Synchronous Elasticization at a Reduced Cost: Utilizing the
Ultra Simple Fork and Controller Merging

Eliyah Kilada and Kenneth S. Stevens
University of Utah
eliyah.kilada@utah.edu, kstevens @ece.utah.edu

Abstract—Synchronous elasticization converts an ordinary clocked
design into Latency-Insensitive (LI). It uses communication protocols
such as SELF. Comparing to lazy implementations, eager SELF has no
cycles and can provide performance advantage. Yet, it uses eager forks
(EForks) consuming more area and power. This paper demonstrates
that EForks can be redundant. A novel ultra simple fork (USFork)
implementation is introduced. The conditions under which an EFork
will behave exactly the same as a USFork (from the protocol perspective)
are formally derived. The paper also investigates the conditions under
which multiple SELF controllers can be merged to further decrease the
area and power overhead (as long as the physical placement allows).
The flow has been integrated in a fully automated tool, HGEN. HGEN
uses 6thSense as an embedded verification engine. Comparing to the
methodology used in published work on a MiniMIPS processor case
study, HGEN shows up to 34.3% and 25.4% savings in area and power
due to utilizing USForks. It also shows af least 32% saving in the number
of EForks in s382 ISCAS benchmark. More reduction is possible if the
physical placement allows for controller merging. Thanks to the advance
in synchronous verification technology, HGEN runs within few minutes
(for all this paper examples). This makes the proposed approach suitable
for tight time-to-market constraints.

1. INTRODUCTION

Latency insensitivity (LI) [1] allows designs to tolerate arbitrary
latency variations in their computation units as well as commu-
nication channels. This could be specially important for interfaces
where the actual latency can not be accurately estimated or required
to be flexible. Examples of the former is systems with very long
interconnects. Interconnect latency is affected by many factors that
can not be accurately estimated before the final layout [2]. On the
other hand, some applications require flexible interfaces that tolerate
variable latencies. Examples can include interfaces to variable latency
ALUs, memories or network on chip. It has been reported that
applying flexible latency design to the critical block of one of Intel
SOC (H.264 CABAC) can achieve 35% performance advantage [3].

Synchronous elasticization [4], [S], [6] is a technique of converting
an ordinary clocked design into an LI. Unlike asynchronous circuits,
synchronous elastic circuits can be easily designed with conventional
design flows using STA [5], [7]. The Synchronous Elastic Flow
(SELF) [4] is a communication protocol in synchronous elastic
designs.

Eager implementation of the SELF protocol has been reported
in [4]. Such implementation is combinational-cycle free and can
provide performance advantages in some designs comparing to lazy
implementations. However, the former is more expensive in terms of
area and power consumption. The LI control network area and power
consumption overheads may become prohibitive in some cases [5]. In
fact, measurements of a MiniMIPS processor fabricated in a 0.5 um
node show that elasticization with an eager SELF implementation
results in area and dynamic power penalties of 29% and 13%,
respectively [8]. Therefore, minimizing these overheads is a primary
concern. An algorithm that minimizes the total number of control
steering units (i.e., joins and forks) in the LI control network (and,
hence, its area and power overheads) has been proposed in [9].

DI} Master
Latch

Data
Plane

A _En

............ - Ls
Control v/ Vr

Plane ;’ Elastic Buffer s_’
2l controller (EBC) [

Fig. 1: An Elastic Buffer (EB)
implementation.

Fig. 2: SELF channel
protocol.

Due to its lower area and power overheads, lazy SELF implementa-
tion can become an attractive solution. However, such implementation
typically suffers from combinational cycles that can cause deadlock
or oscillation [8]. Authors of [8] also showed that running the
same testbench program on a MiniMIPS processor implemented with
lazy SELF takes 32.7% and 58.8% longer runtime than an eager
implementation in case of 1 and 3 bubbles in the register file path,
respectively.

Section III introduces the Ultra Simple Fork (USFork). As the
name implies, the USFork implementation has no logic gates -
just wired connections. We study the EFork transition diagram
and formally derive the conditions under which an EFork can be
replaced by a USFork. The transformation guarantees that the USFork
will schedule exactly the same state transitions as the EFork over
all its channels, thus maintaining the same runtime. Furthermore,
utilizing the USForks results in no combinational cycles or frequency
penalties. In essence, our approach replaces the redundant EForks
with USForks resulting in a hybrid control network where both
EForks and USForks are used.

Section IV investigates the conditions under which multiple SELF
controllers can be merged into one controller. The transformation
reduces the control network area and power overhead and is limited
only by the physical placement constraints. SELF controller cluster-
ing has previously been reported in [10]. However, their approach
requires the control network model to be closed (i.e, an abstract for
the environment must be available). They also require static latency
values inside the control network. On the other hand, the approach
proposed in this paper can handle situations where the environment
abstract is not available or required to be flexible. It can also handle
designs with variable latency units.

The above two transformations have been integrated in a fully
automated tool, HGEN. Section VI gives an overview of the tool.
HGEN takes a verilog description of a control network and returns
a verilog netlist of the minimized version (using one or two of the
above transformations).

Finally, the paper is concluded with sample results in Section VII.

II. SYNCHRONOUS ELASTIC ARCHITECTURES

An elastic system uses Elastic Buffers (EBs) as synchronization
elements as counterparts to flip-flops in ordinary clocked systems.
Fig. 1 shows a block diagram of an EB [4]. EB Controllers (EBCs)
communicate through control channels. A control channel in the
SELF protocol is composed of two signals. ’Valid’ (V) in the
forward direction, indicates the validity of the data coming from the
transmitter. ’Stall’(.S) in the backward direction, indicates the receiver
is not ready to receive the incoming data on the channel. SELF
identifies three different states on a communication channel (shown
in Fig. 2): 1) Transfer (T'): V &!S. The transmitter provides valid data
and the receiver can accept it. 2) Idle (I): V. The transmitter does
not provide valid data. 3) Retry (R): V&S. The transmitter provides
valid data, but the receiver can not accept it. The transmitter will
sustain the valid data until the receiver is able to read it. Hence,
SELF protocol prohibits a transition from R to [states.

When there are more than one transmitter and one receiver EBs,
a control network is required to connect the different EBs. A control
network is composed of control channels connected through control
steering units, namely, join and fork components. A join element
joins two or more incoming control channels into one output control
channel. A fork element forks one incoming control channel into
two or more output control channels. Fork and join components are
represented in this paper by ® and ®, respectively. Finally, the SELF
protocol used over the control channels can be implemented in an
eager, lazy or hybrid flavors. For brevity, we will refer to an eager
implementation of the SELF protocol, as simply ’eager SELF’, and
same for ’lazy and hybrid SELF’.

ITI. EAGER TO ULTRA SIMPLE FORK TRANSFORMATION
A. Eager SELF Protocol

An eager SELF implementation uses eager forks (EForks) and lazy
joins. Study of lazy joins and forks are outside the scope of this
paper. Fig. 4 shows a 2-output-channel EFork proposed in [4]. Once
a (valid) data token is available at an EFork stem, it will immediately
pass it to all its branches. Meanwhile, the EFork will stall until all
its branches receive the data token. This gives an early start to the
branches that are ready (i.e., their corresponding stall signal is Zero).
Lazy forks, on the other hand, do not pass the data token from its stem
to its branches until all branches are ready to receive. Hence, EFork
can result in performance advantage over lazy forks in some systems.
However, EFork incorporates one flip flop per branch that is triggered
every clock cycle even if there is no activity in the control network.
Moreover, eager forks have higher logic complexity comparing to
lazy. All of that render the EFork expensive in terms of both area
and power consumption.

B. Eager Fork State Diagram

A 2-output-channel EFork has 3 terminal channels: namely, L
(Left), R1 (Right1) and R2 (Rights). L channel consists of signals
V, and S;. Similarly, R; consists of V,.1 and S,1, and Rz of V2 and
Sra.

In order to compute the state diagram of an EFork, the behavior
allowed by the SELF protocol over the fork 3 channels must be
taken into account. Hence, the desired state diagram is obtained by
composing the simple (2 flip-flop based) 4-state diagram of the EFork
circuit of Fig. 4 with the SELF transition diagram of Fig. 2 (over
the three terminal channels). The EFork state table and diagram are
depicted in Table I and Fig. 3, respectively. In this diagram, the inputs
Vi, Sr1, and Syo are part of the state vector (along with the flip-
flop outputs, Q1 and Q)2). To simplify the notations, the state vector

TABLE I: EFork state table.

Current State Next State Inputs Next State
si |[@1 Q2 L Ri Ro| Vi Sri Sra |5 |[Q1 Q2 L Ri Ro
0 - = Iso| 1 1 I T 1T
1 0 0 s1] 1 1 T T T
so| 1 1 I I 1I|1 0 1 sg| 1 1 R T R
1 1 0 sa| 1 1 R R T
1 1 1 sa | 1 1 R R R
0 - - so| 1 1 I I I
1 0 0 |s1|1 1 T T T
s1| 1 1 T T T|1 0 1 s3| 1 1 R T R
1 1 0 sa| 1 1 R R T
1 1 1 sa| 1 1 R R R
0 - - Illegal Transition
1 0 0 s1] 1 1 T T T
sa2 | 1 1 R R R |1 0 | sz | 1 1 R T R
1 1 0 sa| 1 1 R R T
1 1 1 so | 1 1 R R R
0 - - Illegal Transition
1 0 0 ss| 0 1 T 1 T
sz | 1 1 R T R|1 0 1 se| O 1 R I R
1 1 0 ss| 0 1 T I T
1 1 1 se| O 1 R I R
0 - - Tllegal Transition
1 0 0 s7| 1 o T T I
sa| 1 1 R R T|1 0 1 s7| 1 o T T I
1 1 0 sg | 1 0 R R I
1 1 1 sg| 1 0 R R I
0 - - so| 1 1 1 1 I
1 0 0 s1| 1 1 T T T
s5| 0 1 T I T 1 0 1 s3 | 1 1 R T R
1 1 0 sa| 1 1 R R T
1 1 1 so | 1 1 R R R
0 - - Illegal Transition
1 0 0 ss| 0 1 T 1 T
se| O 1 R I R|1 0 1 se| O 1 R I R
11 0 |ss| 0 1 T I T
1 1 1 s¢| O 1 R I R
0 - - so | 1 1 I I I
1 0 0 s1| 1 1 T T T
s7| 1 o T T I |1 0 1 sz | 1 1 R T R
1 1 0 sa| 1 1 R R T
1 1 1 so| 1 1 R R R
0 - - Illegal Transition
1 0 0 s7| 1 o T T I
sg | 1 0 R R I|1 0 1 s7| 1 o T T I
1 1 0 sg | 1 0 R R I
1 1 1 sg| 1 0 R R 1T

takes the following format: <Q1,Q2,L,R1,R2>, where L, R, and
Ry carry the corresponding channel status (i.e., I, T, or R). States
with dot inside are reset states. Some of the transitions (and states) are
not allowed (or reached) because of the SELF protocol constraints,
and, hence, omitted from the diagram. Most of the transition labels
were omitted from Fig. 3 for brevity.

C. Input Behavior Constraints

For a 2-output-channel EFork, the input vector, I, is a 3-tuple of
signals < Vi, Sy1, Sro >€ {0,1}3. Subscript n is added to I and the
3 signals to denote the value at clock cycle n. We define S, to be an
infinite sequence of input vectors ordered by the clock index. Hence,
S%[n] = I,,. We refer to the total input behavior, B%, as the set of
all input sequences. Some of the input sequences are not allowed by
the SELF protocol. For example, the following sequence will cause
an R to [transition on the L channel: << 1,0,0 >, < 1,1,1 >
,<0,1,1 >,.. >. The set of all sequences which are excluded for
violating the SELF protocol will be denoted as E5. Nonetheless, in
this Section, some of the sequences will also be excluded due to other
constraints. Under Constraint C;, the allowed input behavior, B,
is, thus, given by the following equation:

Bt = By — (Ep U EL;) (1

e 11IIIS,

Fig. 3: EFork state diagram.

sr1
‘D_ Q, V’
A V| Vr1
V,
I S,z Sr1
(H— -
V.
S, —® Q] Ve .
AN SI SrZ
Fig. 4: An EFork. Fig. 5: A USFork.
sr1sr2 sr1sr2
v, 00 01 11 10 v, 00 01 11 10
0fojo0o|o0|O o -1~-1--1-
111 =11 - 110 - |1 -

Fig. 6: V1 (same for V;2) in
states sp to sa.

Fig. 7: S; in states so to sa.

Where EL, is the set of sequences excluded from the input be-
havior for violating constraint C;. The words property and constraint
will be used interchangeably as long as the context is clear. In our
notation, constraint x constrains the input behavior such that property
x holds. Properties (and constraints) will be specified using PSL
syntax unless mentioned otherwise.

Definition 1. Protocol Equivalence Two forks are said to be SELF
protocol equivalent (or, for short, just protocol equivalent), if, given
the same input sequences, their terminal channels go through the
same SELF state transitions.

Theorem 1. The EFork of Fig. 4 is protocol equivalent to the USFork
of Fig. 5 if the fork input behavior is constrained such that the
following property is TRUE in the former: ALWAYS so|s1|s2. Where
s; is 1 if the EFork is in state s; for Vi € {0,1,2} (Refer to Fig. 3).

Proof: Figures 6 and 7 show the Karnaugh maps of V,; (or
Vr2) and S;, respectively, in states sop - s2. By using simple logic
optimization, the following equations can be obtained:

Vii=Vi, Veao=V;, S; = 8p1 or S; = S,z 2

The USFork of Fig. 5 exactly implements these equations. |
Please notice that the choice to connect S; to either S1 or Sy2 in
Fig. 5 is irrelevant. The reason is, as will be shown in Theorem 2,
under the input constraint specified in Theorem 1, S,1 and S;2 are
always identical. They may differ only when V; is Zero, in which
case the L channel is in the idle (/) state whatever the value of Sj.

Definition 2. Equivalent Constraints Referring to Equation 1, two
constraints C; and C; are said to be equivalent if BE; = Béj.
(i.e., the allowed input behavior under constraint i is the same as
the allowed input behavior under constraint j.)

In other words, two properties ¢ and j (also referred to as
constraints) are equivalent if, constraining the input behavior such
that property ¢ holds, will cause property j to hold, and vice versa.

Similarly, n properties (also referred to as constraints) are equiv-
alent if Vi, 5 € {1,2,..,n} property i and property j are equivalent.

Theorem 2. The following three properties (also referred to as
constraints) are equivalent:

1) ALWAYS so|s1|s2. Where s; is 1 if the EFork is in state s;
Vi € {0,1,2}.

2) NEVER Vi&(SrizorSr2)

3) ALWAYS ViiznorVis

Proof: We will prove that constraining the input behavior such
that one property holds will cause the other two to hold as well, and
vice versa.

C. 1 If the input behavior is constrained such that EFork operates in
So to s2 only, then properties 2 and 3 are satisfied as well. As
shown in Table I, in sg to s2, Sr1 never differs from S,2 while
V; is One (C. 2), and V; is always the same as Vo (C. 3).

C. 2 States so to s4 are reset states. However, if the input behavior
is constrained such that S,; is always the same as S,2 while
Vi is one, then the EFork can reset only in any of the states so
to sz, exclusively. Besides, it will stay in these states since all
the red transitions in Fig. 3 will not fire. Hence, C. 1 will be
satisfied, and subsequently, C. 3 will be satisfied as well.

C. 3 If the input behavior is constrained such that only those input
sequences that cause V1 to be always the same as Vo, are
allowed, then the EFork will never move to any of the states ss
to sg (where V,.;s differ). Moreover, EFork will not reset in states
s3 or s4 since all the input sequences that go through them must
also go through states s5 to sg (no other transition is available).
And the latter sequences are excluded by the constraint. Hence,
forcing C. 3 will cause the EFork to reset and operate in states
S0 to sz only. Therefore, both C. 1 and C. 2 will be satisfied.

Definition 3. Equivalence Constraint. We call a constraint on the
input behavior that causes EFork to be protocol equivalent to USFork
an equivalence constraint.

When the context is clear, an equivalence constraint will also be
referred to as an equivalence condition.

Definition 4. Minimal Equivalence Constraint. An equivalence con-
straint is minimal if it allows for maximum behavior of the inputs
beyond which an EFork will fail to be protocol equivalent to a
USFork.

Theorem 3. Each of the three constraints of Theorem 2 is minimal.

Proof: It C. 1 is not minimal, then EFork is allowed to operate
in other states beside sg to s2 and still be protocol equivalent to
the USFork. However, this is not the case. In states s5 to ss, Q2
and/or Q1 change from their reset values (which is ”11”). Hence,
if the EFork is allowed to operate in these states, then the USFork
would need flip-flops to “memorize” their values, which is not the
case. Similarly, if the EFork operates in states s3 or su, it has no
other legal transition but to move to one of the states s5 to sg (which
we argued break the protocol equivalence). Hence, C. 1 is a minimal
constraint.

Since, from Theorem 2 the three constraints are equivalent. There-
fore, they constrain the input behavior similarly. It follows that, since
C. 1 is minimal, C. 2 and C. 3 are minimal as well.

|

To check for EFork replacements, the EFork can be checked against
any of the three properties listed in this section. However, without
loss of generality, only property 3 will be used, hereafter. Would two
branches of an EFork satisfy property 3, the EFork can be correctly
replaced by a USFork. Being a minimal condition for equivalence (as
proven in Theorem 3), it maximizes the chance of finding candidate
EForks for replacement.

Replacing an EFork with a USFork can not create combinational
cycles, since there are no internal paths inside the USFork that
connects valid to stall ports (or vice versa). This is an advantage
over lazy forks where such internal paths do exist [8]. Besides, since
(under the mentioned conditions) the USFork is protocol equivalent
to the EFork, they both schedule the same protocol state transitions
over their terminal channels. Hence, they will both have the same
runtime. Finally, replacing an EFork with a USFork can never degrade
the control network maximum frequency. It may actually boost it
in some cases since the USFork cuts from the EFork internal path
delays.

D. Verification

To verify Theorems 1 and 2, we use the setup of Fig. 8. The
whole structure is modeled and passed to a symbolic model checker,
NuSMV [11]. The inputs of both the EFork and USFork (i.e., V;, Sr1,
and Syo are driven simultaneously from the same protocol terminal
(PT). A PT can simply be an EB controller initialized in a random
state. It can also be implemented as a SELF channel with protocol
constraints forced on its valid and stall signals. In this Section the first
approach is used, the other will be used later in the paper. The outputs
of the EFork and USFork have suffixes of _F and _U S, respectively.
They are ORed together to form the corresponding signals over the
the three terminal channels (i.e., L, R1, and R2). Valid and stall
signals on channel L will be denoted as VL and SL, respectively.
Same for the other channels. For example, V R1 is the ORing of
VRI_E and VR1_US.

EFork

VR1_E
O
SL_E
VL | R1
PT VR2_E _:;Dﬁ PT
R1
L (S_'q__) SR1
e_
USFork
VR1_US
SL_US
VR2_US | 5) = er
- R2
SR2)

Fig. 8: Equivalence verification setup.

The shown blocks as well as a clock generator are all connected
synchronously in NuSMV. The clock changes phase with every
verification cycle. The I, T', and R states of the EFork L channel
(denoted as L_F) are defined as follows:

DEFINE L_E_I := IVL_E;
DEFINE L_E_T := VL_E & !SL_E;
DEFINE L_E_R := VL_FE & SL_E;

And on the USFork:

DEFINE L_US_I := !VL_US;
DEFINE L_US_T := VL_US & !SL_US;
DEFINE L_US_R := VL_US & SL_US;

The other states of the other 2 channels are defined similarly for
both EFork and USFork. The EFork states of operation are also
defined as follows:

-— s0 = 11111
DEFINE SO_E := EFork.ql & EFork.g2 & L_E_I & R1I_E_I &
R2_E_I;

-- sl = 11TTT

DEFINE S1_E := EFork.gl & EFork.q2 & L_E_T & R1I_E_T &
R2_E_T;

-— s2 = 11RRR

DEFINE S2_E := EFork.gl & EFork.q2 & L_E_R & RI_E_R &
R2_E_R;

-- s3 = 11RTR

DEFINE S3_E := EFork.gl & EFork.g2 & L_E_ R & R1_E_T &
R2_E_R;

-- s4 = 11RRT

DEFINE S4_E := EFork.qgl & EFork.g2 & L_E_R & R1_E_R &
R2_E_T;

Mismatches over the three channels are defined as follows:

DEFINE I_MISMATCH := (L_E_I xor L_US_I) | (L_E_T xor L_US_T)

| (L_E_R xor L_US_R);
DEFINE R1_MISMATCH :=

(RI_E_TI xor R1_US_I) | (R1_E_T xor

R1_US_T) | (RI_E_R xor R1_US_R);

DEFINE R2_MISMATCH := (R2_E_I xor R2_US_I) | (R2_E_T xor
R2_US_T) | (R2_E_R xor R2_US_R);

DEFINE MISMATCH := L_MISMATCH | R1_MISMATCH | R2_MISMATCH;

Finally, the three constraints (or properties) are defined as follows
(without temporal qualifier):

DEFINE C_1 := SO_E | S1_E | S2_E;

DEFINE C_2 := VL & (SRl xor SR2);

DEFINE C_3 := VRI_E xnor VR2_E;

A constraint is forced through the NuSMV INVAR reserved word,
and a property is verified using PSLSPEC. In the following code,

XN
N

(a) Eager fork (EFork).

(b) Hybrid fork (HFork).

Fig. 9: Eager to hybrid fork transformation.

only one constraint is forced at a time.
To verify Theorem 1:

INVAR C_1;

PSLSPEC never MISMATCH;
Similarly, Theorem 2 Constraint. 1 is verified as follows:
INVAR C_1;

PSLSPEC never C_2;
PSLSPEC always C_3;
And Theorem 2 Constraint. 2:

—-— True

—— True

—-— True

INVAR !C_2;

PSLSPEC always C_1l; —-- True
PSLSPEC always C_3; -- True
And Constraint. 3:

INVAR C_3;

PSLSPEC always C_1l; —-— True
PSLSPEC never C_2; -- True

E. Multi-output-channel EForks

Theorem 6 extends the results of the previous theorems to multi-
output-channel EForks.

Lemma 4. n-output-channel EFork is protocol equivalent to con-
catenated (n-1) 2-output-channel EForks.

Proof: Proof is trivial and omitted for space limitations. |

Lemma 5. n-output-channel USFork is protocol equivalent to con-
catenated (n-1) 2-output-channel USForks.

Proof: Proof is trivial and omitted for space limitations. |

Theorem 6. If, in Fig. 9, Vi,j € {1,2,..,k} the following property
holds: ALWAYS (Vy.iznorV;;), then the hybrid fork (HFork) of Fig.
9b is protocol equivalent to the eager fork (EFork) of Fig. 9a.

Proof: The proof follows from Lemmas 4 and 5 and Theorem
2, and was omitted due to space limitations. |
Red forks in Fig. 9 are EForks and green are USForks.

IV. ELASTIC BUFFER CONTROLLER MERGING

In a typical control network, some Elastic Buffer Controllers
(EBCs) may activate their corresponding latches at similar schedules.
This can allow for possible merging of these controllers into one
controller that feeds them all (as much as the physical placement
permits). Similar observation has also been noted by the authors of
[10]. However, their algorithm requires the control network model to
be closed and of static latency. This Section provides a framework
for merging such controllers in any control network. That includes
open networks (i.e., when the environment abstract is not available
or required to be flexible) as well as networks incorporating variable
latency units. The approach is straight forward, nonetheless.

E, E, E, E.
vln e = vrn In I " I " n
= —
sln EBCn sm sln gm
le— < <—
E,, |E. E,.||E.
‘/[_2> T m2 T s2 V,z ‘/£> T m2 I s2 V,-z
Sp EBC, S, Sp ?:'2
< le— < <“—
E.. E Epni [|Esq
‘ﬁ) T m1 T s1 .E; v£> I I -‘VH
Sy EBC, Sh Si EBC, ?n
< lc— < <—
(a) Before (b) After

Fig. 10: EBC merging.

Definition 5. Functional Equivalence Two structures are said to
be functionally equivalent, if, given the same input sequences, they
produce the same output sequences.

Theorem 7. If the n EBCs of Fig. 10a are initialized in the same
state and the environment behavior is constrained such that the
following two properties (also referred to as constraints) are true
Vi,j € {1,2,.n},1 # j:

1) ALWAYS (Vi; xnor Vi)

2) ALWAYS (Sr; xnor Srj)
Then, the structure of Fig. 10b is functionally equivalent to the one
in Fig. 10a.

Proof: Trivial. It is easy to show under the conditions of the
theorem, that the following properties will also hold: ALWAYS (V7
xnor V;.;), ALWAYS (Si; xnor Si;j), ALWAYS (E,.; xnor Ep,;),
and ALWAYS (Es; xnor Es;) [|

EBC merging is limited only by the physical placement constraints.
A technique in which a maximum diameter per cluster of merged
EBCs (schedulers in their case) was proposed in [10]. The same
technique can be readily integrated in this approach.

V. VERIFICATION MODELS OF DIFFERENT CONTROL NETWORK
COMPONENTS

An elastic control network needs to be verified as a whole to
check if the required conditions for merging EBCs or using USForks
are met. Two frameworks were particularly useful for us: namely,
6thSense [12] and NuSMV. The Section will try to cover both
frameworks as space allows.

6thSense uses a standard VHDL to model a circuit and is par-
ticularly designed for synchronous circuit verification. Most of the
control network models will be omitted since they are intuitive.

NuSMV model checker has its own input language and supports
both synchronous and asynchronous circuit verification. To mimic a
synchronous behavior in NuSMV, the network components (e.g., joins
and forks), including a clock generator, are connected synchronously.
All combinatorial logic are modeled with zero delay (using DEFINE
reserved word), and the clock generator changes phase with every
verification cycle. An NuSMV model for a clock generator is as
follows:

MODULE ClkGenerator
VAR Clk:boolean;
ASSIGN

init (Clk) := 0;

next (Clk) := !Clk;
and for a D-FF (with a reset value of 1):
MODULE DFF1 (Clk,D)

VAR Q:boolean;

ASSIGN

init (Q) := 1;

next (Q) := case

(Clk=0) & (next(Clk))=1: D;
1: Q5

esac;

A. n-Input Join

An NuSMYV model for the n-input join structure used in [4] is as
follows:
MODULE LJoinn(V11,V12,..V1ln,Sr)
DEFINE Vr:= V11 & V12 & ...
DEFINE S11:=
DEFINE Sln:=

Vln;
'(Vr & !Sr);
'(Vr & !Sr);

B. n-Output Fork

An NuSMV model for an n-output EFork is as follows:
MODULE EForkn(Clk,V1l,Srl,Sr2,...Srn)

VAR

DFF_1: DFF1(Clk,dl);

DFF_n: DFF1(Clk,dn);

DEFINE dl := (Srl & gl) | !(V1 & S1) ;

DEFINE gl := DFF_1.0Q;

DEFINE Vrl := V1 & gl;

DEFINE dn := (Srn & gn) | !(V1 & S1) ;

DEFINE gn := DFF_n.Q;

DEFINE Vrn := V1 & qgn;

DEFINE S1 := (Srl & gl) | (Sr2 & g2) | (Srn & gn);

USFork transformation Condition 3 of Theorem 2 is verified
for each two branches in the EFork to determine if they can
be replaced by a USFork. Hence, in an n-output EFork F' and
Vi,j € {1,2,..,n},i # j, the following properties are specified.
In NuSMV:

DEFINE F_i_j MISMATCH := Vri xor Vrj ;

PSLSPEC never F_i_3j_ MISMATCH;

And, in 6thSense (bil file):

[fail; F_i_j;

"F_i_ 3"] <= Vri xor Vrj ;

C. Elastic Buffer Controller

Similarly, the EBC model immediately follows the FSM or
the circuit implementation of [4]. The EBC merging condition
of Theorem 7 is verified for each two EBCs in the network to
determine if they can be merged. Hence, for a control network with
n EBCs and Vi, j € {1,2,..,n},i # j, the following properties are
specified. In NuSMV:

DEFINE EBC_i_j_MISMATCH :=
PSLSPEC never EBC_i_Jj_MISMATCH;
And in 6thSense (bil file) as:

[fail;

(V1i xor V1j) | (Sri xor Srj) ;

EBC_i_3j; "EBC_i_j"] <= (V1i xor V1j) or (Sri xor

Srj) ;
D. SELF Input Channel

A SELF input channel is the control channel corresponding to a
data input (or group of data inputs) to the design. The valid signal
of this channel Vi is an input to the design and the stall (S%) is an
output. Vi will be defined as a random input with the SELF protocol
constraints applied. In particular, SELF prohibits a transition from

D, D,
= Variable Latency Unit —
(VLU)

Go Done [Ack

<

To

VLC

Fig. 11: A variable latency unit and a controller [4].

R to I state on any channel. This constraint on the input behavior
is expressed in NuSMV as:

DEFINE InputChannel_i_Constraint :=
INVAR InputChannel_i_Constraint;

and in 6thSense (bil file) as:

InputChannel_i_Constraint] <= not (Vi) or

t(vi) | !'(si) | Vi_next;

[constraint;
not (Si)
Where, in both cases, Vi is a one clock delayed version of Vi_next.
Vi_next is, then, considered as the virfual input that the verification
engine exhaustively randomizes.

or Vi_next;

E. SELF Output Channel

Similarly, a SELF output channel is the control channel
corresponding to a data output (or group of data outputs) from the
design. The valid signal of this channel Vi is an output from the
design and the stall (S%) is an input. The SELF protocol does not
explicitly set constraints on the possible sequence of values over the
input stall signal. However, it can be easily inferred from the EB
specifications in [4] or the EHB (elastic half buffer) in [13] that a
transition from 10 (1V&!S) to I1 (1V&S) can not happen on any
SELF channel. Hence, the following constraint is applied to the
SELF output channel. In NuSMV:

DEFINE OutputChannel_i_Constraint := Vi | Si | ! (Si_next);
INVAR OutputChannel_i_Constraint;

and in 6thSense as:

[constraint; OutputChannel_i_Constraint] <= Vi or Si or

not (Si_next) ;
Again, S7 is a one clock delayed version of the random input
Si_next.

F. Variable Latency Unit

Fig. 11 shows a block diagram of a variable latency unit (VLU)
and a variable latency controller (VLC) [4]. The VLC model follows
the figure directly and omitted for brevity. The VLU model would
depend on the actual block design. Nonetheless, to be able to verify
the control network, it suffices to know the minimum and maximum
latency values of that block (whatever its functionality is). Hence, to
model the VLU, we used a model that randomly picks the next latency
value from a range of values [min,max] specified by the designer for
each block.

VI. HGEN TooL

To automate the transformations described in this paper, we
developed HGEN. HGEN (Hybrid network GENerator) is a fully
automated tool that takes a verilog description of a control network
and returns a verilog description of the minimized version. The
tool currently uses 6thSense as the verification engine. Support for
NuSMV is left for future versions. HGEN models the input verilog
control network into VHDL. It adds the proper constraints for the

ABCI4LP

;;Fg_{ o L FC{13).24)
Jcit

(C3 c2
c4

CVemg— 11 ABCI4P1
JCI213LM |, FCI213LM Fece ABCI4P2
om BCP1
g 2 & TGk > AT
b PLE JCMem§ FCMerm R cABCidP (| JABCHLP
B A FL{(1.2).3}
CMem: .
et 14 fBubi>{[B]2
Mem1
BCLP__Mem
R Mem: m M
N FMem
BCP2
L2

Fig. 12: Control network of the elastic clocked MiniMIPS with
Register File bubbles. Image adapted from [9].

SELF channels. The EFork to USFork transformation conditions
are verified for each 2 branches in the network. Similarly, the
EB controller merging conditions are checked for each two EB
controllers. HGEN automatically generates the suitable models for the
variable latency units (based on the min and max latencies provided
by the user in a configuration file). It generates a report with the EFork
branches that has been transformed into USFork, and the merged EB
controllers. -nm (no merge) option can be used to prevent HGEN
from merging equivalent EB controllers (i.e., to only check for and
do EFork to USFork transformation). The option is useful for doing
the EBC merge after having some insight over the place and route
information. HGEN currently supports all the network components
described in Section V and more. Other component models (e.g.,
elastic half buffer and early evaluation components [14]) can be
readily integrated.

VII. RESULTS

All the examples of this paper have been automatically run by
HGEN. Tables II and III show the number of checked properties per
design as well as the tool runtime. In all the examples the runtime is
within few minutes. The machine used has AMD Athlon(TM) 64 X2
Dual Core 3.2GHz Processor. Area and power are synthesis numbers.
Design Compiler Ultra technology and IBM 65 nm library were used.

A. The MiniMIPS Processor

For the sake of comparison, we use the case study elasticized by the
authors of [9] and [8], MiniMIPS. The MiniMIPS is an 8-bit subset of
the 32-bit MIPS (Microprocessor without Interlocked Pipeline Stages)
[15], [16]. A simple block diagram of the architecture can be found in
[8]. In summary, MiniMIPS has 10 EBCs (shown in solid rectangles
in Fig. 12, excluding Mem): P to control the 8-bit program counter,
C' to control the 4-bit (data) controller, /1 — I4 to control the 8-bit 4
instruction registers, respectively, A and B to control the ALU two 8-
bit input registers, L to control the ALU 8-bit output register, and M
to control the 8-bit memory data register. From the control point of
view, the register file R and the memory Mem could be considered
as combinational units [4] (as long as timing allows). Hence, adding
separate EBCs for R and M em are optional.

To illustrate the capability of the proposed approach, we like to
study the MiniMIPS in three different settings:

1) Register File Bubbles: In this setting the control network is
closed. We add one bubble stage at the two outputs of the register
file (shown in dotted rectangles in Fig. 12). In practice this can be

done to accommodate a high latency register file or because of long
wires. The resultant control network verilog is passed to HGEN. Row
one of Table II shows the results. In this setting, 10 out of the 12
EForks can be replaced by USForks (Fig. 12 shows EForks in red and
USForks in green). This achieves 34.3% area reduction, and 25.4%
and 32% dynamic and leakage power savings, respectively.

The testbench program of [16] was run on the two versions of
the elastic MiniMIPS: the one with all forks implemented as EForks,
and the other after USFork replacements. As expected, both versions
finished the program after the same number of clock cycles (147
cycles in this case).

Furthermore, if the chip physical placement allows, 7 out of the
12 EBCs (10 + 2 bubbles) can be omitted (i.e., merged with other
EBCs). This can achieve 63.0% area reduction, and 53.4% and
54.8% dynamic and leakage power, respectively. Since merging some
equivalent EBCs may not be feasible because of the design timing
constraints, the actual saving of area and power will be in between
the above two limits (i.e., depending on how many EBCs can actually
be merged).

2) Variable Latency ALU: In this setting, the control network is
closed, and there are no bubbles at the register file outputs. The ALU
is modeled with a variable latency unit that finishes an operation in
one or two clk cycles. Row two of Table II shows the results. In this
setting, 9 out of the 12 EForks can be replaced by USForks. This
achieves 32.3% area reduction, and 30.5% and 25.9% dynamic and
leakage power savings, respectively. Similarly, the table also shows
the area and power savings in case the physical placement allows for
merging 7 out of the 10 EBCs.

3) Off-Chip Memory With Unknown Latency: In this setting, the
control network is open at the memory interface. The memory
interface is modeled in HGEN by one input and output SELF
channels. In practice this can be done if the actual latency of the
memory is unknown or required to be flexible. Row three of Table
IT shows the results. In this setting, 7 out of the 12 EForks can
be replaced by USForks. This achieves 25.6% area reduction, and
22.8% and 22.2% dynamic and leakage power savings, respectively.
Similarly, the table also shows the area and power savings in case
the physical placement allows for merging 5 out of the 10 EBCs.

B. 5382

S382 is one of the ISCAS benchmarks. It has 3 input channels: F,
T, and C, and 6 output channels: Y2, Y1, R2, R1, G2, and G1, and
21 EBCs. Table III shows the results of running HGEN over s382 in
3 different incremental settings:

1) All the 9 input/output channels are left open.

2) Y2 is connected to F, and Y1 is connected to T. The other 5
input/output channels are left open.

3) Y2 is connected to F, and Y1 is connected to T. R2 and R1

and G2 are connected to C through a 3-input join followed by
a bubble. Output channel Gl1 is left open.

Intuitively, the input behavior of setting 3 is a subset of 2, which,
in turn, is a subset of 1. Hence, the number of EForks that can be
replaced by USFork is the same or increases as we go from setting 1
to setting 3. Though the proposed approach handles open and closed
control networks, however, this example shows that the chance of
finding candidate EForks for replacement increases as we know more
about the environment. In s382, the reduction in the number of EForks
is 32%, 36%, and 72% in settings 1, 2, and 3, respectively.

Finally, Table IV shows HGEN results for other ISCAS bench-
marks - verified in fotally open control network settings (i.e., no
abstract for the environment is provided). The results emphasize the

TABLE II: HGEN results for the MiniMIPS processor elastic control network. Power is computed at 4 ns clock period.

The Original Control Network HGEN Step 1 HGEN Step 2
Desi a1l 40 Total # | Total # | Area | Power (uW) || # Replaced | Area | Power (uW) #Properties # Merged | Area | Power (uW) # Properties
esign r- - A —
P P, Time(s) P, Time(s)
EForks | EBCs | (u2) | —2¥™ || EForks | (u2) | —2¥ EBCs | (u?) | —¥m
Pleakage Pleak'age Pleakage
. 159.2 118.7 19 74.2 65
MiniMIPS - 1| 0 | O 12 12 834.0 —_— 10 547.8 —_— —_— 7 308.4 —_— —
3.1 2.1 0.52 1.4 0.64
. 108.3 75.3 19 40.1 64
MiniMIPS -2 | 0 | O 12 10 754.2 e 9 510.6 —_— — 7 278.4 —_— —
2.7 2.0 0.7 1.2 0.85
. 110.5 85.3 19 60.8 64
MiniMIPS -3 | 1 | 1 12 10 754.2 —_— 7 561.0 —_— — 5 394.8 —_— —_—
2.7 2.1 20.56 1.6 10.46

TABLE III: HGEN results for s382 benchmark.

Total # | Total # | # Repl. | # Merg. # Propert.
Design | #1 | #O I - -
Time(s)
EForks | EBCs | EForks | EBCs
255
s382-1(3 | 6 25 21 8 7 —_—
20.1
255
s382-2 (1| 4 25 21 9 8
375.22
255
s382-310 | 1 25 22 18 17
152.29
TABLE IV: HGEN results ror other ISCAS benchmarks - in open

network settings.

Total # | Total # | # Repl. | # Merg. # Propert
Design | #I | #O r -
Time(s)
EForks | EBCs | EForks | EBCs
7
s27 7| 4 3 3 1 1 —_—
0.79
131
s298 | 17| 20 25 14 2 2 —
5.37
177
s344 | 9 | 11 32 15 2 2 —_—
89.81
40
8386 | 7| 7 15 6 2 2 —_—
1.49
102
s1488 | 8 | 19 32 6 5 5 —
4.56

speed of the tool. Further savings in the number of EForks and EBCs
can be achieved with more knowledge of the environment model.

VIII. CONCLUSION

The paper demonstrated that eager forks (EForks) can be redundant
in the control network of synchronous elastic circuits. We intro-
duced an ultra simple fork (USFork) implementation. Conditions
for replacing an EFork with a USFork were formally derived. The
replacement does not cause any combinational cycles, does not
degrade runtime nor the network maximum operational frequency.
Rather, it has the potential of saving substantial amount of area and
power consumption. The paper also investigated the conditions under
which multiple SELF controllers can be merged to further decrease
the area and power overhead (as long as the physical placement
allows). The flow was integrated in a fully automated tool, HGEN.
HGEN showed superior results in MiniMIPS case study as well as
some ISCAS benchmarks. We showed that the chance of finding
candidate EForks for replacement increases as we know more about

the environment model. Nonetheless, the proposed approach handles
control networks that are open or closed, with static or variable
latencies. Finally, for all the paper examples, HGEN runs within few
minutes, making it suitable for industrial use.

REFERENCES

[1] L. Carloni, K. Mcmillan, and A. L. Sangiovanni-VincentelliR, “Theory
of latency insensitive design,” in IEEE Transactions on CAD of Inte-
grated Circuits and Systems, vol. 20, no. 9, Sep 2001, pp. 1059-1076.
L. Carloni and A. Sangiovanni-Vincentelli, “Coping with latency in soc
design,” Micro, IEEE, vol. 22, no. 5, pp. 24-35, Sep/Oct 2002.

A. Gotmanov, M. Kishinevsky, and M. Galceran-Oms, “Evaluation of
flexible latencies: designing synchronous elastic h.264 cabac decoder.”
in The Problems in design of micro- and nano-electronic systems, 2010.
J. Cortadella, M. Kishinevsky, and B. Grundmann, “Synthesis of syn-
chronous elastic architectures,” in ACM/IEEE Design Automation Con-
ference, July 2006, pp. 657-662.

J. Carmona, J. Cortadella, M. Kishinevsky, and A. Taubin, “Elastic
circuits,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 28, no. 10, pp. 1437-1455, Oct. 2009.

H. M. Jacobson, P. N. Kudva, P. Bose, P. W. Cook, S. E. Schuster, E. G.
Mercer, and C. J. Myers, “Synchronous interlocked pipelines,” in 8th
International Symposium on Asynchronous Circuits and Systems, Apr.
2002, pp. 3-12.

S. Kirstic, J. Cortadella, M. Kishinevsky, and J. O’Leary, “Synchronous
elastic networks,” in Formal Methods in Computer Aided Design, 2006.
FMCAD ’06, Nov. 2006, pp. 19-30.

E. Kilada, S. Das, and K. Stevens, “Synchronous elasticization: Consid-
erations for correct implementation and minimips case study,” in VLSI
System on Chip Conference (VLSI-SoC), 2010 18th IEEE/IFIP, sept.
2010, pp. 7 —-12.

E. Kilada and K. Stevens, “Control network generator for latency
insensitive designs,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2010, 8-12 2010, pp. 1773 —-1778.

J. Carmona, J. Julvez, J. Cortadella, and M. Kishinevsky, “Scheduling
synchronous elastic designs,” in Application of Concurrency to System
Design, 2009. ACSD °09. Ninth International Conference on, july 2009,
pp. 52 -59.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “Nusmv 2: An opensource
tool for symbolic model checking.” in Proc. of 14th Conf. on Computer
Aided Verification (CAV 2002), vol. 2404, July 2002.

6thSense. Http://www.research.ibm.com/sixthsense/.

G. Hoover and F. Brewer, “Synthesizing synchronous elastic flow
networks,” in Design, Automation and Test in Europe, 2008. DATE 08,
10-14 2008, pp. 306 -311.

J. Julvez, J. Cortadella, and M. Kishinevsky, ‘“Performance analysis of
concurrent systems with early evaluation,” in Computer-Aided Design,
2006. ICCAD ’06. IEEE/ACM International Conference on, nov. 2006,
pp. 448 —455.

J. H. et al., “The MIPS Machine,” in COMPCON, 1982, pp. 2-7.

N. Weste and D. Harris, CMOS VLSI design: a circuit and systems
perspective, 2004.

[2]
[3]

[4]

[5]

[6]

[7

—

[8

[t

[9]

[10]

(1]

[12]

[13]

[14]

[15]
(16]

