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Abstract

Interpretability of Deep Learning (DL) is a barrier to
trustworthy AI. Despite great efforts made by the Explain-
able AI (XAI) community, explanations lack robustness—
indistinguishable input perturbations may lead to different
XAI results. Thus, it is vital to assess how robust DL inter-
pretability is, given an XAI method. In this paper, we iden-
tify several challenges that the state-of-the-art is unable to
cope with collectively: i) existing metrics are not compre-
hensive; ii) XAI techniques are highly heterogeneous; iii)
misinterpretations are normally rare events. To tackle these
challenges, we introduce two black-box evaluation meth-
ods, concerning the worst-case interpretation discrepancy
and a probabilistic notion of how robust in general, respec-
tively. Genetic Algorithm (GA) with bespoke fitness function
is used to solve constrained optimisation for efficient worst-
case evaluation. Subset Simulation (SS), dedicated to esti-
mate rare event probabilities, is used for evaluating overall
robustness. Experiments show that the accuracy, sensitiv-
ity, and efficiency of our methods outperform the state-of-
the-arts. Finally, we demonstrate two applications of our
methods: ranking robust XAI methods and selecting train-
ing schemes to improve both classification and interpreta-
tion robustness.

1. Introduction

A key impediment to the wide adoption of Deep Learn-
ing (DL) is its perceived lack of transparency. Explainable
AI (XAI) is a research area that aims at providing the vis-
ibility into how a DL model makes decisions, and thus en-
ables the use of DL in vision-based safety critical applica-
tions, such as autonomous driving [28], and medical image
analysis [39]. Typically, XAI techniques visualise which
input features are significant to the DL model’s prediction

via attribution maps [4, 19]. However, interpretations1 suf-
fer from the lack of robustness. Many works have shown
that a small perturbation can manipulate the interpretation
while keeping model’s prediction unchanged, e.g., [17, 21].
Moreover, there exists the misinterpretation of Adversarial
Examples (AEs) [46], i.e., adversarial inputs are misclassi-
fied2 by the DL model, but interpreted highly similarly to
the benign counterparts. Fig. 1 illustrates examples of the
aforementioned two types of misinterpretations. In this re-
gard, it is vital to assess how robust the coupled DL model
and XAI method are against input perturbations, which mo-
tivates this work.

Figure 1: Two types of misinterpretations after perturbation

To answer the question, the first challenge we recognise
is the lack of diverse evaluation metrics from the state-of-
the-art. Most of the existing works focus on adversarial at-

1Despite the subtle difference between interpretability and explain-
ability, we use both terms interchangeably as an attribute of DL models in
this paper. While, as suggested by [27], we use explanation/interpretation
for individual predictions.

2Without loss of generality, in this paper we assume the DL model is
a classifier if with no further clarification.



tack [18] and defence [14, 38] on explanations, which es-
sentially answer the binary question of whether there ex-
ist any adversarial interpretation in some perturbation dis-
tance. On the other hand, evaluation methods mainly study
worst-case metrics, e.g., the maximum change in the result-
ing explanations when perturbations are made [3] and local
Lipschitz continuity as the sensitivity to perturbations [44].
However, for systematic evaluation, we also need a notion
of how robust in general the model is whenever a misin-
terpretation can be found (in line with the insight gained
from evaluating classification robustness [41]). We intro-
duce two metrics concerning the worst-case interpretation
discrepancy and a probabilistic metric to calculate the pro-
portion of misinterpretations in the local norm-ball around
the original input, that complement each other from differ-
ent perspectives.

Second, XAI techniques are so heterogeneous that no ex-
isting white-box evaluation methods are generic enough to
be applicable to all common ones. That said, black-box
methods, that only access inputs and outputs of the cou-
pled DL model and XAI tool without requiring any inter-
nal information, are promising for all kinds of XAI tech-
niques (including perturbation-based ones that are missing
from current literature). Based on this insight, we design a
Genetic Algorithm (GA) and a statistical Subset Simulation
(SS) approach to estimate the aforementioned two robust-
ness metrics, both of which are of black-box nature.

The third challenge we identified is that misinterpreta-
tions are normally rare events in a local norm-ball. With-
out white-box information like gradients, black-box meth-
ods have to leverage auxiliary information to detect such
rare events efficiently. To this end, we design bespoke fit-
ness functions in the GA (when solving the optimisation)
and retrofit the established SS (dedicated to estimating rare
event probabilities [6]) for efficient evaluation.

To the best of our knowledge, no state-of-the-arts can
collectively cope with the three pinpointed challenges like
ours. To validate the claim, we conduct experiments to
study the accuracy, sensitivity and efficiency of our meth-
ods. Moreover, two practical applications of our methods
are developed: i) We evaluate a wide range of XAI tech-
niques and draw insights that no XAI techniques are supe-
rior in terms of the robustness to both two types of adver-
sarial attack; ii) We discover the strong correlation between
classification robustness and interpretation robustness from
both theoretical analysis (in appendix) and empirical stud-
ies, and identify the best training scheme to improve both.

In summary, the key contributions of this paper include:

• Two diverse metrics, worst-case interpretation discrep-
ancy and probabilistic interpretation robustness, that
complement each other as a versatile approach allow-
ing holistic evaluation of interpretation robustness.

• New methods based on GA and SS to estimate the two
metrics. They are black-box and thus generic to di-
verse XAI tools, which notably enables the first ro-
bustness evaluation of perturbation-based XAI tools.
Despite the rare event nature of misinterpretations, our
GA and SS are efficient to detect them.

• Two practical applications of our methods for ranking
robust XAI tools, and selecting training schemes to im-
prove both classification and interpretation robustness.

2. Related Work
Evaluation of Interpretation Robustness: Existing
evaluation metrics, proposed for interpretation robustness,
only consider the misinterpretation when prediction label
of perturbed inputs are unchanged. [3] estimates the Local
Lipschitz of interpretation, while [44] introduces the max-
sensitivity and average-sensitivity of interpretation. Both
of them use Simple Monte Carlo (SMC) sampling to es-
timate their metrics. [42] formally certify the robustness
of gradient-based explanation by propagating a compact in-
put or parameter set as symbolic intervals through the for-
wards and backwards computations of the neural network
(NN). In [12], it defines the consistency as the probabil-
ity that the inputs with the same interpretation have the
same prediction label. However, their evaluation method
is only applicable to tree ensemble models and tabular
datasets, leaving the probabilistic estimation of misinterpre-
tation for high dimensional image datasets blank. Notably,
toolsets/benchmarks [22, 1] for evaluating XAI techniques
are emerging in the last two years. They are not specifically
built for evaluating interpretation robustness, thus only con-
cern the aforementioned metrics. That said, our metrics and
their efficient estimators can be integrated into and comple-
ment those toolsets/benchmarks.

Adversarial Attack and Defence on Interpretation:
Ghorbani et al. first introduce the notion of adversarial
perturbation to NN interpretation [17]. Afterwards, several
works are dedicated to generating indistinguishable inputs
which have the same prediction label but substantially dif-
ferent interpretations [18, 35]. The theoretical analysis has
shown that the lack of interpretation robustness is related to
geometrical properties of NNs [13]. In [46], a new class of
attack is proposed to fool the NN’s prediction as well as the
coupled XAI method.

In [13], an upper bound on maximum changes of
gradient-based interpretation is derived. The upper bound
is proportional to the smooth parameter of the softplus ac-
tivation function, which can be smoothed to improve the
interpretation robustness. In [14], regularisation on train-
ing, like weight decay, and minimising hessian of NNs
are theoretically proved to be effective for training more



robust NNs against interpretation manipulation. In [49],
prior knowledge, e.g., from V&V evidence, is leveraged in
Bayesian surrogate models for more robust and consistent
XAI results. Specifically designed for perturbation-based
XAI tools, [8] devise defenses against adversarial attacks.

3. Preliminaries
3.1. Feature-Attribution based XAI

While readers are referred to [4] for a review, we list
common feature-attribution based XAI methods [47, 19]
that studied by this work. For gradient-based methods, we
consider the Guided Backpropagation, Gradient ˆ Input,
Integrated Gradients, GradCAM, LRP and DeepLift. For
perturbation-based methods, we study LIME and SHAP.
Descriptions with greater detail of these XAI methods are
presented in Appx. 8.1.

3.2. Local Robustness of Interpretation

Analogous to the adversarial robustness of classification,
interpretation can be fooled by adding perturbations to the
input. The interpretation robustness is highly related to the
robustness of classification, since the attribution map is pro-
duced based on some prediction class. Therefore, we first
define the robustness of classification and then formalise the
robustness of interpretation, using the following notations.
Given an input seed x, we may find a norm ball Bpx, rq

with the central point at x and radius r in Lp norm. We
denote the prediction output of the DL model as the vector
fpxq with size equal to the total number of labels.

Classification robustness requires that DL model’s pre-
diction output should be invariant to the human impercep-
tible noise, which can be expressed through the prediction
loss around an input seed x

Jpfpxq, fpx1qq “ max
i‰y

pfipx
1q ´ fypx1qq

y “ argmaxi fipxq, x1 P Bpx, rq

(1)

where fipx
1q returns the probability of label i after input

x1 being processed by the DL model f . Note, J ě 0 im-
plies that x1 is an AE. We then define the following indicator
function for misclassification within the norm ball Bpx, rq

Ic “

#

´1 if Jpfpxq, fpx1qq ě 0

1 if Jpfpxq, fpx1qq ă 0
(2)

That is, Ic “ ´1 indicates misclassification, otherwise 1.
Previous works study two circumstances when small per-

turbation fools the interpretation gpxq, cf. Fig. 1 for exam-
ples. We use the interpretation discrepancy Dpgpxq, gpx1qq

(defined later) to quantify the difference between the new
interpretation gpx1q after perturbation and the reference
gpxq, where x1 P Bpx, rq. We then introduce two constants

as thresholds, α and β, such that D ă α represents con-
sistent interpretations, while D ą β represents inconsistent
interpretations3. Two misinterpretation regions within the
norm ball Bpx, rq are then defined as

pF “ tD ą β ^ J ă 0u, rF “ tD ă α ^ J ě 0u (3)

pF represents preserved classification with different inter-
pretation and rF represents different classification with pre-
served interpretation, respectively. Note, α and β are hyper-
parameters that define the consistency notion of interpreta-
tions. They may vary case by case in the specific application
context, representing the level of strictness required by the
users on interpretation robustness. For example, if we use
PCC (defined later) to quantify D, i.e. D=1/PCC, there is
a rule of thumb [2] that PCC ă 0.4 (β “ 1{0.4) indicates
inconsistent interpretations while PCC ą 0.6 (α “ 1{0.6)
represents consistent interpretations.

3.3. Interpretation Discrepancy Metrics

In order to quantify the visual discrepancy between the
XAI results (i.e., attribution maps), there are several com-
monly used metrics, including Mean Square Error (MSE),
Pearson Correlation Coefficient (PCC), and Structural Simi-
larity Index Measure (SSIM) [13]. PCC and SSIM have the
absolute values in r0, 1s. The smaller values indicate the
larger discrepancy between two interpretations. MSE cal-
culates the average squared differences, the value of which
more close to 0 means higher similarity. Then, interpreta-
tion discrepancy D can be expressed as

D “
1

PCC
or

1

SSIM
or MSE (4)

4. Worst Case Evaluation
The conventional way to evaluate robustness of classifi-

cation is based on the worst case loss under the perturbation
[45]. This underlines the adversarial attack and motivates
the adversarial training. Similarly, the worst case interpre-
tation discrepancy between the original input and perturbed
input may reflect the interpretation robustness.

There are two types of misinterpretations after perturba-
tion in a local region, cf. Eq. (3). Accordingly, two op-
timisations are formalised for the worst case interpretation
discrepancy:

sol
pF “ max

x1PBpx,rq
Dpgpxq, gpx1qq

s.t. Jpfpxq, fpx1qq ă 0
(5)

sol
rF “ min

x1PBpx,rq
Dpgpxq, gpx1qq

s.t. Jpfpxq, fpx1qq ě 0
(6)

3When α ď D ď β, it represents the case that we cannot clearly
decide if the two interpretations are consistent or not.



That is, sol
pF corresponds to finding the largest interpreta-

tion discrepancy when perturbed input is still correctly clas-
sified. While sol

rF is the minimum interpretation discrep-
ancy between the AE x1 and input seed x.

Previous works adopt white-box methods to solve the
above optimisations for adversarial explanations [46, 17],
in which case the DL model fpxq and XAI method gpxq are
required to be fully accessible to their internal information.
In addition, many XAI methods gpxq are non-differentiable,
and the strong assumptions (like smoothing gradient of
ReLU non-linearity) are made to enable derivative-based
optimisation. In contrast, GA is a derivative-free method
for solving both constrained and unconstrained optimisa-
tions, and has been successfully applied to the evaluation of
classification robustness [10]. That motivates us to develop
a black-box evaluation method for interpretation robustness
based on GA.

The core of GA is the design of fitness functions. At
each iteration, the most fitted individuals are selected as
parents for latter operations. GA can be directly applied
to the unconstrained optimisation when objective function
equals to fitness function. The constrained optimisation is
more challenging and different strategies are proposed to
handle non-linear constraints for GA [26]. We refer readers
to Appx. 8.3 for more details of GA.

For the optimisation of Eq. (5), the constraint can be di-
rectly encoded as the indicator Ic into the fitness function

F “ Ic Dpgpxq, gpx1qq (7)

and Dpgpxq, gpx1qq is always none negative. All feasible in-
dividuals satisfying the constraint Jpfpxq, fpx1qq ă 0 will
have Ic “ 1, and F ą 0. If the constraint is violated, then
Ic “ ´1, and F ă 0. In other words, the individuals vi-
olating the constraint will have smaller fitness values than
the others and are suppressed during the evolution.

For the optimisation of Eq. (6), we note J ą 0 is a rare
event within the local region Bpx, rq, as AEs are normally
rare [41]. To accelerate the search in the feasible input
space, we set two fitness functions F1 and F2. The former
increases the proportion of AEs in the population. On this
basis, when over half amount of the population are AEs,
then F2 will guide the generation of adversarial explana-
tions.

F1 “ Jpfpxq, fpx1qq F2 “ ´Ic{Dpgpxq, gpx1qq (8)

In F2, Ic also penalises the violation of constraints, which
keeps the optimisation conditioned on AEs. GA-based opti-
misation terminates either when the allocated computation
budget (maximum number of iterations) is depleted or the a
plateau is reached such that successive iterations no longer
produce better results.

5. Probabilistic Evaluation
5.1. Probabilistic Metrics

In addition to the worst case evaluation, probabilistic
evaluation based on statistical approaches is of the same
practical interest—a lesson learnt from evaluating classi-
fication robustness [41, 40] and DL reliability [48, 15].
Thus, we study the probability of misinterpretation within
Bpx, rq, regarding the two types of misinterpretations4 of
the input image x under study:

PF pxq “

ż

x1PBpx,rq

1x1PF qpx1q dx1, F “ pF or rF (9)

where x1 is a perturbed sample under the local distribu-
tion qpx1q (precisely the “input model” used by [41], when
studying local probabilistic metric) in Bpx, rq. 1x1PF is
equal to 1 when x1 P F is true, 0 otherwise. Intuitively,
Eq. (9) says, for the given input image x, if we generate
an infinite set of perturbed samples locally (i.e., within a
norm ball Bpx, rq) according to the distribution q, then the
proportion of those samples fall into the misinterpretation
region F is defined as the proposed probabilistic metric.

5.2. Estimation by Subset Simulation

To estimate the two probabilistic metrics defined by
Eq. (9), there are two challenges: i) misinterpretations rep-
resented by rF and pF are arguably rare events (that con-
firmed empirically later in our experiments); ii) inputs of
DL models are usually high dimensional data, like images.
The first challenge requires sampling methods specifically
designed for rare events rather than SMC (that is known to
be inefficient for rare events). The second challenge rules
out some commonly used advanced sampling methods, like
importance sampling, as they may not be applicable to high
dimensional data [5].

The well-established Subset Simulation (SS) can effi-
ciently calculate the small failure probability in high di-
mensional space [6] and has been successfully applied to
assessing classification robustness of DL models [41]. As a
black-box method, it only involves the input and response of
interest for calculation, thus generic to diverse XAI meth-
ods gpxq. The main idea of SS is introducing intermedi-
ate failure events so that the failure probability can be ex-
pressed as the product of larger conditional probabilities.
Let F “ Fm Ă Fm´1 Ă ¨ ¨ ¨ Ă F2 Ă F1 be a sequence
of increasing events so that Fm “

Şm
i“1 Fi. By conditional

probability, we get

PF :“P pFmq“P p

m
č

i“1

Fiq“P pF1q

m
ź

i“2

P pFi|Fi´1q (10)

4Through out the paper, we use the shorthand notation F for either pF

or rF , according to the context.



The conditional probabilities of intermediate events in-
volved in Eq. (10) can be chosen sufficiently large so that
they can be efficiently estimated. For example, P pF1q “ 1,
P pFi|Fi´1q “ 0.1, i “ 2, 3, 4, 5, 6, then PF « 10´5 which
is too small for efficient estimation by SMC sampling. In
this section, we adapt SS for our problem as what follows.

5.2.1 Design of Intermediate Events

pF and rF can be decomposed as the series of intermediate
events through the expression of property functions J and
D. For pF , J ă 0 is not rare for a well-trained DL model,
representing the correctly classified input after perturbation.
Thus, the intermediate events pFi´1 and pFi can be chosen as

pFi´1 “tIcD ą βi´1u, pFi “ tIcD ą βiu

where βi´1 ă βi ď β
(11)

such that pFi Ă pFi´1. Ic (in Eq. 2) encodes the constraint
J ă 0 as the sign of D.

In contrast, J ě 0 in rF represents the occurrence of AEs
that are rare events, which cannot be directly expressed as
the indicator Ic, since the random sampling within Bpx, rq

cannot easily satisfy J ě 0. Thus, for rF , J ě 0 should be
chosen as the critical intermediate event.

rFj “ tJ ě 0u, where 1 ă j ă m (12)

For intermediate events rFi´1 and rFi, when iă j, we set

rFi´1 “ tJ ą γi´1u, rFi “ tJ ą γiu

where γi´1 ă γi ă 0
(13)

such that rFj Ă rFi Ă rFi´1. And for intermediate events
rFk´1 and rFk, when k ´ 1 ą j, we can set

rFk´1 “ t´Ic{D ą 1{αk´1u, rFk “ t´Ic{D ą 1{αku

where 0 ă α ď αk ă αk´1 (14)

such that rFk Ă rFk´1 Ă rFj .

5.2.2 Estimating Conditional Probabilities

Upon formally defined intermediate events, the question
arises on how to set βi, γi and αi to make the condi-
tional probability P pFi|Fi´1q sufficiently large for esti-
mation by a few simulations. Also, simulating new sam-
ples from Fi for estimating next conditional probability
P pFi`1|Fiq is difficult due to the rarity of Fi. There-
fore, the Markov Chain Monte Carlo sampling based on the
Metropolis–Hastings (MH) algorithm is adopted. For sim-
plicity, the intermediate event threshold is generally denoted
as Li “ tβi, γi, αiu.

5.2.3 Choices of Intermediate Event Threshold

Start from estimating P pF1q, F1 is chosen as the common
event such that N samples are drawn from qp¨q by SMC
and all belong to F1. A feasible way is setting the thresh-
old of property function L1 to ´8, and P pF1q “ 1. For
i “ 2, ¨ ¨ ¨ ,m, Li affects the values of condition proba-
bilities and hence the efficiency of SS. It is suggested that
Li is set adaptively to make P pFi|Fi´1q approximately
equals to ρ, and ρ is a hyper-parameter in SS (that takes
a decimal less than 1 and normally ρ “ 0.1 yields good
efficiency, although it can be empirically optimised), i.e.,
P pFi|Fi´1q « ρ. That is, at each iteration i ´ 1 when we
simulate N samples, ρN samples should belong to Fi.

5.2.4 Simulating New Samples from qp¨|Fiq

At iteration i “ 2, ¨ ¨ ¨ ,m ´ 1, we already have ρN sam-
ples belonging to Fi and aim to simulate new samples to
enlarge the set to N , so that the next conditional probabil-
ity P pFi`1|Fiq “ 1

N

řN
k“1 1Fi`1

px1
kq can be calculated.

We can pick up an existing sample x1 subject to the con-
ditional distribution qp¨|Fiq, denoted as x1 „ qp¨|Fiq, and
use the Metropolis Hastings (MH) algorithm to construct a
Markov Chain. By running M steps of MH, the stationary
distribution of the Markov Chain is qp¨|Fiq. Then new data
x2 „ qp¨|Fiq can be sampled from the Markov Chain and
added into the set. More details of the MH algorithm for SS
are presented in Appx. 8.4.

5.2.5 Termination Condition and Returned Estimation

After the aforementioned steps, SS divides the problem
of estimating a rare event probability into several simpler
ones—a sequence of intermediate conditional probabilities
as formulated in Eq. (10). The returned estimation sPF and
coefficient of variation (c.o.v.) sδ (measuring the estimation
error) are

sPF “

m
ź

i“1

1

N

N
ÿ

k“1

1Fi
px1

kq sδ2 «

m
ÿ

i“1

1 ´ sPFi

sPFi
N

p1 ` λiq

(15)
where λi ą 0 represents the efficiency of the estimator us-
ing dependent samples drawn from the Markov Chain. For
simplicity, we can assume λi « 0 when the number of steps
M of MH is large [9]. Since each conditional probability
P pFi|Fi´1q approximately equals to ρ, then by Eq. (10), the
returned estimation sPF « ρm´1. m is the total number of
intermediate event generated adaptively. The adaptive gen-
eration of intermediate events terminates when sPF ă Pmin,
and Pmin is a given termination threshold. More details of
statistical properties of the estimator, like error bound, effi-
ciency are presented in Appx. 8.4.



6. Experiments

6.1. Experiment Setup

We consider three public benchmark datasets5, five XAI
methods, and five training schemes in our experiments. The
norm ball radius, deciding the oracle of robustness, is calcu-
lated with respect to the r separation property [43]. That is,
r “ 0.3 for MNIST, r “ 0.03 for CIFAR10, and r “ 0.05
for CelebA. More details of the DL models under study are
presented in Appx. 8.6. For the probabilistic evaluation us-
ing SS, without loss of generality, we consider the uniform
distribution as qpx1q within each norm ball. We compare
D “ MSE, 1/PCC, and 1/SSIM for measuring interpreta-
tion discrepancy in Appx. 8.7, and find PCC is better to
quantify the interpretation difference in our cases. Based
on sensitivity analysis, we choose hyperparameters PCC
thresholds 1{β “ 0.4, 1{α “ 0.6, MH steps M “ 250,
ρ “ 0.1, lnPmin “ ´100 for probabilistic evaluation, and
population size N “ 1000, number of iteration itr “ 500
for the worst case evaluation by GA. Our tools and experi-
ments are publicly available at https://github.com/
havelhuang/Eval_XAI_Robustness.

6.2. Sensitivity to Hyper-Parameter Settings

We first investigate the sensitivity of objective function
D and constraint J (cf. Eq. (5) and (6)) to GA’s population
size and iteration numbers, as shown in Fig. 2. We observe
from the 1st row that interpretation discrepancy measured
by PCC (the red curve) quickly converge after 300 itera-
tions with the satisfaction of constraint J (the blue curve),
showing the effectiveness of our GA. From the 2nd row, we
notice that the optimisation is not sensitive to population
size, compared with the number of iterations, i.e., popula-
tion size over 500 cannot make significant improvement to
the optimisation. In addition, if the number of iterations is
sufficiently large, the effect of population size on optimal
solution is further diminished. We only present the results
of one seed from CelebA, cf. Appx. 8.8 for more seeds from
other datasets, while the general observation/conclusion re-
mains.

Next, we study the sensitivity of SS accuracy to the num-
ber of MH steps M , varying the PCC threshold that defines
the rarity level of misinterpretation events. In Fig. 3, we
can calculate the difference ∆ lnPF between SS estima-
tions and the approximated ground truth (by SMC estima-
tions using a sufficiently large number of samples6). The 1st
row shows the overlapping of SS and SMC estimations (two
red curves) and the reducing running time (the blue curve)

5Our methods work for all common data types like tabular data, text
and images, while we focus on more challenging high-dimensional image
data in our experiments.

6We use 108 samples (for the specific seed) which can accurately es-
timate a small probability in natural logarithm around ´17„´18.

Figure 2: Sensitivity of objective function D and constraint
J to GA’s population size and iteration numbers. Each col-
umn represents a type of misinterpretation. 1st row: quickly
converged GA objective functions satisfying the constraint,
with fixed population size of 1000 and varying iterations.
2nd row: GA solutions, with fixed iteration numbers and
varying population size. A test seed (representing a norm
ball) from CelebA is used; interpretation discrepancy D
is measured by 1{PCC; “GradientˆInput” XAI method is
studied.

when decreasing the rarity levels of misinterpretations (by
controlling the PCC threshold). From the 2nd row we ob-
serve that, with increased MH steps M , the estimation ac-
curacy of SS is significantly improved. In addition, the rar-
ity of misinterpretation events determines the choice of M .
E.g., if lnP

pF “ ´3.87 with pF “ tPCC ă 0.4 ^ J ă 0u,
then M “ 100 already achieves high precision without ad-
ditional sampling budget. Other parameters, e.g. the num-
ber of samples n and sample quantile ρ that are discussed
in Appx. 8.8, are in general less sensitive than the number
of MH steps M .

In summary, sensitivity analysis provides the basis of set-
ting hyper-parameters in later experiments: 500 iterations
and 1000 population size for GA, 250 MH steps for SS.

6.3. Evaluation Accuracy and Efficiency

We study the accuracy of our GA-based evaluation, com-
paring with state-of-the-art [3, 44]—they define the local
Lipschitz (SENSLIPS) and max-sensitivity (SENSMAX) met-
rics for the maximum interpretation discrepancy, and em-
pirically estimate the metrics using SMC sampling. For fair
comparisons, we first choose MSE as the interpretation dis-
crepancy metric in our fitness functions of GA, and then ap-
ply both GA and SMC to generate two populations of inter-
pretations in which we calculate the three robustness met-

https://github.com/havelhuang/Eval_XAI_Robustness
https://github.com/havelhuang/Eval_XAI_Robustness


Figure 3: Each column represents a type of misinterpreta-
tion. 1st row: the probability of misinterpretation (lnPF )
estimations returned by SS and approximated ground truth
by SMC6, varying the rarity of misinterpretations. Over-
lapping of two red curves shows high accuracy of SS. 2nd
row: sensitivity of SS accuracy ∆ lnPF to MH steps M ,
varying the rarity level of misinterpretation controlled by
PCC threshold. A test seed from MNIST is used; Results
are averaged over 10 runs; “GradientˆInput” XAI method
is considered.

rics respectively and summarise in Table 1. We use 5ˆ105

samples for both GA and SMC.

Table 1: Three worst case robustness metrics estimated by
our GA and SMC, averaged over 100 test seeds. GA outper-
forms SMC (used by state-of-the-arts) w.r.t. all 3 metrics.

Dataset GA SMC
MSE

(sol
pF ) SENSMAX SENSLIPS MSE SENSMAX SENSLIPS

MNIST 1.549 36.067 13.747 0.271 15.226 2.772
CIFAR10 42.436 328.147 314.861 0.589 38.529 40.232
CelebA 3.204 192.203 65.635 0.013 11.298 3.563

As shown in Table 1, our GA-based estimator outper-
forms SMC in all of the three robustness metrics. Although
the metrics of local Lipschitz and max-sensitivity are not
explicitly encoded as optimisation objectives in our GA, GA
is still more effective and efficient to estimate those three
extreme values than SMC. This is non-surprising, since all
three metrics are compatible and essentially representing
the same worst-case semantics. That said, our interpretation
discrepancy metric complements SENSLIPS and SENSMAX

(as the former is based on Lipschitz value while the latter
defined only in L2 norm), can be easily encoded in our GA.

In addition to the accuracy shown in Fig. 3, we com-
pare the sample efficiency between SS and SMC by calcu-

lating the number of required simulations NSS and NSMC for
achieving same estimation errors (measured by c.o.v. δ). As
shown in Table 2, SS requires fewer samples, showing great
advantage over SMC, cf. Appx. 8.4 for theoretical analysis.

Table 2: Sample efficiency of SS and SMC. In all six cases,
SS requires fewer samples (NSS ă NSMC) than SMC for
achieving the same estimation errors δ2. Each result is av-
eraged over 10 seeds.

Dataset F lnPF δ2 NSS NSMC

MNIST
pF -12.25 0.0184 15000 1.13 ˆ 107

rF -24.63 0.0374 27500 1.34 ˆ 1012

CIFAR10
pF -0.79 0.0004 2500 2500
rF -33.54 0.0511 40000 7.22 ˆ 1015

CelebA
pF -31.43 0.0482 35000 9.29 ˆ 1014

rF -70.71 0.1090 80000 4.68 ˆ 1031

6.4. Evaluating XAI Methods

The first application of our methods is to draw insights
on the robustness of common XAI techniques, from both
the worst-case and probabilistic perspectives. Thanks to the
black-box nature of GA and SS, our methods are applicable
to diverse XAI tools, and we consider six popular ones in
this section. In Appx. 8.9, we evaluate other XAI tools and
discuss how the number of perturbed samples and image
segmentation affect evaluation results on LIME and SHAP
(which are missing from current literature).

Figure 4: Worst-case (1st row) and probabilistic (2nd row)
robustness evaluations of five XAI methods based on 100
random seeds from MNIST. Each column represents a type
of misinterpretation— pF left and rF right. For top-left plot,
higher value means more robust; for all other plots, lower
value means more robust.

We randomly sample 100 seeds from MNIST for evalua-
tions, and summarise the statistics as box-and-whisker plots



in Fig. 4. Based on the empirical results of Fig. 4, we may
conclude: i) Perturbation-based XAI method also suffers
from the lack of robustness. ii) for misinterpretation pF—
correct classification (J ă 0) with inconsistent interpreta-
tion (PCC ă 0.4), DeepLift and Integrated Gradients out-
perform others, while Guided Backprop and Gradient̂ Input
are unrobust from both worst-case and probabilistic per-
spective; iii) for misinterpretation rF—wrong classification
(J ě 0) with persevered interpretation (PCC ą 0.6), while
all XAI methods perform similarly w.r.t. both metrics, LRP
shows better robustness than others.

The empirical insights are as expected if we consider the
mechanisms behind those XAI methods. For instance, con-
sidering pF , DeepLift and Integrated Gradients are more ro-
bust, since they use the reference point to avoid the discon-
tinuous gradients (large curvature) that mislead the attribu-
tion maps [34]. On the other hand, DeepLift and Integrated
Gradients become vulnerable to rF . Because misclassifica-
tion and misinterpretation are rare events, most perturbed
inputs inside the norm ball have consistent interpretation
with the seed. Consequently, the integration from the refer-
ence point which averages the attribution map over several
points are prone to produce the consistent interpretations.
See Appx. 8.9 for more discussions and experiments on CI-
FAR10 and CelebA dataset.

6.5. Evaluating Training Schemes

In this application, we study the effect of various train-
ing schemes on the interpretation robustness of DL models.
In Appx. 8.2, we theoretically analyse the relation between
classification robustness and interpretation robustness. The
Prop. 1 shows that input hessian norm and input gradient
norm are related to the change of classification loss and
interpretation discrepancy. Thus, we add input gradient
and input hessian regularisation terms to the training loss,
and also consider the PGD-based adversarial training (that
improves classification robustness through minimising the
maximal prediction loss in norm balls). Table 3 records the
results.

In addition to the knowledge that input hessian can de-
fence adversarial interpretation [14], we notice that it is ac-
tually significant and effective in improving both classifica-
tion and interpretation robustness, than input gradient regu-
larisation, confirming our Prop. 1. Moreover, we discover
that adversarial training is surprisingly effective at improv-
ing interpretation robustness, but at the price of dropping
accuracy, cf. Appx. 8.6. This phenomenon reals the strong
correlation between classification and interpretation robust-
ness. That said, the improvement of classification robust-
ness may lead to the improvement of interpretation robust-
ness.

Table 3: Evaluating classification (c) and interpretation ( pF
and rF ) robustness of DL models, trained with input gradi-
ent norm regularisation (Grad. Reg.), input hessian norm
regularisation (Hess. Reg.), both of them (Grad. + Hess.
Reg.) and adversarial training (Adv. Train.). Results are
averaged over 100 random seeds. Higher sol

pF means more
robust, while for other metrics, the lower is the better.

Dataset Model Worst Case Evaluation Probabilistic Evaluation
solc
(J)

sol
pF

(PCC)
sol

rF
(PCC) lnPc lnP

pF lnP
rF

MNIST

Org. 22.43 0.06 0.93 -24.28 -3.87 -31.47
Grad. Reg 11.37 0.10 0.92 -31.51 -15.69 -44.96
Hess. Reg. 10.59 0.17 0.90 -33.36 -21.27 -43.85

Grad. + Hess. 10.04 0.20 0.90 -36.96 -23.79 -46.19
Adv. Train. -0.16 0.21 0.59 -84.15 -28.67 -89.09

CIFAR10

Org. 42.58 0.02 0.85 -31.55 -18.63 -71.46
Grad. Reg 42.34 0.01 0.85 -27.31 -21.77 -65.75
Hess. Reg. 8.99 0.08 0.81 -76.29 -99.20 -91.89

Grad. + Hess. 8.47 0.06 0.81 -71.65 -98.49 -92.39
Adv. Train. -0.67 0.25 0.80 -92.57 -100 -95.97

CelebA

Org. 51.08 0.08 0.86 -13.77 -21.58 -70.82
Grad. Reg 25.29 0.06 0.88 -45.52 -70.22 -83.26
Hess. Reg. 18.71 0.09 0.86 -74.93 -100 -95.85

Grad. + Hess. 25.41 0.06 0.88 -65.95 -100 -94.13
Adv. Train. -0.45 0.55 0.81 -95.09 -100 -95.58

7. Discussion and Conclusion

In this work, we formalise two types of misinterpreta-
tions caused by adversarial perturbations on the input, and
then introduce both worst-case and probabilistic metrics to
study their interpretation robustness.

We first apply GA to solve the optimisation problem for
estimating the worst-case metric, which outperforms state-
of-the-arts in the category of black-box evaluations. In-
deed, GA is metaheuristic and cannot be guaranteed with
global-optimal solutions, which is common for most (if
not all) black-box optimisation algorithms. To increase the
likelihood of finding optimal solutions, we carefully de-
sign fitness functions and conduct extensive experiments
on selecting hyperparameters to validate the effectiveness
of our GA-based method. Notably, GA solves the chal-
lenges that most XAI methods are non-differentiable (e.g.,
perturbation-based LIME and SHAP) and heterogeneous,
and it can optimise diverse problems formulated as discrete
or continuous (multi-objective) functions, which allows for
greater flexibility in formalising the distance between ex-
planations.

We then formulate a statistical inference problem to esti-
mate the probabilistic metric. The SS method was chosen to
solve the problem, because: (1) it has the capability of es-
timating rare event probabilities; (2) it may efficiently deal
with high dimensional data; (3) it comes with nice statisti-
cal properties—SS is asymptotically unbiased with N goes
to infinity and provides statistical guarantees on estimation
errors (e.g., the upper bound on fractional bias and c.o.v,
cf. Prop. 2 and 3 in appendix).



In summary, we propose two versatile and efficient eval-
uation methods for DL interpretation robustness. We con-
clude versatility in two folds: (1) the proposed metrics are
characterising robustness from both worst-case and proba-
bilistic perceptives; (2) our GA and SS are black-box meth-
ods thus generic to heterogeneous XAI methods. Consid-
ering the rare-event nature of misinterpretations, our GA
and SS show high efficiency in detecting them, thanks to
the bespoke design of fitness functions in GA and encod-
ing auxiliary information as intermediate events in SS. The
conclusion is supported by our extensive experiments and
two applications.
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[47] Yu Zhang, Peter Tiňo, Aleš Leonardis, and Ke Tang. A sur-
vey on neural network interpretability. IEEE Transactions
on Emerging Topics in Computational Intelligence, 2021. 3

[48] Xingyu Zhao, Wei Huang, Alec Banks, Victoria Cox, David
Flynn, Sven Schewe, and Xiaowei Huang. Assessing the Re-
liability of Deep Learning Classifiers Through Robustness
Evaluation and Operational Profiles. In AISafety’21 Work-
shop at IJCAI’21, volume 2916. ceur-ws.org, 2021. 4

[49] Xingyu Zhao, Wei Huang, Xiaowei Huang, Valentin Robu,
and David Flynn. BayLIME: Bayesian local interpretable
model-agnostic explanations. In Proc. of the 37th Confer-
ence on Uncertainty in Artificial Intelligence, volume 161 of
UAI’21, pages 887–896. PMLR, 2021. 3, 16



8. Appendix

8.1. Feature-Attribution based XAI

Guided Backpropagation: It computes the gradient of
output with respect to the input, but only the non-negative
components of gradients are propagated to highlight the im-
portant pixels in the image [36].

Gradient ˆ Input: The map gpxq “ x d
Bfpxq

Bx is more
preferable to gradient alone to leverage the sign and strength
of input to improve the interpretation sharpness [34].

Integrated Gradients: Instead of calculating single
derivative, this approach integrates the gradients from
some baseline to its current input value gpxq “ px ´

x̄q
ş1

α“0
Bfpx̄`αpx´x̄qq

Bx dα, addressing the saturation and
thresholding problems [37].

GradCAM: Gradient-weighted Class Activation Map-
ping (Grad-CAM) generates the visual explanation for con-
volutional neural network, using gradients flowing into the
final convolutional layer to produce a coarse localization
map, highlighting the relevant regions in the image for
prediction[33].

Layer-wise Relevance Propagation (LRP): LRP oper-
ates by propagating the outputs fpxq backwards, subject to
the conservation rule [7]. Given neurons j and k in two con-
secutive layers, propagating relevance score Rk to neurons
j in lower layer can be expressed as Rj “

ř

k
zjk

ř

j zjk
Rk

where weight zjk “ wjkxk is the weighted activation, rep-
resenting the contribution of relevance neuron k makes to
neuron j.

DeepLift: It is an improved version of LRP by consid-
ering changes in the neuron activation from the reference
point when propagating the relevance scores [34]. Rescale
rule is used to assign contribution scores to each neuron.

Perturbation-based: LIME trains an interpretable local
surrogate model, such as liner regression model, by sam-
pling points around the input sample and use the regression
coefficients as interpretation results [31]. SHAP calculates
the attribution based on Shapley Values from cooperative
game theory [25]. It involves taking the permutation of in-
put features and adding them one by one to the baseline.
The output difference after adding input feature corresponds
to its attribution.

8.2. Classification and Interpretation Robustness

Suppose the gradient based interpretation can be written
as gpxq “ ∇ℓpxq, where ℓ can be the cross-entropy loss (or
our defined prediction loss J). We leverage Lipschitz con-
tinuous gradient to hint the relation between classification
robustness and interpretation robustness as what follows.

A differentiable function ℓpxq is called smooth within lo-
cal region Bpx, rq iff it has a Lipschitz continuous gradient,
i.e., if DK ą 0 such that

||∇ℓpx1q ´ ∇ℓpxq|| ď K||x1 ´ x||, @x1 P Bpx, rq. (16)

Proposition 1 Lipschitz continuous gradient implies:

||ℓpx1q ´ ℓpxq|| ď ||∇ℓpxq||r `
K

2
r2 (17)

Prop. 1 says, the change of classification is bounded by in-
put gradient ||∇ℓpxq||, as well as K

2 . K can be chosen as the
Frobenius norm of input hessian ||H||F pxq [14]. Therefore,
the regularisation of input gradient and input hessian can af-
fect classification robustness and interpretation robustness.

Proof. We first show that for K ą 0, ||∇ℓpx1q ´

∇ℓpx2q|| ď K||x1 ´ x2|| implies

ℓpx1q ´ ℓpx2q ď ∇ℓpx2qT px1 ´ x2q `
K

2
||x1 ´ x2||2

Recall from the integral calculus ℓpaq´ℓpbq “
şa

b
∇ℓpθq dθ,

ℓpx1q ´ ℓpx2q “
ż 1

0

∇ℓpx2 ` τpx1 ´ x2qqT px1 ´ x2q dτ “

ż 1

0

p∇ℓpx2 ` τpx1 ´ x2qqT ´ ∇ℓpx2qT ` ∇ℓpx2qT q

px1 ´ x2q dτ

As ∇ℓpx2q is independent of τ , it can be taken out from the
integral

ℓpx1q ´ ℓpx2q “ ∇ℓpx2qT px1 ´ x2q`
ż 1

0

p∇ℓpx2 ` τpx1 ´ x2qqT ´ ∇ℓpx2qT qpx1 ´ x2q dτ

Then we move ∇ℓpx2qT px1 ´ x2q to the left and get the
absolute value

|ℓpx1q ´ ℓpx2q ´ ∇ℓpx2qT px1 ´ x2q| “

|

ż 1

0

p∇ℓpx2 ` τpx1 ´ x2qqT ´ ∇ℓpx2qT qpx1 ´ x2q dτ | ď

ż 1

0

|p∇ℓpx2 ` τpx1 ´ x2qqT ´ ∇ℓpx2qT qpx1 ´ x2q| dτ ďc.s.

ż 1

0

||p∇ℓpx2 ` τpx1 ´ x2qq ´ ∇ℓpx2qq||||px1 ´ x2q|| dτ



c.s. means Cauchy – Schwarz inequality. By applying lips-
chitz continuous gradient, we can get

||p∇ℓpx2 ` τpx1 ´ x2qq ´ ∇ℓpx2qq||

ď K||τpx1 ´ x2q||

ď Kτ ||x1 ´ x2||

Note τ ě 0, and the absolute sign of τ can be removed.
Then, we can get

|ℓpx1q ´ ℓpx2q ´ ∇ℓpx2qT px1 ´ x2q| ď
ż 1

0

Kτ ||x1 ´ x2||2 dτ “
K

2
||x1 ´ x2||2

Next, get the norm of two sides, and apply triangle inequal-
ity, we finally get

||ℓpx1q ´ ℓpxq|| ď ||∇ℓpxqT px1 ´ xq `
K

2
||x1 ´ x||2||

ď ||∇ℓpxq||||x1 ´ x|| `
K

2
||x1 ´ x||2

ď ||∇ℓpxq||r `
K

2
r2

(18)

QED

8.3. Genetic Algorithm based Optimisation

Genetic Algorithm (GA) is a classic evolutionary algo-
rithm for solving the either constrained or unconstrained
optimisation problems. It mimics the biological evolution
by selecting the most fitted individuals in the population,
which will be the parents for the next generation. It consists
of 4 steps: initialisation, selection, crossover, and mutation,
the last three of which are repeated until the convergence of
fitness values.

Initialisation The initialisation of population is crucial to
the quick convergence. Diversity of initial population could
promise approximate global optimal[23]. Normally, we use
the Gaussian distribution with the mean at input seed x, or
a uniform distribution to generate a set of diverse perturbed
inputs within the norm ball Bpx, rq.

Selection A fitness function is defined to select fitted in-
dividuals as parents for the latter operations. We use the
fitness proportionate selection [24].

pi “
Fi

řn
i“1 Fi

(19)

The fitness value is used to associate a probability of se-
lection pi for each individuals to maintaining good diver-
sity of population and avoid premature convergence. The

fitness function is the objective function to be optimised.
For example, previous paper applies GA to the perturbation
optimisation to generate the high quality AEs [11]. In this
paper, the explanation discrepancy is optimised to find the
worst case adversarial explanations.

Figure 5: Illustration of crossover and mutation in GA

Crossover The crossover operator will combine a pair of
parents from last step to generate a pair of children, which
share many of the characteristics from the parents. The half
elements of parents are randomly exchanged.

Mutation Some elements of children are randomly al-
tered to add variance in the evolution. It should be noticed
that the mutated samples should still fall into the norm ball
Bpx, rq. Finally, the children and parents will be the indi-
viduals for the next generation.

Termination The termination condition of GA is either
maximum number of iterations is reached or the highest
ranking of fitness reaches a plateau such that successive it-
erations no longer produce better results. In this paper, we
fix the maximum iteration number for simplicity.

GA can be directly applied to the unconstrained optimi-
sation when objective function equals to fitness function.
The constraint optimisation is more challenging and dif-
ferent strategies are proposed to handle the non-linear con-
straint for GA [26]. One of the popular approaches is based
on the superiority of feasible individuals to make distinction
between feasible and infeasible solutions [30].



8.4. Subset Simulation

Subset Simulation (SS) is widely used in reliability engi-
neering to compute the small failure probability. The main
idea of SS is introducing intermediate failure events so that
the failure probability can be expressed as the product of
larger conditional failure probabilities [6].

Suppose the distribution of perturbed inputs with the
norm ball is qpxq, and the failure event is denoted as F .
let F “ Fm Ă Fm´1 Ă ¨ ¨ ¨ Ă F2 Ă F1 be a sequence of
increasing events so that Fm “

Şm
i“1 Fi. By the definition

of conditional probability, we get

PF “ P pFmq “ P p

m
č

i“1

Fiq

“ P pFm|

m´1
č

i“1

FiqP p

m´1
č

i“1

Fiq

“ P pFm|Fm´1qP p

m´1
č

i“1

Fiq

“ P pFm|Fm´1q ¨ ¨ ¨P pF2|F1qP pF1q

“ P pF1q

m
ź

i“2

P pFi|Fi´1q

(20)

Fm is usually a rare event, which means a large amount
of samples are required for the precise estimation by Sim-
ple Monte Carlo (SMC). SS decomposes the rare event
with a series of intermediate events, which are more fre-
quent. The conditional probabilities of intermediate events
involved in Eq. (10) can be chosen sufficiently large so that
they can be efficiently estimated. For example, P pF1q “ 1,
P pFi|Fi´1q “ 0.1, i “ 2, 3, 4, 5, 6, then PF « 10´5 is too
small for the efficient estimation by SMC.

The keypoint of SS is estimating P pF1q and conditional
probabilities P pFi|Fi´1q. On the one hand, F1 can be cho-
sen as the common event such that by SMC of N perturbed
inputs within the norm ball x1

k „ qpx1q, all samples fall into
F1. On the other hand, computing the conditional probabil-
ity

P pFi`1|Fiq “
1

N

N
ÿ

k“1

1Fi`1px1
kq « ρ (21)

requires the simulation of p1´ρqN additional samples. For
example, if we have N samples belonging to Fi´1 with
i ě 2, and P pFi|Fi´1q “ ρ, which indicate ρN sam-
ples belongs to Fi. To estimate next conditional probability
P pFi`1|Fiq, p1´ρqN additional samples lying in Fi should
be simulated to expand the population size to N . Given the
conditional distribution qpx1|Fiq “ qpx1qIF1

px1q{P pFiq, on
average 1{P pFiq samples are simulated before one such
sample occur. The Markov Chain Monte Carlo based on
Metropolis-Hastings (MH) algorithm can be adopted to im-
prove the efficiency.

At intermediate iteration i, we already obtain ρN sam-
ples lying in Fi, that is x1 P Fi. The target distribution is
qp¨|Fiq. We can use MH algorithm to generate new samples
x2 from the proposal distribution gpx2|x1q. gpx2|x1q can
be normal distribution or uniform distribution centred at x1.
The MH algorithm can be written as below:

8.4.1 Initialisation

Pick up a sample x1 belonging to Fi. Set step t “ 0 and let
xt “ x1.

8.4.2 Iteration

At step t, generate a random candidate sample x2 according
to gpx2|xtq. Calculate the acceptance probability

Apx2, xtq “ mint1,
qpxt|Fiq

qpx2|Fiq

gpxt|x
2q

gpx2|xtq
u (22)

and accept the new sample x2 with probability Apx2, xtq.
Further check if x2 P Fi, otherwise reject x2. In practice,
we generate a uniform random number u P r0, 1s, set xt`1

as

xt`1 “

#

x2 if u ď Apx2, xtq and x2 P Fi

xt Otherwise
(23)

and increment t “ t ` 1.
We can run a large amount of Markov chains simulta-

neously to enlarge the set of i.i.d. samples falling into Fi.
However, as discussed in [20, 32], MH becomes inefficient
for high dimensional problems. The acceptance probabil-
ity Apx2, x1q will rapidly decrease with increasing dimen-
sions. It results in many repeated samples and high corre-
lated Markov chains. It is recommended to adapt the pro-
posal distribution gpx2|x1q after M steps of MH [29]. The
mean acceptance probability should be kept around 0.234
[16].

The whole process of SS can be summarized as follows.
First, we simulate N perturbed samples within the norm
ball Bpx, rq (all belong to F1) and use SMC to estimate
P pF2|F1q. From these N samples, we already obtain ρN
samples distributed from qp¨|F2q. Start from each of these
ρN samples falling in F2, we can create a Markov chain
and run MH M steps to generate new samples distributed
from qp¨|F2q. In initial SS method [6], ρN distinct Markov
chains (with different start points) are created. 1{ρ new
samples are drawn from each chain, and the covariance be-
tween new samples in same Markov chain should be consid-
ered for evaluating the coefficient of variation (c.o.v) of the
final estimation on PF . [9] modify the algorithm by firstly
enlarge set to N samples with replacement from ρN . Then
N Markov Chains are constructed and only one sample is
drawn from each chain.



These new generated samples can be utilised to estimate
P pF3|F2q. Repeating this process until the rare failure of
interest. We get the final estimation of failure event prob-
ability by “assembling” the conditional probabilities with
Eq. (10).

8.4.3 Statistical Property of SS Estimator

We present the analysis on statistical property of PFi
(short-

ened notation for P pF1q and P pFi|Fi´1q) and PF . They
are based on the assumption that Markov chain generated
by MH algorithm is theoretically ergodic. That is, the sta-
tionary distribution is unique and tend to the corresponding
conditional probability distribution. Since we simulate sam-
ples from Markov chain to estimate PFi

(ref. to Eq. (21)),
The coefficient of variation of PFi (c.o.v) is

δi “

d

1 ´ PFi

PFiN
p1 ` λiq (24)

λi ą 0 represents the dependency of samples drawn
from Markov Chain. This is compared to case when we use
SMC to simulate independent samples from the known dis-
tribution (λi “ 0). As N Ñ 8, the Central Limit Theorem
(CLT) tells sPF1

Ñ P pF1q, and sPFi
Ñ P pFi|Fi´1q. We can

get almost surely sPF Ñ P pF1q
śm

i“2 P pFi|Fi´1q “ PF . It
should be noted that sPF is biased for N , but asymptotically
unbiased due to the fact that samples in Fi for computing
sPFi

are utilised to start Markov chain for computing sPFi`1
.

This bias will asymptotically vanish when N goes to infin-
ity.

Proposition 2 sPF is biased for N , the fractional bias is
bounded by:

|E

„

sPF ´ PF

PF

ȷ

| ď
ÿ

iąj

δiδj ` op1{Nq “ Op1{Nq (25)

Proof. We define Zi “ p sPFi ´ PFiq{σi, and get sPFi “

PFi `σiZi. By CLT, it’s clear that ErZis “ 0 and ErZ2
i s “

1.

sPF ´ PF

PF
“

m
ź

i“1

sPFi
{PFi

´ 1

“

m
ź

i“1

p1 ` δiZiq ´ 1

“

m
ź

i“1

δiZi `

m
ÿ

i“1

δiZi `
ÿ

iąj

δiδjZiZj`

ÿ

iąjąk

δiδjδkZiZjZk ` ...

Take expectation and use ErZis “ 0, we can further get

E

„

sPF ´ PF

PF

ȷ

“

˜

m
ź

i“1

δi

¸

E

«

m
ź

i“1

Zi

ff

`
ÿ

iąj

δiδjErZiZjs

`
ÿ

iąjąk

δiδjδkErZiZjZks ` ...

Since tZiu are correlated, ErZiZjs, ErZiZjZks,.... are not
zero, and sPFi

is biased for every N . δi is Op1{
?
Nq ac-

cording to the definition, which makes
ř

iąj δiδjErZiZjs

have Op1{Nq and remaining items with higher product of
δi have op1{Nq. Take absolute value of both sides and
use Cauchy-Schwartz inequality to obtain |ErZiZjs| ď
b

ErZ2
i sErZ2

j s “ 1. Finally, we can get the proof.

Proposition 3 sPF is a consistent estimator and its c.o.v. δ
is bounded by:

δ2 “ E

„

sPF ´ PF

PF

ȷ2

ď
ÿ

i,j“1

δiδj ` op1{Nq “ Op1{Nq

(26)

Proof.

E

„

sPF ´ PF

PF

ȷ2

“ E

«

m
ź

i“1

δiZi `

m
ÿ

i“1

δiZi `
ÿ

iąj

δiδjZiZj ` ...

ff2

“

m
ÿ

i,j“1

δiδjErZiZjs ` op1{Nq

ď

m
ÿ

i,j“1

δiδj ` op1{Nq “ Op1{Nq

As δi “ Op1{
?
Nq and ErZiZjs ď 1. Note that the bias

is accounted for when c.o.v. δ is defined as the deviation
about PF , instead of Er sPF s. The upper bound corresponds
to the case that conditional probability tPFiu are all corre-
lated. Although tPFiu are generally correlated, δ can be
well approximated by

řm
i“1 δ

2
i . For simplicity, we can also

make the assumption that enough steps of MH algorithm
are taken to eliminate the dependency of simulated samples
from MCMC (λi “ 0) [9]. Then we use sample mean sPFi

to approximate PFi , and finally get

sδ2 «

m
ÿ

i“1

δ2i “

m
ÿ

i“1

1 ´ sPFi

sPFiN
p1 ` λiq «

m
ÿ

i“1

1 ´ sPFi

sPFiN
(27)

To get an idea of how many samples are required by SS to
achieve the estimation accuracy PF , we assume the c.o.v
δ, λi “ λ and P pFi|Fi´1q “ ρ are fixed, then m “



logPF {logρ ` 1, and δ2 “ pm ´ 1q
1´ρ
ρN p1 ` λq, We can

get the number of simulated samples in SS is

NSS « mN “ p
|logPF |2

|logρ|2
`

|logPF |

|logρ|
q

p1 ´ ρqp1 ` λq

Nδ2

Thus, for a fixed δ and ρ, NSS9p|logPF |2`|logρ||logPF |q.
Compared to the SMC, the required samples are
NSMC91{PF . This indicates that SS is substantially ef-
ficient to estimate small failure probability.

8.5. Complexity Analysis of Genetic Algorithm and
Subset Simulation Applied on XAI Methods

Although the proposed evaluation methods can be ap-
plied to all kinds of feature attribution based XAI tech-
niques, the time complexity will be extremely high for per-
turbation based XAI methods, such as LIME and SHAP,
which take random perturbation of input features to yield
explanations.

The complexity of GA is Opt ¨ N ¨ pcpfitnessq `

cpcrossoverq ` cpmutationqqq, where t and N are evolu-
tion iterations and population size, respectively. When we
choose different XAI methods, the evaluation time of fitness
values cpfitnessq will change correspondingly.

The complexity of SS is related to the number of sub-
events m, the number of MH steps M and number of simu-
lated samples N . For estimating conditional probability of
each sub-event, M MH steps are taken, and running each
MH step requires the calculation of property function of
N samples. Thus, the complexity of SS is approximately
Opm ¨ M ¨ N ¨ cppropertyqq. When we choose differ-
ent XAI methods, the evaluation time of property function
cppropertyq will change correspondingly.

Table 4: Time counts of N ¨ cpcal_attr_disq in seconds
across different dataset (N “ 1000). Results are averaged
over 10 runs.

Dataset
Gradient
x Input

Integrated
Gradients GradCAM DeepLift LIME SHAP

MNIST 0.0202 0.0512 0.0342 0.0382 99.21 25.80
CIFAR-10 0.0909 0.3329 0.1222 0.1307 293.72 255.95

CelebA 0.0620 0.2759 0.0887 0.1029 739.59 692.75

From the definition of fitness function in GA and prop-
erty function in SS. both cpfitnessq and cppropertyq can
be approximated by the computation of interpretation dis-
crepancy cpcal_attr_disq. In practice, we can compute in-
terpretation discrepancy in a batch, e.g. N samples can run
simultaneously to generate the explanations. Therefore, we
count the running time of N ¨ cpcal_attr_disq across dif-
ferent datasets and different XAI methods in Nvidia A100.
Results are presented in Table 4. LIME and SHAP take
much more time than gradient-based XAI methods for the
batch computation of interpretation discrepancy. This will

be amplified by iteration number t in GA or number of sub-
events times number of MH steps m ¨M in SS for one time
evaluation of interpretation robustness.

8.6. Details of DL models

The information of DL models under evaluation are pre-
sented in Table 5. All experiments were run on a machine
of Ubuntu 18.04.5 LTS x86_64 with Nvidia A100 GPU and
40G RAM. The source code, DL models, datasets and all
experiment results are available in Supplementary Material,
and will be publicly accessible at GitHub after the double-
blind review process.

8.7. Experiment on Interpretation Discrepancy
Measures

We study the quality of three widely used metrics, i.e.
Mean Square Error (MSE), Pearson Correlation Coefficient
(PCC), and Structural Similarity Index Measure (SSIM)
[13] to quantify the visual discrepancy between two attribu-
tion maps. The proposed evaluation methods can produce
the adversarial interpretation with the guidance of different
metrics. As shown in Fig. 6, the first row displays three
seed inputs and corresponding attribution maps. The fol-
lowing groups separated by lines show the adversarial inter-
pretation of perturbed input measured by different metrics.
The value of PCC appears to be relatively more accurate
in terms of reflecting the visual difference between original
interpretation of seeds input and adversarial interpretations.
Smaller PCC represents larger visual difference between
two attribution maps. In addition, the value range of PCC
is 0„1, with 0„0.3 indicating weak association, 0.5„1.0
indicating strong association. Therefore, it provides a uni-
form measurement across different seeds input and different
dataset. In contrast, MSE can also precisely measure the vi-
sual difference but vary greatly with respect to seed inputs
and image size. SSIM exhibits the worst performance in
measuring difference between attribution maps.

8.8. Experiment on Parameter Sensitivity

Additional experiments on hyper-parameter settings in
GA and SS are presented in Fig. 7 and Fig. 8. The ob-
jective function interpretation discrepancy D, measured by
PCC, is optimised to converge with the increasing number
of iterations while the prediction loss J as the constraint is
gradually satisfied. The number of iterations in GA is more
important than population size.

For hyper-parameters in SS, apart from the sensitivity of
MH steps, we also discuss the impact of population size
n and quantile ρ for conditional probability. As expected,
increasing population size will improve the estimation pre-
cision, using SMC results with 108 samples as the ground
truth. However, there is no exact answer for which ρ is
better. In most cases, we find that ρ “ 0.5 can reduce



Table 5: Details of the datasets and DL models under evaluation.

Dataset Image Size r DL Model Org. Grad. Reg. Hess. Reg. Adv. Train.
Train Test Train Test Train Test Train Test

MNIST 1 ˆ 32 ˆ 32 0.1 LeNet5 1.000 0.991 0.993 0.989 0.993 0.989 0.994 0.989
CIFAR-10 3 ˆ 32 ˆ 32 0.03 ResNet20 0.927 0.878 0.910 0.876 0.786 0.779 0.715 0.703

CelebA 3 ˆ 64 ˆ 64 0.05 MobileNetV1 0.934 0.917 0.918 0.912 0.908 0.904 0.769 0.789

the estimation error, but will take more time for one esti-
mation. Larger ρ represents more sub events are decom-
posed and additional estimation of conditional probability
will obviously cost more time. Fortunately, we find SS es-
timation accuracy is more sensitive to the number of MH
steps M and population size n, compared with ρ. Therefore,
setting ρ “ 0.1 but increasing MH steps and population
size will get sufficiently accurate results. Finally, the rarity
of failure events can determine the setting of these hyper-
parameters. The estimating accuracy of more rare events,
e.g. PCC ă 0.2, is more sensitive to the theses parameters.

8.9. Experiments on Evaluating XAI methods

We evaluate the robustness of more XAI methods on
CIFAR10 and CelebA dataset, including “Deconvolution”,
“Guided Backpropagation”, “GradientˆInput”, “Integrated
Gradients”, “GradCAM”, and “DeepLift”. Results are pre-
sented in Fig. 9. In terms of misinterpretation with pre-
served classification, Integrated Gradients is the most ro-
bust XAI method due to the integral of gradient of model’s
output with respect to the input. The integral averages the
gradient-based attribution maps over several perturbed im-
ages instead of single point explanation. DeepLift has the
similar smoothing mechanism by comparing the neuron ac-
tivation with a reference point. Therefore, single point ex-
planation like Deconvolution and GradCAM are vulnerable
to this type of misinterpretation when DL model’s loss sur-
face is highly curved, leading to the great change of gra-
dients. GradientˆInput is slightly better by leveraging the
input sign and strength.

These XAI methods in general show similar robustness
against misinterpretation conditioned on misclassification,
although we find the single point explanation is a litter bet-
ter than explanation averaged over several points under this
circumstance. We guess the rarity of misclassification and
misinterpretation make it difficult to find the perturbed in-
put which have different attribution map with input seeds.
Therefore, the averaged interpretation of perturbed input
tend to be consistent with original interpretation.

We also consider the robustness of interpretation for
LIME and SHAP, the most popular perturbation-based XAI
methods. In contrast to the gradient-based XAI meth-
ods, the robustness problem of which is thoroughly stud-
ied, perturbation-based XAI methods are difficult to be at-
tacked by adversarial noise due to the model-agnostic set-
tings. As far as we have known, the only adversarial at-

tack on LIME/SHAP [35] requires to scaffold the biased
DL model. That’s conceptually different from the inter-
pretation robustness mentioned in this paper, for which the
internal structure of DL model should not be maliciously
modified. Thanks to the black-box nature of our evaluation
approaches, we can assess the robustness of LIME/SHAP.
As is known, image feature segmentation is an important
procedure in LIME/SHAP. LIME/SHAP will produce in-
consistent interpretation at each run when the number of
samples is smaller than the number of image segments [49].
Therefore, we record the evaluation results when using dif-
ferent number of samples. For simplicity, we use quickshift
to segment the images into around 40 pieces of super-pixels,
which is the default settings of LIME/SHAP tools.

Table 6: Robustness evaluation of perturbation-based XAI
methods.

Dataset XAI Method
+ Num_Samples

Worst Case Evaluation Probabilistic Evaluation
sol

pF
(PCC)

sol
rF

(PCC) lnP
pF lnP

rF

MNIST

LIME+50 0.0002 0.9886 -0.46 -12.96
LIME+200 6.88e-05 0.9350 -0.37 -14.59
LIME+500 8.59e-06 0.8360 -0.31 -16.98
SHAP+50 4.11e-05 0.9648 -0.36 -14.78

SHAP+200 0.0011 0.9708 -0.39 -14.44
SHAP+500 0.0005 0.9851 -0.34 -14.41

CIFAR-10

LIME+50 0.0002 0.9940 -3.58 -28.96
LIME+200 0.0001 0.9986 -3.78 -30.28
LIME+500 0.0001 0.9965 -4.29 -40.06
SHAP+50 0.0014 0.9973 -3.75 -48.56

SHAP+200 0.0016 0.9950 -3.94 -47.87
SHAP+500 0.0001 0.9982 -3.84 -46.24

CelebA

LIME+50 0.0004 0.9571 -1.17 -39.63
LIME+200 1.23e-05 0.9824 -4.06 -41.41
LIME+500 0.0001 0.9739 -5.53 -48.55
SHAP+50 0.0008 0.9568 -4.24 -49.21

SHAP+200 0.0006 0.9520 -4.97 -50.69
SHAP+500 0.0002 0.9543 -4.41 -58.18

The initial results in Table 6 give us the hints that
perturbation-based XAI methods also suffer from the lack
of interpretation robustness, especially when classification
is preserved but interpretation is different. In addition, in-
creasing the number of perturbed samples is not signifi-
cant to improving interpretation robustness. In other words,
even if we use enough number of perturbed samples for
LIME/SHAP to produce precise interpretation results, they
are still easily fooled by adversarial noise. In the second
experiment, we further explore the influence of image seg-
mentation on interpretation robustness. By making the as-
sumption that image segmentation is fixed or not fixed after
adding adversarial noise, we can check whether adversar-



Figure 6: Comparison between PCC, SSIM and MSE as metrics of interpretation discrepancy between original interpretation
and adversarial interpretation, generated by GA and SS. Smaller PCC, smaller SSIM, and larger MSE indicate greater differ-
ence. In this set of experiments, PCC is relatively the best to quantify the visual difference between attribution maps.



ial noise change the image segmentation and indirectly af-
fect the interpretation robustness of perturbation-based XAI
methods. Result in Table 7 shows that current image seg-
mentation used by LIME/SHAP is sensitive to the pixel-
level adversarial noise and will produce different feature
masks, which may affect the interpretation robustness. Nev-
ertheless, fixing image segmentation is not effective to de-
fend second type of misinterpretation-wrong classification
with persevered interpretation.

Table 7: Sensitivity of Image Segmentation to adver-
sarial noise when evaluating interpretation robustness for
LIME+200.

Dataset Image
Segmentation

Worst Case Evaluation Probabilistic Evaluation
sol

pF
(PCC)

sol
rF

(PCC) lnP
pF lnP

rF

MNIST Not Fixed 6.88e-05 0.9350 -0.37 -14.59
Fixed 0.3632 0.8892 -34.22 -17.38

CIFAR-10 Not Fixed 0.0001 0.9986 -3.78 -30.28
Fixed 0.0004 1.0000 -100 -41.33

CelebA Not Fixed 1.23e-05 0.9824 -4.06 -41.41
Fixed 0.3547 0.8289 -100 -38.72

The above observations align with the insight that inter-
pretation robustness is attributed to the geometrical proper-
ties of DL model (i.e. large curvature of loss function), but
not the XAI methods. Therefore, the most effective way to
address the problem is to train a DL model, which is more
robust to be interpreted.

Table 8: Robustness evaluation of XAI methods on different
neural network architecture for CIFAR-10 dataset.

Model
Architecture

Eval
Metrics

Gradient
x Input

Integrated
Gradients GradCAM DeepLift

ResNet20

sol
pF 0.0166 0.0375 0.0044 0.0212

sol
rF 0.8562 0.8308 0.8079 0.8551

lnP
pF -20.32 -45.05 -35.93 -21.22

lnP
rF -80.73 -87.64 -68.27 -81.81

MobileNetV2

sol
pF 0.0552 0.1167 0.0523 0.0712

sol
rF 0.7689 0.7885 0.7085 0.7707

lnP
pF -12.75 -34.99 -16.01 -8.70

lnP
rF -70.32 -62.19 -82.17 -68.38

VGG16

sol
pF 0.0767 0.1227 0.1133 0.0206

sol
rF 0.7813 0.8240 0.8637 0.8358

lnP
pF -14.42 -53.48 -47.52 -44.25

lnP
rF -59.74 -54.155 -49.90 -66.02

DLA

sol
pF 0.0737 0.0953 0.0078 0.0930

sol
rF 0.7919 0.8111 0.2113 0.7983

lnP
pF -8.48 -28.69 -4.31 -9.77

lnP
rF -39.57 -37.74 -77.57 -36.40

Apart from evaluation on different datasets, we do ex-
periments on different neural network architectures for CI-
FAR10 dataset. Results in Table 8 shows that Integrated
Gradients maintain the most robust XAI method to mis-
interpretation with preserved classification, invariant to the
change of neural network architecture. However, the robust-
ness to misinterpretation conditioned on misclassification

varies according to the internal structure of neural network.
GradCAM seems to be robust in most cases.



Figure 7: GA is applied to test seeds (norm balls) from MNIST and CIFAR10 dataset to find worst case interpretation
discrepancy, measure by PCC. First row: fixed population size 1000, and varied iterations; Second row: fixed iterations, and
varied population size. “GradientˆInput” interpretation method is considered.



Figure 8: SS for estimating the probability of misinterpretation (lnPF ) within a norm ball from MNIST, CIFAR10 dataset
compared with SMC using 108 samples ( 22 minutes for each estimate for MNIST; 154 minutes for each estimate for
CIFAR10). Results are averaged on 10 runs. “GradientˆInput” interpretation method is considered.



Figure 9: Robustness evaluation of different interpretation methods based on 100 randomly selected samples from CIFAR10
and CelebA test set. From top to bottom, first row (worst case evaluation) and second row (probabilistic evaluation). From
left to right, first column (misinterpretation pF ) and second column (misinterpretation rF )


