
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models [12]–[15]. To optimize the models, the works [8]–[15]
consider a sample-based criterion that minimizes the sample
error between oversampled signals. This is optimal when the
aim is to minimize the ACPR and normalized mean squared
error (NMSE). When the aim is to minimize the symbol
error rate (SER), however, this approach is not optimal, and a
symbol-based criterion is more appropriate.

A symbol-based criterion has been used to optimize
the constellation mapper and demapper in [16] and the
pulse-shaping/matched filters in [17], [18] in an end-to-end
manner via supervised learning (SL), but SL requires
differential models for all hardware and channel, which
limits the usage in real communication systems. Instead,
reinforcement learning (RL)-based optimization of the
constellation mapper and demapper has been proposed in [19],
[20], which does not require any models for hardware and
channel. However, in [19], [20], the (de)mapper operates at the
same symbol level as the optimization criterion, and no memory
effects of hardware are considered. It requires a generalization
for RL-based DPD optimization with a symbol-based criterion
due to the data rate difference between DPD parameters
and criterion, and memory effects in the PA. To the best
of our knowledge, OTA DPD optimization using RL with
a symbol-based criterion has not yet been addressed.

In this work, we propose a symbol-based DPD optimization
algorithm using OTA observations. Instead of using a
sample-based criterion that minimizes the error between
oversampled signals, the proposed algorithm minimizes the
cross-entropy between transmitted and received symbols. Using
the policy gradient theorem [21], we generalize the work [19]
by connecting the symbol-based criterion with the sample-based
policy optimization, which allows to optimize DPD parameters
at the sample level. For a generalized memory polynomial
(GMP) PA and additive white Gaussian noise (AWGN) channel,
we show that the proposed symbol-based DPD optimization
algorithm achieves symbol error rate (SER) gains over the
indirect learning architecture (ILA)-based DPD optimization
algorithm [22] even with full-rate ADCs. Error spectrum results
show that, although the DPD optimized by the symbol-based
criterion focuses more on reducing the in-band errors (i.e.,
symbol errors), out-of-band errors are still at a satisfactory
level.

Notation: Lowercase and uppercase boldface letters denote
column vectors and matrices such as x and X . R,R≥0,
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Fig. 1: System model of different blocks in a communication system with an unknown channel, where the block DPD linearizes the nonlinearity of the PA.
The constellation mapping, upsampling, and pulse shaping are referred to as modulator. The constellation demapping, downsampling, and matched filtering are
referred to as demodulator.

and C denote real, non-negative-real, and complex numbers,
respectively. xn or [x]n denote the n-th element of x, and
xn:n+k denotes a vector consisting of the n-th to (n+ k)-th
elements of x. Ex{·} denotes the expectation operator taken
over x.

II. SYSTEM MODEL

A. System Model

We consider the communication system shown in Fig. 1.
Let m ∈ RN be a message sequence of length N , generated
from a message set M = {1, ...,M}. A message sequence
m is mapped to a sequence of symbols usym ∈ CN via a
constellation mapping, upsampled with upsampling rate R to
uup ∈ RNR, and pulse-shaped to a discrete-time baseband
signal u = [u1, ..., un, uNR]T ∈ CNR, where un is the
sample transmitted at time instant n. To compensate for the
nonlinearity of the PA, DPD is applied to u. The DPD is
represented by a parametric model fθDPD : CK1+1 → C with
parameters θDPD and input memory length K1. Given the input
sequence un:n−K1

= [un, ..., un−K1
]T ∈ CK1+1 to the DPD,

the predistorted output xn can be expressed as

xn = fθDPD(un, ..., un−K1
) = fθDPD(un:n−K1

) . (1)

The predistorted signal x = [x1, ..., xn, xNR]T is then
amplified by the PA, which is represented by the nonlinear
function fPA : CK2+1 → C with memory length K2, input
xn:n−K2 = [xn, ..., xn−K2 ]T ∈ CK2+1, and output xPA

n . The
input–output relation of the PA can be expressed as

xPA
n = fPA(xn, ..., xn−K2

) = fPA(xn:n−K2
). (2)

The signal xPA = [xPA
1 , ..., x

PA
n , x

PA
NR]T is then sent through a

discrete channel with conditional distribution P (y|xPA), where
y is the channel output. Note that elements in un:n−K1

and
xn:n−K1 with nonpositive indexes are set to zero. Under the
assumption of perfect synchronization, the received signal
y is demodulated via a matched filter and downsampled
with a downsampling rate R to symbols ûsym ∈ CN . Each
symbol ûsym

n is decoded to a probability vector p̂n ∈ RM+
over M messages, where

∑M
i=1 p̂i = 1. Finally, the estimated

message is obtained by m̂n = arg maxm[p̂n]m. Overall, the
estimated message sequence m̂ is obtained from the probability
matrix P̂ = [p̂1, ..., p̂N ] ∈ RM×N+ . The demapper can be
implemented by an NN as in [16], [19], [20], which can
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Fig. 2: Block diagram of the ILA. Learning the inverse behavior of the PA
by minimizing waveform errors, a postdistorter is optimized, which is then
utilized as the predistorter.

be pretrained to have similar decoding performance as the
maximum likelihood demapper.

Given a parametric DPD model fθDPD with parameters θDPD,
our objective is to optimize θDPD with respect to a given loss
function L,

θ̂
DPD

= arg min
θDPD

L(θDPD). (3)

B. Indirect Learning Architecture

The ILA [22] indirectly optimizes the DPD parameters by
estimating an inverse behavior of the PA as shown in Fig. 2. The
optimization of the parameters of the distorter is conducted after
the PA, and hence the distorter is referred to as the postdistorter.
After the parameter optimization, the postdistorter is used
as the predistorter, placed before the PA. To optimize the
postdistorter, a feedback path is required for signal acquisition
of the PA. Here we consider an ADC in the feedback path with
a sampling rate FADC

s . We denote the output of the ADC by
x̂PA. The parameters of the postdistorter are usually optimized
by minimizing the mean squared error (MSE) between the
postdistorter output signal x̂ and the PA input signal x. In this
case, the loss function L can be expressed as

L(θDPD) = Ex
{
|xn − x̂n|2

}
= Ex

{
|xn − fθDPD(x̂PA

n:n−K1
))|2
}
, (4)

where x̂PA
n:n−K1

= [x̂PA
n , ..., x̂

PA
n−K1

]T is the input of the
postdistorter with memory K1. Substituting (4) into (3), θDPD

is optimized by minimizing the sample difference between the
postdistoter output x̂ and the PA output x̂PA collected by the
feedback path, i.e., the optimization is based on a sample-based
criterion.



III. PROPOSED SYMBOL-BASED DPD
OPTIMIZATION ALGORITHM

We propose to optimize the DPD based on a symbol-based
criterion using OTA measurements. Specifically, the
symbol-based criterion minimizes the cross-entropy between
the transmitted and received messages m and m̂.

A. Symbol-Based Criterion

To implement the symbol-based criterion for DPD
optimization, we consider a symbol-based cross-entropy loss
function, which defines the transmitted message sequence m
and received message probabilities P̂ as

L(θDPD) = −Em{log([p̂n]mn
)︸ ︷︷ ︸

lCE
n

}, (5)

where the loss function between the transmitted message mn

and the corresponding vector of probabilities p̂n is denoted by
lCE
n , referred to as the cross-entropy per-example loss.

B. Supervised Learning

Assuming that all blocks in the communication system are
differentiable, the derivatives of the loss function at the receiver
side with respect to any trainable parameter in the system can
be analytically calculated using the chain rule. Thus, θDPD

can be updated through back-propagation via a mini-batch
stochastic gradient descent (SGD) algorithm as

θDPD
j+1 = θDPD

j − η∇θDPDL(θDPD
j ), (6)

where η > 0 denotes the learning rate and ∇θDPDL(θDPD
j ) is

the derivative of L with respect to θDPD
j at step j.

However, in a real communication system, most of the blocks
are non-differentiable, and thus it is infeasible to apply the
chain rule to calculate ∇θDPDL. Although we can circumvent
this problem using surrogate parametric models of the hardware
components, e.g., pretrained PA model in [23], it is cumbersome
to pretrain such models, and the performance highly depends
on the model accuracy.

C. Reinforcement Learning

RL is defined as a learning process of how an agent takes
actions in an environment to minimize a given loss [21]. The
optimization of the DPD parameters can be viewed through
the lens of a RL problem. The DPD acts as an agent that takes
actions following a policy, which is optimized to minimize
the loss L. RL has already been used in the context of
communications, e.g., to optimize the constellation mapper and
demapper [19], [20]. Here, we consider a different scenario
with more components, which raises the problem of how to
optimize the DPD parameters θDPD at the sample-based using
a loss function L at the symbol-based.

As shown in Fig. 3, we consider a Gaussian policy π(x̃|x)
that converts the deterministic actions x to stochastic actions
x̃, which enables the exploration of possible actions. For an
arbitrary action xn, we consider an independent Gaussian policy
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Fig. 3: Block diagram of the proposed symbol-based optimization for DPD.
The DPD parameters θDPD are optimized using OTA observations at the
receiver side by minimizing a symbol-based cross-entropy between symbols.

π(x̃n|xn), which generates output x̃n by adding a Gaussian
perturbation w ∼ CN (0, σ2

π) as

x̃n =
√

1− σ2
πxn + w, (7)

where σ2
π is the variance of the perturbation, which is a

hyper-parameter that is fixed during the training. Thus, the
policy π(x̃n|xn) is the probability density function (PDF)
of a complex Gaussian variable with mean

√
1− σ2

πxn =√
1− σ2

πfθDPD(un:n−K1
) and variance σ2

π ,

π(x̃n|xn) ∝ exp

−
∣∣∣x̃n −√1− σ2

πfθDPD(un:n−K1
)
∣∣∣2

σ2
π

 .

(8)

Based on the received observation yn, the receiver can
compute the corresponding per-example loss ln by lCE

n . The
loss ln is related to a subset of the entire sequence x
because of the memory effects of the PA and convolution
operation in the matched filtering. Denote this subset by
x(G) = {xnR−G, ..., xnR+G}, where G denotes the number of
signals being related. Because of the convolution operation in
the pulse shaping, the subset x(G) depends on a subset of the
messages in m, denoted by m(G) = {mnR−G, ...,mnR+G}.
Similarly, we can define x̃(G) = {x̃nR−G, ..., x̃nR+G} and
y(G) = {ynR−G, ..., ynR+G}.

The objective of the DPD agent is to minimize the loss
function L(θDPD), defined as

L(θDPD) , Em,x̃,y {ln} , (9)

where ln is lCE
n (see (5)). In order to minimize the loss function,

we compute the gradient with respect to θDPD according to the
following proposition.

Proposition 1: The gradient of L(θDPD) with respect to θDPD

is approximated by

∇θDPDL(θDPD) (10)

≈
2
√

1− σ2
π

Nσ2
π

N∑
n=1

ln

G∑
g=−G

(
x̃n −

√
1− σ2

πfθDPD(un:n−K1)
)

×∇θDPDfθDPD(un:n−K1) .

Proof: Exploiting the policy gradient theorem [21] and
using the fact that ∇ log(π) = (∇π)/π, we can write

∇θDPDL(θDPD) = Em,x̃,y {ln ∇θDPD log (π (x̃|x))} . (11)



Algorithm 1 : Symbol-based optimization for θDPD.
Input: N ,NB σ

2
π , R, G

1: for A number of iterations NB do
2: Messages to symbols: m→ usym

3: Upsampled and pulse-shaped with an upsampling rate
R: usym → uup → u

4: DPD: fθDPD(u)→ x via (1)
5: Policy: π(·|x)→ x̃ via (7)
6: PA: fPA(x̃)→ xPA via (2)
7: Channel: P (·|xPA)→ y
8: Matched filtered and downsampled with a downsampling

rate R: y → ûup → ûsym

9: Symbols to messages: ûsym → m̂
10: Per-example losses: ln
11: Update θDPD: SGD(θDPD,L)→ θDPD via (6) and (10)
12: end for
13: Remove policy π(·)

The loss ln is related to a fraction of x consisting of G signals.
Restricting (11) to this subset of signals, we can approximate
it as

Em,x̃,y

{
ln ∇θDPD log

(
π
(
x̃(G)|x(G)

))}
(12)

= Em,x̃,y

{
ln ∇θDPD log

( G∏
g=−G

π(x̃nR+g|xnR+g)
)}
,

where (12) follows as the conditional probability π(x̃(G)|x(G))
reduces to the product of conditional probabilities
π(x̃nR+g|xnR+g) due to the independence of each action.
Now, using the fact that the product of logarithms can be
written as the logarithm of a sum and approximating the
expectation by the average of N (correlated) samples from
the underlying distribution p(m, x̃,y), we obtain

∇θDPDL(θDPD) (13)

≈ 1

N

N∑
n=1

ln

G∑
g=−G

∇θDPD log(π(x̃nR+g|xnR+g)) .

From (8), it follows that

∇θDPD log(π(x̃nR+g|xnR+g)) (14)

=
2
√

1− σ2
π

σ2
π

(
x̃n −

√
1− σ2

πfθDPD(un:n−K1
)
)
∇θDPDfθDPD(·).

Substituting (14) into (13) completes the proof.
The approximation of the gradient of the loss function L

with respect to θDPD in Proposition 1 can be used to optimize
θDPD via any SGD-based algorithm as in (6).

The details of the symbol-based DPD optimization procedure
of θDPD are given in Algorithm 1. First, each batch of N
messages, m, is generated and transformed to a sequence of
symbols usym, then upsampled and pulse-shaped to u with
an upsampling rate R. After the DPD model fθDPD(·), the
Gaussian policy is applied by adding a perturbation w to
generate exploration samples x̃ as in (7). These samples are

TABLE I: Parameter setup
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Fig. 5: Structure of the NN-based 64 QAM decoder, whose parameters are
pretrained and frozen during the training of DPD.

sent through the PA and channel. The output of the channel,
y, is transformed to ûsym by the matched filter, downsampled
with a downsampling rate R, and eventually decoded to m̂.
Then, the cross-entropy per-example losses, lCE

n , are calculated,
which are assumed to be known at the transmitter via a reliable
feedback channel [19], [20], [24]. Finally, θDPD is updated by
an SGD-based algorithm as in (6), where ∇θDPDL(θDPD) is
computed using (10). The whole procedure is iterated for a
number of iterations NB, and the policy π(·) is removed.

IV. NUMERICAL RESULTS

A. Setup

1) Parameters: We consider a GMP model as the PA with
nonlinear orders Ka = Kb = Kc = 7, memory lengths
La = Lb = Lc = 3, and cross-term lengths Mb = Mc = 1 [11,
Eq. (23)]. The corresponding parameters are estimated from the
measurements of the RF WebLab1 using the ILA and a 55 MHz
signal. The measured saturation point and measurement noise
standard deviation of the PA are 20.9 V (≈ 36.4 dBm) and
0.053 V. We consider a 50 Ω load impedance. The remaining
parameters are given in Table I. The number of training
messages in m for each batch is N = 1024. The optimizer
for gradient descent is Adam [25] with a learning rate 0.001.
The messages are mapped to a sequence of symbols usym

according to a M = 64 quadrature amplitude modulation
(QAM) constellation. The sampling rate is 200 MHz, with
upsampling and downsampling rate R = 4. The pulse shaping

1The RF WebLab is a PA measurement setup that can be remotely accessed
at www.dpdcompetition.com.



filter is a root-raised cosine (RRC) filter with a roll-off factor
0.1, so the bandwidth of the baseband signal u is 55 MHz. The
peak-to-average power ratio (PAPR) of the signal is 10.3 dB,
which is similar to that of an orthogonal frequency division
multiplexing (OFDM) signal. We set G = 3 in (10), and the
perturbation variance σ2

π = 0.08. We consider an AWGN
channel with fixed noise standard deviation σch = 0.3 V.
We consider a simulated ADC in the feedback path of the
ILA with infinite resolution but three different sampling rates
FADC
s = 110 MHz, 220 MHz, and 550 MHz (referred to

full-rate ADC). Note that FADC
s needs to be larger than the

Nyquist rate (110 MHz) of the distortion-free 55 MHz signal
to capture the out-of-band behavior of the PA output signal.

2) Model Structures: For the DPD model, we choose both
the GMP [11] and the residual real-valued time-delay neural
network (R2TDNN), where the latter is from our previous
work [15] and shows to outperform many other NNs and
GMP for DPD in terms of complexity versus performance.
We consider the same parameter settings (i.e., nonlinear order,
memory length, and cross-term length) for the GMP DPD. The
specific structure of R2TDNN along with policy π(·) is shown
in Fig. 4. The block C2R transforms the complex-valued signal,
u, to a real-valued signal. We consider two hidden layers with
12 neurons each, and 3 input memory length as the same as
the PA model. The output of the linear layer is added with
the input via the residual connection and then normalized by
the normalization layer, which ensures that the average output
power of the DPD is the same as its average input power.

We consider an NN-based M = 64 QAM decoder as shown
in Fig. 5, which are trained to have similar performance as the
maximum likelihood decoder. The learned detector is frozen
during the training of the DPD. Specifically, the softmax layer
outputs a probability vector over M messages, where the largest
probability represents the predicted message.

B. Simulation results

1) SER versus average PA output power: Fig. 6 shows
the testing SER results versus the average PA output power
for the cases of no DPD, ILA-optimized NN DPD [15] with
under-sampling (FADC

s = 110 and 220 MHz) and full-rate
(FADC
s = 550 MHz) ADCs in the feedback path, ILA-optimized

GMP DPD with full-rate ADC [11], the proposed RL-optimized
DPD, the case with linear-clipping PA [26],2 and the theoretical
SER bound of 64 QAM, where the average energy per bit
is converted to the average PA output power considering a
distortion-free PA. The RL-optimized DPD is optimized using
the cross-entropy loss function. Note that the policy π(·) is
removed once the training ends, and the input of the PA
becomes x. The number of QAM symbols used to calculate
the SER is 107.

We observe that the SER curves exhibit two different
behaviors. When the average PA output power is below 29
dBm, most of the PA input signal x is in the linear region

2The linear-clipping PA has a linear behavior before the clipping region,
which has the minimum distortion that any DPDs can achieve.
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Fig. 6: SER as a function of the average PA output power.

of the PA, and the SER of all scenarios with DPD improve
quickly with increasing average PA output power Pout. The
proposed RL-optimized NN DPD achieves similar SER as
the ILA-optimized NN and GMP DPDs with full-rate ADCs,
and has substantial SER gain over the ILA-optimized NN
DPDs with undersampling ADCs. As the average PA output
power increases above 29 dBm, x starts to be clipped by the
saturation region of the PA. While the clipping effect makes
the SER of all DPD cases degrade rapidly, we note that the
RL-optimized DPD exhibits considerable SER gains over other
ILA-optimized DPDs at the highly nonlinear region of the PA,
i.e., 30 dBm < Pout < 32 dBm. This indicates the advantage
of the symbol-based criterion for DPD optimization over the
sample-based criterion in terms of SER. Overall, the results
prove the effectiveness of the sample-based DPD optimization
using a symbol-based criterion without knowing the hardware
and channel for a PA with memory and the AWGN channel. The
SER gap between all the DPD cases and the linear-clipping case
may come from some residual distortions due to irreversible
nonlinearity.

2) In-band and Out-of-band Errors: Fig. 7 shows the
error spectrum (i.e., the power spectral density (PSD) of the
difference between the real and ideal PA output signals) of
schemes in Fig. 6 at the average PA output power Pout =
30.2 dBm. The corresponding NMSE and ACPR results are
presented in Table II.

Due to the aliasing and band-limiting effects of the
undersampling ADC, the linearization performance of the
ILA-NN DPD with FADC

s = 110 MHz is affected severely,
exhibiting large in-band and out-of-band errors compared
with DPDs of full-rate ADCs and even larger out-of-band
errors (−35.4 dBc ACPR) compared with No DPD case
(−37 dBc ACPR). With a full-rate ADC, the power spectral
errors of the ILA-NN are reduced (−38.7 dB NMSE and
−40.2 dBc ACPR). As expected, the in-band spectral error
of the RL-NN-based DPD is better than its out-of-band
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TABLE II: NMSE and ACPR results of cases in Fig. 7 at the average PA
output power Pout = 30.2 dBm.

NMSE [dB] ACPR [dBc]

No DPD −22.8 −37.0
ILA-NN, FADC

s = 110 MHz −28.3 −35.4
ILA-NN, FADC

s = 220 MHz −37.9 −39.2
ILA-NN, full-rate [15] −38.7 −40.2

ILA-GMP, full-rate [11] −38.2 −39.8
RL-NN −35.0 −38.1

Ideal PA [26] −42.3 −41.3

spectral error since the optimization criterion, i.e., symbol-based
criterion, focuses more on the in-band errors. Nevertheless, the
RL-NN-based DPD still maintains a satisfactory ACPR (−38.1
dBc) considering that the lower bound is −41.3 dBc.

V. CONCLUSION

We proposed a novel DPD optimization algorithm that
optimizes DPD parameters using a symbol-based criterion
at the receiver side instead of a sample-based criterion at the
transmitter side, which avoids the cumbersome feedback path
in the transmitter. The proposed optimization algorithm, based
on RL, does not require a model for the hardware or channel,
which is an attractive feature in practice. Exploiting the policy
gradient theorem, we connect the symbol-based criterion with
the sample-based policy optimization. The proposed algorithm
is verified by simulation results for a GMP PA modeled from a
real PA over the AWGN channel. The proposed RL-NN-based
DPD achieves SER gains over the ILA-based DPD even the
latter uses a full-rate ADC in the feedback path, while it also
maintains satisfactory out-of-band errors. It is expected to see
a performance improvement for a real PA as the performance
of ILA is limited by the nature of its identification process.
Some limitations of this work are the AWGN channel and
hardware models, which can be generalized to a more realistic
scenario considering more realistic channels and more hardware
impairments (e.g., quadrature imbalance).
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