
Space Networking Kit: A Novel Simulation
Platform for Emerging LEO Mega-constellations

Xiangtong Wang∗, Xiaodong Han†, Menglong Yang∗‡, Songchen Han∗, Wei Li∗‡
∗School of Aeronautics and Astronautics, Sichuan University, Chengdu, China

†China Academy of Space Technology, Beijing, China
‡Robotic Satellite Key Laboratory of Sichuan Province, Chengdu, China

Email: {li.wei,hansongchen}@scu.edu.cn

Abstract—This paper presents SNK, a novel simulation plat-
form designed to evaluate the network performance of con-
stellation systems for global Internet services. SNK offers real-
time communication visualization and supports the simulation
of routing between edge node of network. The platform enables
the evaluation of routing and network performance metrics such
as latency, stretch, network capacity, and throughput under
different network structures and density. The effectiveness of
SNK is demonstrated through various simulation cases, including
the routing between fixed edge stations or mobile edge stations
and analysis of space network structures.

Index Terms—Space network, global internet service, simula-
tion platform

I. INTRODUCTION

The development of satellite networks (SN) within the
”NewSpace” paradigm has gained substantial traction in
recent years and holds significant promise in delivering
global internet connectivity characterized by low latency and
high throughput. Commercial enterprises, such as SpaceX[1],
Amazon[2], Oneweb[3], etc., have joined this competitive
“NewSpace” race. While above exciting prospects depict a
promising picture of these future integrated satellite-terrestrial
networks, the community still has very limited understanding
of the structural characteristic and the available network per-
formance of modern mega-constellations. One of the major
reasons for this is the absence of suitable simulation platform.

Networking simulation in LEO mega-constellations dif-
fers from well-known ones in terrestrial networks due to
their sizeable spatiotemporal scale, high mobility, and orbital
movements. These distinctive properties may pose significant
challenges to traditional network simulators.

Until now, most simulators in community are combined
with space simulators [4], [5], [6] and network simulators [7],
[8], hence to obtain better functionality of visualization, ce-
lestial motion and network simulation. SNS3[9] is an discrete
simulator that combines NS3 with satellite communications
link model, but it primarily supports simple functionality
among GEOs without networking. Handley [10] developed
the platform through Unity 3D, which provides impressive
visualization effects that intuitively show the path selection and
delay of the end-to-end routing process, due to its emphasis on
space simulation, it lacks the corresponding formation of the
network simulation, and cannot satisfy the packet-level net-
work simulation. Benjamin[11] presents a network simulator

for SNs with robust visualization features, leveraging OpenGL
for enhanced graphics support. Celestial[12] first introduced
the virtualization technology into SN simulation/emulation,
i.e., attaching each satellite with a micro virtual machine
to emulate the real networking environment. Hypatia[13] is
developed based on Cesium[14] in space simulation and based
on NS3 for networking simulation, thus supporting packet-
level simulation and satisfying visualization. Although it is
not flexible in building scenarios, has limited visualization
capabilities, and is no longer receiving updates, it is a valuable
practice to implement complex visualization features through
Web. Overall, most simulation tools must possess several
important qualities: 1) effective visualization of space motion
and communication processes; 2) flexibility to configure com-
plex networking scenarios; and 3) scalability to support future
multilateral requirements.

In this paper, we introduce SNK, a performance simula-
tion platform designed to assist constellation manufacturers
and network operators in estimating and comprehending the
attainable performance across various constellation options.

To demonstrate the effectiveness of SNK on routing al-
gorithm and SN optimizing, we leverage SNK to evaluate
and compare the performance of Dijkstra routing algorithm
between cities and obtain insights on optimizing the constel-
lation design to improve edge-to-edge network performance.
The results of our evaluation indicate that the careful selection
of a routing algorithm and network structure can significantly
impact the communication process in terms of latency, path
stretch, throughput and network capacity.

Overall, this paper makes two key contributions:
• Introduction of SNK, a simulation platform that facilitates

the profiling and understanding the network performance
of mega-constellations under a diversity of network poli-
cies and structure. (§.II).

• Utilization of SNK to reveal the different results under
diverse network policies and structure, while also high-
lighting insights on optimizing constellation designs to
improve network performance. (§.III)

We are releasing our implementation of SNK available as
open source to help future researchers validate their own
applications and platforms. Our hope is that this will make
the field of SN more accessible and provide a starting point
for systems research in the community.

ar
X

iv
:2

40
1.

07
51

1v
1 

 [
cs

.N
I]

  1
5 

Ja
n 

20
24



Fig. 1. The overview and workflow of SNK.

II. THE SNK PLATFORM

A. System overview and workflow

SNK is jointly developed in multiple languages and consists
of four key modules: SNK-Scenario, SNK-Visualizer, SNK-
Server and SNK-Analyzer.

The SNK-Scenario module serves the purpose of generating
scenario data for SN, including satellites, links, ground sta-
tions, mobile stations, and other relevant elements. Developed
as a web application rooted in Cesium, SNK-Visualizer goes
beyond simple visualization of the constructed scenes. It
dynamically showcases the networking processes, supports
real-time adjustments of perspectives and layers, and facil-
itates interaction with the SNK-Server. The SNK-Server, a
Python-based network simulator, establishes synchronous data
transmission with SNK-Visualizer through its API subsystem.
SNK-Analyzer functions as an analytical tool capable of visu-
ally representing statistical outcomes such end-to-end latency
and path stretch rates.

Fig.1 shows the workflow of SNK. The SNK takes a
configuration file as input to generate scenario files, which
describe the composition of constellation and networking.
During runtime, the user interacts with SNK via the command
line to load the created scenario file and initiate the simulation
computation, and the simulation process can be observed
in real-time by enabling the ”Watch” mode. At the end of
the simulation, the generated instance file is loaded, and
performance metrics like network latencies and throughput
are measured. These metrics are then used to compute and
quantify the network performance.

B. SNK-Scenario

SNK-Scenario consists of a suite of Python-based script pro-
grams designed to generate essential scenario entities required
for simulation. These entities encompass a range of com-
ponents including satellites (SATs), ground stations (GSes),
and mobile stations (MSes), which may include operational
satellites or airborne objects. It also encompasses links such as
Inter-satellite links (ISLs), satellite-to-ground links (GSL), and
mobile-station-satellite links (MSLs). Each of these entities is
created via the execution of individual scripts.

SNK-Scenario offers remarkable flexibility, achieved
through the utilization of distinct config.yaml files. This ap-
proach streamlines the creation of complex multi-layer SNs,
such as Walker configurations with varying orbit arguments. A
template for the config.yaml format is available in the supple-
mentary documentation. Additionally, we provide a simplified
script that simplifies scenario generation with a single bash
command:

bash run.sh config.yaml

The construction of certain entities requires reference to other
entities. Therefore, the recommended order of construction is
as follows:

SAT.py --> ISL.py--> eISL.py
MSes.py --> MSL.py
GSes.py --> GSL.py

Once the scenario is constructed, it is saved in the form of a
*.sce folder, with the general format being:

scenario_name.sce/
|- config.yaml
|- {layer_name}_sats.czml
|- gses.czml
|- mses.czml
|- {layer_name}_isls.czml
|- {layer_name}_eisl.czml
|- {layer_name}_gsls.czml
|- {layer_name}_msls.czml
|- {layer_name}_tle.txt
|- {layer_name}_eisl.json
|- {layer_name}_isls.json
|- {layer_name}_gsls.json
|- {layer_name}_msls.json

Among these, the *.czml format bears resemblance to a
JSON file, primarily intended for interpretation by the web
interface to create entities and is widely used in Cesium[14].
Conversely, the *.json format functions as an abstract file, con-
taining identifiers without essential details. Given the support
for multi-layer networks, entities are tagged with numerical
identifiers corresponding to network layers. In addition to
furnishing satellite czml files, TLE data is also available to
accommodate various requirements.

C. SNK-Visualizer

SNK-Visualizer is a web application developed using
JavaScript. It runs in web browser, provides visual render-
ing capabilities for entities generated by SNK-Scenario and
enables seamless interaction with SNK-Server through the
custmized protocol that base on WebSockets[15].

The constructed scenario and entities are depicted in Fig.2,
showcasing the outcomes of the config.yaml script we provide.
Fig.2 (a) shows a satellite constellation, a single-layer walker
δ constellation with an inclination of 53◦, consisting of 20
orbits, each containing 20 satellites. SNK-Visualizer allows the
creation of various Inter-satellite Links (ISLs) (See Fig.2 (b)),
encompassing intra-orbit ISLs (blue), inter-orbit ISLs (green),
and encountering ISLs (black and white striped).

Furthermore, SNK-Visualizer supports showing routing
paths between satellites or station nodes such as ground



Fig. 2. The entities constructed by SNK-Scenario are displayed in SNK-Visualizer.

stations or mobile stations. In (Fig.2 (b)), the red lines rep-
resent routing paths between two satellites, established using
the shortest-path routing algorithm, which takes the distance
between satellites as edge weight. Satellites can be equipped
with antennas with specific parameters, visualized by their
coverage (See Fig.2 (c)). This visualization can be employed in
other SNK-Visualizer modules for coverage analysis. Ground
stations within a satellite’s coverage angle can establish GSL
(blue and white striped lines in (Fig.2 (i))). The 3rd-party
satellites (Fig.2 (g)) or aircrafts (Fig.2 (f)) establish the MSL
(yellow and white striped line) between the satellite and the
mobile station. SNK-Visualizer offers two perspectives - 3D
perspective (Fig.2 (a,b,c)) and 2D perspective (Fig.2 (e,d)) -
facilitating a comprehensive analysis of scene entities.

D. SNK-Server

SNK-Server is developed by Python and is primarily de-
signed with network simulation and interaction with SNK-
Visualizer. It represents the most intricate module within the
whole system, encompassing three major subsystems: the CLI
subsystem, the API subsystem, and the procedure subsystem.
The CLI subsystem functions as the command-line interface,
predominantly responsible for user interaction and operational
logic. Our current emphasis is on providing more insights into
the API subsystem and procedure subsystem.

1) API subsystem: SNK-Server interacts with modules or
external modules through API subsystem using the Module
Interaction Protocol (MIP), a command and data transmission
protocol developed based on WebSocket, facilitating the data
sharing and simulation consistency.

2) Procedure subsystem: The Procedure subsystem plays a
pivotal role in orchestrating the scheduling of each procedure
within the SNK-Server . The execution of procedures serves
two distinct purposes:

• Data acquisition for quantitative analysis. One primary
objective of procedure execution is to acquire data peri-
odically. Acquired data is a key factor used to evaluate
the performance of a communication policy or network,
and stands as the foremost mission of the Server.

• Observation for qualitative analysis. By visualizing the
communication process in a dynamic network, it is easy
for users to debug and improve the networking policy.

Within the such subsystem, we offer several procedures as
following:

The edge2edge procedure. It performs the communication
process between edge nodes (GSes and MSes) defined in
network policy. Upon its activation, the networking policy and
a timestamps are initialized and it runs as the following steps:
(1) When SNK-Server starts up, it first gets the simulation

timestamp from network policy file and sends the MIP
command ”set time” to SNK-Visualizer for consistency.

(2) SNK-Server sends request commands to get the space sce-
nario information in SNK-Visualizer , including network
topology status, satellite positions, and other pertinent
information.

(3) Based on the acquired data, SNK-Server starts to calculate
the routing path between the source and destination satel-
lite sets. The source and destination satellite sets are the
satellites covering the source edge node and destination
edge node respectively.



(4) Upon reaching the predefined end timestamp, the proce-
dure is halted.

(5) The procedure information is then preserved in *.ins files
as the instance data.

The conTest procedure. It performs the communication
process between any two of satellites nodes, serving the
purpose of evaluating the network policy or space scenario.
Upon its activation, the routing algorithm and a time list are
initialized and it runs as the following steps:
(1) When SNK-Server starts up, it first gets the simulation

timestamp from network policy file and sends the MIP
command ”set time” to SNK-Visualizer for consistency.

(2) SNK-Server sends request commands to get the space sce-
nario information in SNK-Visualizer , including network
topology status, satellite positions, and other pertinent
information.

(3) Based on the acquired data, SNK-Server starts to calculate
the routing path between any two satellites in the scenario
under built-in algorithms.

(4) if the number of paths exceeds a predefined threshold
N , the procedure is interrupted, and the timestamp is
updated.

(5) Upon reaching the predefined end timestamp, the proce-
dure is halted.

(6) The procedure information is then preserved in *.ins files
as the instance data.

In addition to the first two procedures, we also provide:
i) asyncReplay procedure, a procedure that can convert the
event list and packet list generated by external simulation pro-
grams into animation data and visualize it asynchronously; ii)
replay procedure, a procedure based on the obtained *.ins file
to replay the process of it and iii) exInstruction a procedure
that supports joint debugging with external programs by API
subsystem.

III. SIMULATION CASES

In this section we demonstrate the effectiveness of SNK
on characterizing and understanding emerging LEO mega-
constellation systems.

A. The Local View

This Simulation involves routing analysis between fixed
edge stations (representing ground stations or user terminals)
and mobile edge stations (representing functional satellites or
aircraft). The scenario is constructed as shown in Tab.I, and
the stations are listed in Tab.II.

1) Fixed edge station routing: SN can effectively reduce
network latency between cities and offers an alternative solu-
tion to submarine cables, therefore we will analyze the routing
between fixed edge stations located in large cities with the
SN. When the scenario is constructed via SNK-Scenario and
the edge2edge process is executed, SNK-Server generates the
*.ins directory and retrieves routing information from SNK-
Analyzer .

Fig.3 (a) displays the path latency under two different
routing strategies: least-hop (dashed lines) and shortest-path

TABLE I
SCENARIO INFORMATION.

Symbols description value
T/P/F/i parameters of constellation 400/20/0/53◦

h altitude of orbits 1000km
- eISL building threshold[16] 2000km
- ISL mode *Grid
α steering angle of beams 45◦

- Simulation time 2000s
- simulation time delta 10s

TABLE II
EDGE STATIONS.

Edge Station Name ID Location \ Trajectory
Harbin GS-0000 45N,127E
London GS-0001 51N,0E
Chengdu GS-0002 31N,102E

San Francisco GS-0003 38N,122W
Shanghai GS-0004 30N,122E

Johannesburg GS-0005 26S,28E
MS-000 MS-000 0N,24W → 0N,20E
MS-020 MS-020 50N,0E → 50S,180E
MS-021 MS-021 -

(a) Path latency over time between cities under different routing strategies.

(b) The path stretch and evolution between city pairs.

Fig. 3. Space network structures.

(solid lines) routing, for various city pairs over a 2000-seconds
period. We have provided basic shortest path algorithms in
SNK, and more complex routing algorithms can be constructed
with simple development. In Fig.3 (b) on the left, the stretch
distribution of the routing path is depicted. This metric mea-
sures the ratio of the routing path distance over the geographic



Fig. 4. The routing path can be visualized in SNK-Visualizer in real time
when the enable ”Watch” mode.

(a) Mobile stations include aircraft (MS-001, MS-020) or functional
satellite (MS-021).

(b) Path latency of mobile edge stations.

Fig. 5. Space network structures.

distance, indicating the path detour. A smaller stretch indicates
a path closer to the geographic arch, indicating a more efficient
path. If stretch ≤ 1.5, it indicates that the routing path in
SNis better than the optical fiber direct connection between
two cities[13]. It is clear that the space network outperforms
the terrestrial network in most routing strategies. On the right
side of Fig.3 (b), the number of satellite changes in the path
over time is shown, with smaller values indicating stable
routing. In addition, in order to facilitate debugging during
the development of routing algorithms, SNK has the capability
to display the routing paths in real time in ”Watch-enabled”
mode, as is shown in Fig.4.

Fig. 6. Different configurations build vastly different network structures

2) Mobile station routing: SNK also supports to simulate
the routing procedure between mobile edge nodes with a cus-
tomized trajectory, such as aircraft or 3rd-party satellites such
as Earth observation satellites. In this case, we constructed
multiple mobile edge stations with different trajectories and
evaluated the path latency between them and Harbin under
different routing algorithms, as shown in Fig.5 (a). The thinner
blue path is the orbit of 3rd-party satellites and thicker ones
are the paths of the aircraft. The dashed yellow lines stands
for mobile-station satellite links (MSLs). Fig.5 (b) shows the
path latency of MSes. Note that there are gaps in the lines of
MS-000 and MS-020 because there is not always an accessible
satellite during the movement of these mobile stations.

B. The Global View
Existing constellations are primarily designed for coverage

optimization or conflict avoidance, however, it is evident that
designing systems with improved network performance in
SNs is of paramount importance as it directly impacts the
availability and feasibility of such systems. Therefore, SNK
provides functions to quantify the network performance under
different network structures and density, including global la-
tency, stretch, network capacity and throughput. This capabil-
ity supports the design of SNs and included in this simulation
case. The scenario configuration is listed in Tab.III.

TABLE III
SCENARIO CONFIGURATION OF GLOBAL ANALYSIS.

Description value
Constellation scales {102, 202, 302, 402}

Constellation structures {+Grid 1, +Grid 2, *Grid 1, *Grid 2 }
Max num of connections 1000

Simulation time 1000s
Simulation time delta 100s

1) Structure analysis: The network structure analysis aims
to evaluate the network performance of a constellation under
a specific network structure, providing valuable insights for
proposing robust network structures. Fig.6 shows the different
structures under configuration files in SNK which are denoted
as +Grid 1, +Grid 2, *Grid 1 and *Grid 2 respectively and
represent 4 and 6 adjacent ISLs per satellites[17], [16]. In
the above structure, the capacity of each link can be easily
obtained based on the free space loss, and then the network
throughput is calculated by the maximum flow algorithm.
Fig.7 illustrates the throughput and latency distribution in
different network configurations, providing insights into the
impact of network structure on these performance metrics.



(a) Throughput. (b) Latency.

Fig. 7. Throughput and latency distribution in different network structures.

(a) Network throughputs. (b) Network capacity.

Fig. 8. Network capacity and throughput under shortest-path routing in
structures with density 102, 202, 302, 402.

2) Density Analysis: Constellation networks of different
density perform differently, with higher density networks
exhibiting higher throughput and lower latency. Fig.8 shows
the throughput and capacity of networks with different density
under *Grid 1 structure. It demonstrates that as the network
size increases, the capacity and throughput are increasing
significantly. However, it’s important to note that since the
routing algorithm relies on basic shortest-path without a load
balancing mechanism, the capacity utilization remains around
25%.

IV. LIMITATIONS AND FUTURE WORKS

Optimizing concurrent processing to enhance smooth-
ness. As the scale of space scenario and the complexity of
network grow, the simulation process becomes less fluid. In
the future, SNK will be further updated to achieve smoother
simulations by optimizing the concurrency process.

Introducing virtualization technology to SNK for high-
fidelity emulating. Unlike other recent works that focus on the
network emulating[8] and space network emulating[12], SNK
relies on model-based estimation for networking performance
results. To improve fidelity, SNK’s latest update combines
virtualization techniques to emulate realistic networking en-
vironments by isolating node entities in network namespaces
and connecting nodes using a novel link emulator[18], [19].
This enhancement aims to enable system-level emulation and

facilitate more accurate performance comparisons with real
systems like Starlink or OneWeb.

V. CONCLUSION

This paper presents SNK, a novel simulation platform that
enables constellation manufacturers and network operators to
estimate the achievable network performance under a variety
of constellation options. SNK allows user to build large-scale
complex scenarios with configuration files by typing a single
bash command, and evaluate or visualize the communica-
tion process. Leveraging SNK, we evaluate and compare the
performance of shortest-path and least-hop routing algorithm
and obtain the insights on network optimization for mega-
constellations; This platform will be open-sourced to help fu-
ture researchers validate their own applications and platforms.

REFERENCES

[1] For Approval of Orbital Deployment And Operating Authority for the
SpaceX Gen2 NGSO Satellite System. (2020), https://fcc.report/IBFS/
SAT-LOA-20200526-00055/2378669.pdf, 2020.

[2] Kuiper NGSO constellation, https://fcc.report/IBFS/
SAT-LOA-20190704-00057/2608982.pdf, 2020.

[3] Modification to OneWeb U.S. Market Access Grant for the
OneWeb Ku- and Ka-Band System. (2020), https://fcc.report/IBFS/
SATMPL-20200526-00062/2379569.pdf, 2020.

[4] “System tool kit,” ansys.com/products/missions/ansys-stk.
[5] “General mission analysis tool,” https://gmat.atlassian.net/wiki/spaces/

GW/overview.
[6] “Savi: satellite constellation visualization,” https://savi.sourceforge.io/.
[7] “ns3: A discrete-event network simulator for internet systems,,” https:

//www.nsnam.org/, 2006.
[8] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:

rapid prototyping for software-defined networks,” in ACM SIGCOMM
Workshop on Hot Topics in Networks, 2010.

[9] J. Puttonen, B. Herman, S. Rantanen, F. Laakso, and J. Kurjenniemi,
“Satellite network simulator 3,” in Workshop on Simulation for European
Space Programmes (SESP), 2015.

[10] M. Handley, “Delay is not an option: Low latency routing in space,”
in Proceedings of the 17th ACM Workshop on Hot Topics in Networks,
2018, pp. 85–91.

[11] B. Kempton and A. Riedl, “Network simulator for large low earth orbit
satellite networks,” in IEEE International Conference on Communica-
tions. IEEE, 2021.

[12] T. Pfandzelter and D. Bermbach, “Celestial: Virtual software system
testbeds for the leo edge,” in Proceedings of the 23rd ACM/IFIP
International Middleware Conference, 2022.

[13] S. Kassing, D. Bhattacherjee, A. B. Águas, J. E. Saethre, and A. Singla,
“Exploring the” internet from space” with hypatia,” in Proceedings of
the ACM Internet Measurement Conference, 2020.

[14] “Cesium: The platform for 3d geospatial,” https://cesium.com/, 2020.
[15] “Websocket,” https://developer.mozilla.org/en-US/docs/Web/API/

WebSocket.
[16] W. Xiangtong and L. Wei, “Enabling high-connectivity leo satellite

networks via encountering inter-satellite links,” in IEEE GLOBECOM,
2023.

[17] D. Bhattacherjee and A. Singla, “Network topology design at 27,000
km/hour,” in CoNEXT, 2019.

[18] H. S., “Network emulation with netem,” https://wiki.linuxfoundation.
org/networking/netem, 2005.

[19] E. Petersen, J. López, N. Kushik, C. Poletti, and D. Zeghlache, “Dy-
namic link network emulation: A model-based design,” arXiv preprint
arXiv:2107.07217, 2021.

https://fcc.report/IBFS/SAT-LOA-20200526-00055/2378669.pdf
https://fcc.report/IBFS/SAT-LOA-20200526-00055/2378669.pdf
https://fcc.report/IBFS/SAT-LOA-20190704-00057/2608982.pdf
https://fcc.report/IBFS/SAT-LOA-20190704-00057/2608982.pdf
https://fcc.report/IBFS/SATMPL-20200526-00062/2379569.pdf
https://fcc.report/IBFS/SATMPL-20200526-00062/2379569.pdf
ansys.com/products/missions/ansys-stk
https://gmat.atlassian.net/wiki/spaces/GW/overview
https://gmat.atlassian.net/wiki/spaces/GW/overview
https://savi.sourceforge.io/
https://www.nsnam.org/
https://www.nsnam.org/
https://cesium.com/
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://wiki.linuxfoundation.org/networking/netem
https://wiki.linuxfoundation.org/networking/netem

	Introduction
	The SNK platform
	System overview and workflow
	SNK-Scenario
	SNK-Visualizer
	SNK-Server
	API subsystem
	Procedure subsystem


	Simulation cases
	The Local View
	Fixed edge station routing
	Mobile station routing

	The Global View
	Structure analysis
	Density Analysis


	Limitations and Future works
	Conclusion
	References

