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Abstract

We present an algorithm for the per-voxel semantic segmentation of a three-dimensional volume. 

At the core of our algorithm is a novel “pyramid context” feature, a descriptive representation 

designed such that exact per-voxel linear classification can be made extremely efficient. This 

feature not only allows for efficient semantic segmentation but enables other aspects of our 

algorithm, such as novel learned features and a stacked architecture that can reason about self-

consistency. We demonstrate our technique on 3D fluorescence microscopy data of Drosophila 

embryos for which we are able to produce extremely accurate semantic segmentations in a matter 

of minutes, and for which other algorithms fail due to the size and high-dimensionality of the data, 

or due to the difficulty of the task.

1. Introduction

Consider Figure 1(a), which shows slices from a volumetric image of a fruit fly embryo in 

its late stages of development, acquired with 3D fluorescence microscopy. Such data is a 

cornucopia of knowledge for biologists, as it provides direct access to the internal 

morphology of a widely studied model organism at an unprecedented level of detail. 

Traditionally, such information is encoded in a morphological atlas (for Drosophila, see 

[7]), which is painfully constructed by physically slicing embryos and manually annotating 

each tissue. However, the recent availability of high-resolution volumetric images from 

multiple modalities has spurred a great interest in the scientific community for the creation 

of “virtual atlases” [15, 16, 20], typically relying on the semantics provided by interactive 

segmentation or gene expression patterns. From a computer vision perspective, the problem 

at hand is that of volumetric semantic segmentation, in which we must predict a tissue label 

for each voxel in a volume. In this paper, we present an extremely accurate and efficient 

algorithm for volumetric semantic segmentation, based on a novel feature type called the 

“pyramid context”. Figure 1(b) presents ground-truth annotations manually collected by an 

expert for 8 key morphological structures, and Figure 1(c) shows the results of our approach 

on this test-set volume.
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The state-of-the-art in semantic segmentation on 2D images is represented by the leading 

techniques on the PASCAL VOC challenge [14]. The best performing methods, e.g. [2, 8, 9] 

operate by classifying object candidates obtained by expensive bottom-up grouping. They 

use representations tailored to capture the appearance of common objects (e.g. colorSIFT 

[24]), and the output of pre-trained object detectors [2], combined with non-linear classifiers 

[2, 9] or, alternatively, high-dimensional second order features [8]. A second family of 

approaches, based on CRFs, e.g. [6], extends such pixel-wise classifiers by modeling also 

pairwise dependencies, co-occurrence statistics, or higher-order potentials. All such 

techniques, which build upon decades of computer vision research on 2D natural images, are 

simply intractable and inapplicable in the terra incognita of volumetric semantic 

segmentation: sophisticated 2D segmentation techniques break down when faced with 15 

million voxels, and simple approaches like watersheds produce segments which are too 

coarse for the accurate per-voxel labeling of extremely fine-scale biological structures. 

Traditional sliding-window detection techniques [12] are intractably expensive to densely 

evaluate at every window in a 15 megavoxel volume, and generally reason only about local 

appearance, not large-scale context. The handful of volumetric segmentation techniques 

which do exist are restricted to the specific task of connectomics with Electron Microscopy 

[1, 25, 26].

Because existing techniques are insufficient, we must construct a novel semantic 

segmentation algorithm. We will address the problem as one of evaluating a classifier at 

every voxel in a volume. Our features must be descriptive enough to differentiate between 

fine-scale structures while spatially large enough to incorporate coarse-scale contextual 

information, and per-voxel classification of our features must be efficient. To address these 

issues we introduce the “pyramid context” feature, which can be thought of as a variant of 

retina-like log-polar features such as the shape context [3]. A key property of this feature is 

that by design, the dense evaluation of a linear classifier on pyramid context features is 

extremely efficient. To create a semantic-segmentation algorithm, we will construct these 

pyramid context features using oriented edge information (as in HOG [12] or SIFT [21]) and 

also learned “codebook” like features (as in a bag-of-words models [18]). We can then stack 

these pyramid context layers into a multilayer architecture which allows our model to reason 

about context and self-consistency. A visualization of our semantic-segmentation pipeline 

can be seen in Figure 2.

Our results are extremely accurate, with per-voxel APs in the range of 0.86–0.98 — accurate 

enough that our test-set predictions are often indistinguishable from our ground-truth by 

trained biologists. Our model is fast — evaluation of a volume takes a matter of minutes, 

while the time taken by a biologist to fully annotate an embryo is often on the order of 

hours, and the time taken by existing computer vision techniques is on the order of days. 

And our model is exact — we gain efficiency not through approximations or heuristics, but 

by designing our features such that exact efficient classification is possible.

2. The Pyramid Context Feature

At the core of our algorithm is our novel “pyramid context” feature. The pyramid context is 

similar to the shape context feature [3], geometric blur [4, 5], or DAISY features [23] — all 
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serve to pool information around a location in a log-polar arrangement (Figure 3). The key 

insight behind our pyramid context feature is that there exist two equivalent “views” of the 

feature: it can be viewed as a Haar-like pooling of signals at different scales (Figure 3(d)) or 

as a series of interpolations into a Gaussian pyramid of a signal (Figure 3(e)). Because of 

this, we can evaluate a linear classifier on top of pyramid context features at every voxel in a 

volume extremely efficiently, using simple pyramid operations and convolutions with very 

small kernels. In this section we will formalize our feature, and present an efficient per-

voxel classification algorithm which is orders of magnitude faster than existing alternatives.

Let V be a volume, and let us define c(V, x, y, z), which computes a feature vector from V at 

location (x, y, z):

(1)

Where V (x, y, z) is the linearly-interpolated value of volume V at location (x, y, z). c(·) 

simply vectorizes a 3×3×3 region of a volume into a vector. Note that the offsets are ordered 

such that 〈w, c(V, x, y, z)〉 = (V * w)x,y,z
1. This means that a linear classifier on top of these 

features can be reformulated as a convolution of the volume.

Now let P(V) be a K-level Gaussian pyramid of V, such that Pk(V) is the k-th level of the 

pyramid (P1(V) = V). A pyramid context feature is the concatenation of our simple “context” 

features at every scale of the pyramid:

(2)

Where K = 6 in our experiments.

Consider a linear classifier for pyramid context features. To classify every voxel in a 

volume, we must compute 〈w, C(V, x, y, z)〉 for all (x, y, z). Doing this naively is extremely 

inefficient: the volume is extremely large (15 million voxels), and the corresponding 

features for each voxel are hard to compute: each requires hundreds of trilinear interpolation 

operations into a pyramid.

To make this problem tractable, we leverage the fact that every operation in this architecture 

is linear, and therefore associative. Instead of calculating 〈w, C(V, x, y, z)〉 for all (x, y, z), 

we convolve each level of P(V) with wk, the subset of w that corresponds to level k, 

reshaped into a 3 × 3 × 3 filter. Once we have a filtered Gaussian pyramid, we collapse the 

pyramid by upsampling each scale to the size of the volume, and summing the upsampled 

scales. We will refer to this process (computing P(V), filtering each Pk(V) with wk, and 

collapsing the filtered P(V) to a volume) as V ⊗ w, or as “pyramid filtering” V with w.

Instead of learning classifiers directly on the input volume V we will produce a set of 

“feature channels” {F} from V, pyramid filter each channel with its own set of weights w(j), 

and sum those together to produce our per-voxel prediction: G = ∑j F(j) ⊗ w(j). This can be 

1In a slight abuse of notation, w will simultaneously be referred to as a vector and as a 3 × 3 × 3 filter
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made much faster by noticing that the pyramid collapse at the end of each pyramid filtering 

is linear, and so we can sum up the filtered pyramids and then collapse the summed pyramid 

only once. Formally, pseudocode for our efficient per-voxel classification is:
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1: G ← 0

2: for k = [1 : K] do

3:   Gk ← 0

4:   for j = [1 : |{F}|] do

5:
    Gk ← Gk + Pk (F ( j)) * wk

( j)

6:   G ← G + upsample (Gk)

7: return G

See the supplementary material for a demonstration of the improvement in efficiency 

yielded by using “pyramid filtering” instead of pre-existing techniques, such as sliding-

window [12] or FFT-based filtering [13]. Empirically our technique is 200× faster than 

sliding window while having nearly as small a memory footprint, and is 5× to 20× faster 

than FFT-based techniques while requiring 1/6th or 1/160th the memory. In short, only 

pyramid filtering can run efficiently (or, at all) on the volumetric data we are investigating 

— naive alternatives either take over 1.5 hours or require over a hundred gigs of memory, 

while our technique takes less than 30 seconds and requires less than 1 gigabyte of memory. 

Analytically, we show through complexity analysis that pyramid filtering should be 42× as 

fast as sliding-window, though we see a much greater improvement in practice because 

small convolutions are generally fast for non-algorithmic reasons (memory locality, 

optimized code, etc).

3. Semantic Segmentation Algorithm

We will now build upon our novel feature descriptor and its corresponding efficient 

classification technique to construct a volumetric semantic-segmentation algorithm, as 

shown in Figure 2. In Section 3.1 we will present three kinds of feature channels for use as 

input to our model, some of which are themselves built upon pyramid context features. In 

Section 3.2 we present an additional feature type based on the absolute position of each 

voxel. In Section 3.3 we will show how to use the output of a single-layer classification 

model built on the features in Sections 3.1 and 3.2 to build a two-layer model which uses 

contextual information, again by exploiting our pyramid context features. In Section 3.4 we 

present a post-processing step based on joint-bilateral filtering.

3.1. Feature Channels

The simplest feature-channel which we can use is the raw input volume, which we will refer 

to our “raw” feature channel. We augment this channel with two kinds of feature channels 

computed from the raw input volume: a “fixed” type based on simple first and second 

derivatives of the input volume (similar to HOG [12] or SIFT [21]) and a novel “adaptive” 

type learned from pyramid context features on top of the raw volume.

To compute our “fixed” features we take our volume V, compute a Gaussian pyramid P(V), 

convolve each level by a set of filters, half-wave rectify the output [22], and concatenate the 

channels together2. The filters we use are just 3-tap oriented gradient filters in all directions 
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(12 in all), and the 3D discrete Laplace operator. For each filter f, we convolve each pyramid 

level Pk(V) with that filter, and produce the following two channels:

(3)

giving us a total of 26 channels. Examples of our “fixed” channels can be seen in Figure 2.

Though these simple filter responses are powerful, they are limited. They describe coarse 

first or second order variation of the volume, but do not, for example, describe local context, 

or the distribution of the signal at multiple scales at the same location. It is difficult to use 

one’s intuition to hand-design appropriate features, especially in unexplored domains such 

as our volumetric fluorescence data, so we will use semi-supervised feature learning to learn 

our second set of “adaptive” feature channels.

Traditional feature-learning techniques usually involve learning a set of filters from image 

patches [11, 19]. On our data, these techniques fail for the same reasons that naive 

classification fails: the sheer size and high-dimensionality of our data makes basic 

techniques intractable. Filtering volumes with the medium-sized filters commonly used in 

feature learning experiments (9 × 9, 14 × 14, etc) is intractable, and such filters have too 

small a spatial support to provide useful information regarding context or morphology. We 

will therefore use our pyramid context features as a substrate for feature learning: we will 

extract pyramid context features from the raw volume, learn a set of filters for those 

features, and then pyramid filter the volume according to those learned filters.

We use the feature-learning technique of [11] to learn filters, which is effectively whitening 

and k-means (see the supplementary material for a thorough explanation). This procedure 

gives us a set of filters {f} and a set of biases {b}, with which we can compute our feature 

channels {F} as follows:

(4)

Where ⊗ is pyramid filtering, as described earlier. We learn 26 channels, the same number 

as our “fixed” feature set, so that we can compare the effectiveness of both feature sets. We 

take a semi-supervised approach when learning features: for each tissue, we learn a different 

set of filters using only locations within 10 voxels of the tissue of interest. Examples of the 

channels we learn can be seen in Figure 2.

Note that our “adaptive” channels describe fundamentally different properties than our 

“fixed” channels. Our fixed channels describe the local distribution of a volume at a given 

location, orientation, and scale, while our adaptive channels describe the local distribution of 

pyramid context features at a given position, and as such they can describe non-local 

phenomena. An adaptive channel may learn to activate at voxels which are slightly to the 

2in a slight abuse of our formalism in Section 2, instead of producing a feature channel and constructing a pyramid from that channel, 
we instead produce a pyramid from the volume, and then filter and rectify each scale of that pyramid independently. This works 
significantly better due to half-wave rectification being applied to the pyramid rather than the volume.
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left of some mass at a fine scale and distantly to the right of a much larger mass at a coarse 

scale, for example.

With our one “raw” channel, our 26 “fixed” channels, and our 26 “adaptive” channels, we 

can construct a feature vector for a voxel by computing pyramid context features for each 

channel at that voxel’s location and concatenating those pyramid context vectors together 

(See Figure 2). This feature can be augmented by incorporating position information, as we 

will now demonstrate.

3.2. Position Features

Our imagery has been rotated to the “canonical” orientation used by the Drosophila 

community (see Figure 1(b)), and all volumes have been roughly registered to each other, 

which means that the absolute position of a voxel is informative. Our feature vector for a 

voxel’s position is an embedding of the voxel’s (x, y, z) position into a multiscale trilinear 

spline basis. That is, we use trilinear interpolation to embed each voxel’s position into a 3D 

lattice of control points, and we do this at multiple scales. Our resulting feature vector is 

mostly sparse, with values from 0 to 1, where the closer a position is to a control point 

determines how close that control point’s bin is to 1 in the vector. We use a multiscale basis 

(different grids at different resolutions) to improve generalization: 4 lattices at different 

scales, with the coarsest having (5 × 2 × 2) bins, and the finest having (40 × 16 × 16) bins.

When extracting features for training, we construct these sparse position feature vectors 

using trilinear interpolation. Once we have trained a linear classifier (on a concatenation of 

our feature vector from Section 3.1 with these position features) we can evaluate the position 

part of the classifier by reshaping the weights into our multiscale lattice, and collapsing that 

pyramid to be the same size as the input volume. This can be pre-computed, making 

evaluating this part of classification extremely fast: the collapsed pyramid of weights is just 

a per-voxel “bias”. See Figure 4 for a visualization of a pyramid of learned weights for 

position, and of that pyramid collapsed to a volume.

3.3. Context

Given the features in Sections 3.1 and 3.2 we train a linear classifier (we use logistic 

regression) to produce a per-voxel prediction. This prediction is noisy, as we classify each 

voxel in isolation. We therefore construct a “two-layer” model which uses the prediction of 

the “single-layer” model to reason about the relative arrangement of the tissue, thereby 

adding information about context and self-consistency. We do this by making new “raw”, 

“fixed” and “adaptive” features (Section 3.1) from the output of the single-layer model. We 

then learn a two-layer model which uses as its feature channels both the channels used in the 

first layer, and these new features built on the output of the first layer. See Figure 2 for 

examples of second-layer features and for a visualization of this two-layer architecture.

Of course, the output of our single-layer model is significantly more accurate on training-set 

volumes than on test-sets. This means that naively training a two-layer model on the output 

of the single-layer model can overfit drastically. To prevent this, when training single-layer 

models, we use leave-one-out cross validation on the training set to produce predictions for 
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each training-set volume. This cross-validated output looks similar to the output of the 

model on the test-set. We train our two-layer model using these cross-validated predictions 

as input, which improves generalization on the test-set.

3.4. Post-Processing

Though our classification model can reason about context and self-consistency, its per-voxel 

predictions are still often noisy and incomplete at a fine scale. We therefore use a CRF-like 

technique to smooth and “inpaint” our predictions. We would like to smooth our predictions 

while still respecting intensity discontinuities in the raw input volume — that is, we want to 

smooth within tissue boundaries, but not across tissue boundaries. For this, we will use a 

joint-bilateral filter, where the predictions are smoothed in accordance with the intensity of 

the input volume.

We can efficiently apply a joint-bilateral filter using the bilateral grid [10]. We expand the 

output probabilities from our two-layer model to a 4-dimensional “grid”, where each 

probability is embedded (or “splatted”) with linear interpolation into one of three bins: low-

intensity, medium-intensity, and high-intensity (bin centers are [8, 24, 48]). The intensity 

bins are determined by the intensity of the raw volume while the quantity being filtered is 

the probability — hence the “joint” aspect of the bilateral filter. We then blur the 4D grid by 

convolving it with a 5-tap binomial filter in the three “position” dimensions and a 3-tap 

binomial filter in the “intensity” dimension. We then resample (or “slice”) the smoothed 4D 

grid according to the linearly-interpolated volume intensity to produce a smoothed 3D 

volume. This procedure takes only a few seconds per volume. See Figure 5 for a 

visualization.

This joint-bilateral smoothing can be viewed as a single step of mean-field belief-

propagation in a CRF, as in [17]. We experimented with complete belief-propagation, but 

found that only the first iteration contributed significantly to the output. This is probably 

because most tissues are usually so distant from the other tissues that the pairwise potentials 

have little effect.

3.5. Training

For each tissue we train a binary classifier using logistic regression, which we found to work 

as well as a linear SVM while having the benefits of being interpretable as probabilities and 

of introducing a non-linearity, which is important for our “two-layer” models. To train, we 

featurize each volume into a set of channels, and from those channels we extract many 

pyramid context features and corresponding position features, train a classifier, evaluate the 

classifier densely on each volume, and then mine for negatives (where a “negative” is a 

voxel labeled true with a probability less than 0.9, or a voxel labeled false with a probability 

greater than 0.1). We do 8 such bootstrapping iterations, after which most tissues converge. 

For our two-layer architecture, we do cross-validation on the training set, produce cross-

validated predictions, produce features from those, concatenate those second-layer channels 

with our first-layer channels (and position), and then train on both with bootstrapping. We 

then apply our post-processing to the predicted output. We evaluate our results using per-

voxel precision and recall, and report the average precision for each tissue. For our 
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visualizations which require binary output such as Figure 1(c), we use the threshold which 

maximizes the F-measure of precision and recall on the training set.

4. Experiments

We demonstrate our semantic segmentation algorithm on fluorescence volumes of late-state 

Drosophila embryogenesis. We have a dataset of 28 volumes, each with a size of 454 × 177 

× 185, or nearly 15 million voxels. A Drosophila biologist annotated 8 biologically 

meaningful tissues, such as “left salivary gland” or “hindgut wall”, and we split our 

annotated data into 14 training and 14 test volumes. The staining, imaging, and 

preprocessing of this imagery will be described in a later paper.

As mentioned previously, the large size and dimensionality of our data makes most pre-

existing techniques difficult to use. Therefore, constructing good baseline techniques for 

comparison is very challenging. As one baseline we present an “oracle” segmentation 

technique: we use standard watershed segmentation techniques (threshold the volume, 

compute the distance transform, then compute the watershed transform) on the input volume 

to produce an oversegmentation of 10–25 thousand “super-voxels”. At test-time we assign 

each super-voxel a prediction proportional to the fraction of the super-voxel that has been 

labeled in the ground-truth. This oracle technique gives us an upper-bound on the 

performance we should expect from super-voxel based semantic-segmentation techniques. 

This oracle performs poorly because so much detail is lost during the segmentation, 

demonstrating the value of our per-voxel classification technique. We attempted more 

sophisticated segmentation techniques such as those based on normalized-cuts, but these are 

intractable in our domain.

As a second baseline we present an “oracle” exemplar registration technique: for each test-

set annotation we use iterative closest point to find an affine transformation from each 

training-set annotation to that test-set annotation, and then use the best-fitting training-set 

annotation as a per-voxel prediction by linearly interpolating the annotation into the test 

volume and blurring it by a (1, 2, 1) binomial kernel. Because this prediction is produced by 

registering tissue annotations instead of actual tissues, this oracle technique serves as an 

upper bound on the performance we should expect from (affine) registration-based or 

correspondence-based techniques such as [15]. This oracle performs poorly, due to the 

heavy variation in each tissue and the fine-grained detail of cellular boundaries.

As a third baseline comparison, we use the well-known Histogram of Gradients [12] feature, 

generalized to volumetric data (gradients in 3D instead of 2D, 3D bins of size 4 × 4 × 4, 

block-normalization, and 2 × 2 × 2 cell arrangements), which we optionally augment with 

our position features from Section 3.2. Standard sliding-window detection with this 3D 

HOG feature is only tractable because of the severe pooling used in constructing the features 

— instead of 15 million voxels, we need only classify a quarter-million HOG features. But 

this comes with a cost, as these coarse features prevent us from producing per-voxel 

predictions. HOG is also limited in that it cannot incorporate contextual information without 

the feature vectors becoming intractably large. Of course, these limitations are exactly the 

motivation for our work.
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Our other baselines are ablations of our technique, many of which are actually extremely 

similar to preexisting techniques. Pyramid context features on top of the raw input volume 

resemble the original use of Shape Context features [3], except that we use a soft rectangular 

Haar-like pooling instead of an expensive log-polar binning, and we use pyramid filtering to 

densely evaluate our classifier at every voxel instead of using correspondence for a sparse 

set of points. Our pyramid context features on top of our “fixed” feature channels also 

resemble Geometric Blur features [4, 5], except that instead of sampling a blurred signal is a 

log-polar arrangement, we sample a blurred signal is a rectangular Haar-like arrangement, 

and again use pyramid filtering instead of correspondence. That same model is also similar 

to Daisy features [23], but again made tractable using pyramid filtering. See Figure 3 for a 

comparison of these feature types. This comparison of our ablations to past techniques is 

generous, as pyramid context features and pyramid filtering are required to make all of these 

models tractable in our domain. Actually using standard sliding-window classification 

would take many hours per volume, making bootstrapping, evaluation, and experimentation 

nearly impossible.

In Table 1 we present the test set average precision for each model and each tissue. Model 

names are as follows: (1) is our “oracle” segmentation technique, (2) is our “oracle” 

exemplar warping technique, (3) is our HOG baseline, and (4) is (3) where features have 

been augmented with our position features. (20) is our complete model, and (5)–(19) are 

ablations of (20). (5)–(11) are single-layer models, where the model name indicates what 

features have been included: ‘R’ is the “raw” feature channel, ‘F’ is our “fixed” feature 

channels, ‘A’ is our “adaptive” feature channels, and ‘P’ is our position features. In models 

(12)–(14) we set K (the number of levels in our Gaussian pyramids) to small values, to show 

the value of the coarse scales of our pyramid context features (in all other experiments, K = 

6). (15)–(19) are our two-layer models, where we use the previously-described naming 

convention to indicate which features have been used for the second layer — so (RFAP)2 

uses all four feature types at both layers of the architecture. (20) is (19) with the post-

processing filtering of Section 3.4 applied after classification. We also present Figure 1, 

which shows ground-truth and predicted labels for an entire test-set volume, Figure 6, which 

shows visualizations of the output of several models for a tissue, along with the ground-truth 

annotation and the (cropped) input volume, and Figure 7, which shows precision/recall 

curves for a subset of the models on two tissues. See the supplementary material for many 

more such visualizations.

Analyzing our results, several trends become clear. The oracle techniques, despite 

“cheating” by using the test-set labels, performs poorly. The HOG baseline does a very poor 

job because it cannot produce per-voxel predictions, and because it cannot reason well about 

context. Our position-only baseline shows that, even though our volumes are registered to 

each other, position information is not sufficient to solve this problem. Our ablations which 

resemble shape context and geometric blur features underperform our complete model, 

presumably because their input feature channels are impoverished. Both our “fixed” and 

“adaptive” feature channels improve performance, and so seem to contribute useful and 

complementary information. Our ablations in which our pyramid depths are limited perform 
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poorly, as they are deprived of contextual information. Our two-layer model improves 

markedly over our single-layer model, and our post-processing helps greatly.

5. Conclusion

We have presented an algorithm for per-voxel semantic segmentation, demonstrated on 3D 

fluorescence microscopy data of Drosophila embryos. The size and high-dimensionality of 

our data renders most existing techniques intractable or inaccurate, while our technique 

produces very accurate per-voxel segmentations extremely efficiently — hundreds of times 

faster than existing techniques. At the core of our algorithm is our novel pyramid context 

feature, which is not only a powerful descriptive representation, but is designed such that 

exact per-voxel linear classification can be made extremely efficient. We have demonstrated 

our model’s efficiency both empirically, through experimentation, and analytically, through 

complexity analysis. For our semantic segmentation algorithm, we have introduced three 

feature types — a standard feature set that uses oriented edge information, a novel feature 

set produced by applying feature-learning to pyramid context features, and a feature which 

encodes absolute position information. By learning classifiers on top of pyramid context 

features based on these channels we can produce per-voxel segmentations, which can be 

improved with contextual information by “stacking” our models and using the output of one 

layer as input into the next. We have also presented a CRF-like post-processing technique 

for improving our output using joint-bilateral filtering.

Besides advancing computer vision research, our work has the added benefit of tackling a 

crucial and unsolved problem in Drosophila research — that of automatically constructing 

an atlas of embryo morphology. By efficiently and accurately producing semantic 

segmentations of tissues from volumetric data, we enable real, breakthrough biological 

research at a large scale.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
We will address the task of taking a volumetric scan of an object (in our case, a late-stage 

Drosophila embryo, see 1(a) for a visualization of some of the constituent “slices” of the 

volume, where the upper left slice is the top of the embryo and the bottom right slice is the 

bottom) and producing a per-voxel semantic segmentation of that volume. Given training 

annotations of 8 tissues or organs from a biologist, such as in 1(b), we can produce a per-

voxel prediction of each tissue from a new (test-set) volume in a matter of minutes, as 

shown in 1(c). Many more such figures can be found in the supplementary material.
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Figure 2. 
An overview of our pipeline. Our classification architecture consists of two layers. Our first 

layer takes as input 4 feature types computed from the input volume (top row, position 

features are not shown) to produce a per-voxel prediction. This output is fed to a second 

layer, which computes the same types of features from that per-voxel prediction, and uses 

the first-layer features with the new second-layer features (bottom row) to produce a new 

prediction. The output of the two-layer model is then smoothed using a joint-bilateral filter. 

See Section 3.1 for an explanation of the different feature channels shown here.
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Figure 3. 
Given an input signal and a location (3(a)) we can pool local information in a retina-like 

fashion to construct a feature, such as shape context (3(b)) or geometric blur / DAISY (3(c)). 

We present a novel feature type, the “pyramid context” (3(d)) which can be thought of as a 

pyramid/Haar-like generalization of past pooling features. The key insight of this paper is 

that this feature can be re-expressed as efficient local operations on a Gaussian pyramid of a 

signal (3(e)), which allows us to extremely efficiently evaluate a linear classifier on pyramid 

context features at every pixel in the image using simple pyramid operations and 

convolutions with very small kernels.
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Figure 4. 
Because our volumes are in a canonical frame of reference, the absolute position of a voxel 

is informative. In 4(a) we have an embryo and a ground-truth annotation of a tissue, shown 

for reference. We then have the weights that our model learns for position for that tissue 

shown as a multiscale lattice (4(b)) and flattened to a single-scale volume (4(c)). Our 

multiscale representation allows our model to learn broad trends about position in coarse 

scales (such that the tissue is unlikely to occur at the top of the volume) while still learning 

fine-scale trends (like the shape of the tissue at the bottom of the volume). Weights are 

shown as max-projections, where red is positive, white is neutral, and blue is negative.
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Figure 5. 
In 5(a) we have a cropped slice of an input volume, for which we have a ground-truth 

annotation of a tissue in 5(b). Our model produces the prediction in 5(c), which is often 

noisy and incomplete, so we use joint-bilateral smoothing to produce the smoothed 

prediction in 5(d), which propagates label information across the volume while respecting 

cell-boundaries.
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Figure 6. 
Some visualizations of the output of our model, and other models, on a test-set volume. In 

the first column we have the portion of the input volume containing the tissue, and in the 

second we have the ground-truth annotation of that tissue. The other columns are the output 

of various models, the first being an improved HOG baseline, the last being our complete 

model, and the others being notable ablations of our model (some of which resemble 

optimized and improved versions of other techniques). Note that we process the entire 

volume, though we show a cropped view here. Many more similar figures and animations 

can be found in the supplementary material.
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Figure 7. 
Precision/recall curves for different models on our entire test set, for one specific tissue. On 

the left we have the hardest tissue in our dataset (the one for which our model and the 

baselines performs worst) and on the right we have the easiest. See the supplementary 

material for the AP curves for all tissues.
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1: G ← 0

2: for k = [1 : K] do

3:   Gk ← 0

4:   for j = [1 : |{F}|] do

5:
    Gk ← Gk + Pk (F ( j)) * wk

( j)

6:   G ← G + upsample (Gk)

7: return G
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