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Abstract
Video Temporal Grounding (VTG), which aims to ground

target clips from videos (such as consecutive intervals or
disjoint shots) according to custom language queries (e.g.,
sentences or words), is key for video browsing on so-
cial media. Most methods in this direction develop task-
specific models that are trained with type-specific labels,
such as moment retrieval (time interval) and highlight de-
tection (worthiness curve), which limits their abilities to
generalize to various VTG tasks and labels. In this pa-
per, we propose to Unify the diverse VTG labels and tasks,
dubbed UniVTG, along three directions: Firstly, we revisit
a wide range of VTG labels and tasks and define a uni-
fied formulation. Based on this, we develop data annota-
tion schemes to create scalable pseudo supervision. Sec-
ondly, we develop an effective and flexible grounding model
capable of addressing each task and making full use of
each label. Lastly, thanks to the unified framework, we
are able to unlock temporal grounding pretraining from
large-scale diverse labels and develop stronger grounding
abilities e.g., zero-shot grounding. Extensive experiments
on three tasks (moment retrieval, highlight detection and
video summarization) across seven datasets (QVHighlights,
Charades-STA, TACoS, Ego4D, YouTube Highlights, TV-
Sum, and QFVS) demonstrate the effectiveness and flexi-
bility of our proposed framework. The codes are available
at https://github.com/showlab/UniVTG.

1. Introduction
With the increasing interest in sharing daily lives, video

has emerged as the most informative yet diverse visual form
on social media. These videos are collected in a variety
of settings, including untrimmed instructional videos [29],
and well-edited vlogs [19]. With massive scales and di-
verse video forms, automatically identifying relevant mo-
ments based on user queries has become a critical capability
in the industry for efficient video browsing.

This significant demand has given rise to a number of
video understanding tasks, including moment retrieval [67,
64, 31], highlight detection [53, 16, 57], and video sum-
marization [14, 46, 43]. As depicted in Fig. 1, mo-
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Figure 1: Given a video and a specific user query, UniVTG serves
as a general video browsing helper that assists users by returning
different scale target clips to support various VTG tasks.

ment retrieval tends to localize consecutive temporal win-
dows (interval-level) by giving natural sentences; highlight
detection aims to pick out the key segment with highest
worthiness (curve-level) that best reflects the video gist;
video summarization collects a set of disjoint shots (point-
level) to summarize the video, with general or user-specific
queries. Despite task-specific datasets [10, 5, 47, 46] and
models [67, 64, 57] have been developed, these tasks are
typically studied separately. In general, these tasks share a
common objective of grounding various scale clips based on
customized user queries, which we refer to as Video Tem-
poral Grounding (VTG).

Though these tasks are closely related, their relationship
has not been explicitly studied until recently. [21] intro-
duces the first unified benchmark QVHighlights for mo-
ment retrieval and highlight detection, and presents the first
model Moment-DETR for jointly learning. On this basis,
UMT [27] expands audio inputs, and QD-DETR [30] devel-
ops negative-pairs and saliency tokens. Nevertheless, these
studies solely focus on designing models that intersect two
subtasks and learn grounding capabilities rely on specific
labels. This means that they lack the ability to general-
ize the VTG across diverse temporal labels, such as unique
point-level narrations in Ego4D [13]. Furthermore, we have
witnessed promising progress in Vision-Language Pretrain-
ing (VLP). One notable work is GLIP [24, 65], which de-
velops a unified model via joint utilizing large-scale diverse
image annotations such as image captions and bounding
boxes for spatial grounding. However, we do not observe
similar progress in video-language pretraining. Most works
in this area are designed for video-level tasks such as video-
text retrieval [55, 48] rather than temporal grounding. This
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is largely due to the manual cost of fine-grained tempo-
ral annotations is expensive, making it challenging to ob-
tain open-source, scalable yet diverse annotations to support
grounding pretraining along the temporal axis in videos.

Therefore, we see a clear motivation to pursue a Uni-
fied VTG framework and propose our UniVTG, which aims
to unify diversity in VTG along three directions: (i) From
the label and task aspect, we first define a formulation for
VTG where each video is decomposed as a clip sequence
that each clip is assigned three basic query-conditional el-
ements. Such a formulation enables us to unify various
VTG labels and tasks under the same framework. More-
over, to address the limitation of temporal labels, we pro-
pose a data annotation scheme based on CLIP [37] to pro-
duce scalable fine-grained pseudo labels. (ii) From the
model aspect, we develop a flexible yet effective grounding
model that inherits the principles of our formulation. Our
model devises single-stream and dual-stream pathways for
modality fusion and modality alignment respectively, and
is equipped with three heads to decode three key elements.
This favorable design is capable of addressing each task and
utilizing each label. (iii) Lastly, thanks to the unified frame-
work and the availability of pseudo labels, we can perform
large-scale temporal grounding pretraining across var-
ious labels to enhance our grounding abilities. This em-
powers us to address various VTG downstream tasks across
multiple domains, including zero-shot inference.

To validate the effectiveness of our proposed frame-
work, we conduct experiments not only on joint mo-
ment retrieval and highlight detection benchmark (QVHigh-
lights [21]), but also on three individual tasks for moment
retrieval (Ego4D [13], Charades-STA [10], TACoS [39]),
highlight detection (YouTube Highlights [47], TVSum [46])
and video summarization (QFVS [43]). Our UniVTG, one
unified model with 4.2M samples for temporal grounding
pretraining, has achieved remarkable results, outperform-
ing state-of-the-art methods that are specifically tailored for
each task. Overall, our contributions are four folds:

• To the best of our knowledge, our UniVTG is the first
video temporal grounding pretraining that across var-
ied domains and tasks, including moment retrieval,
highlight detection and video summarization.

• We introduce a unified VTG framework that can fully
leverage rich supervision from open-source, scalable
yet diverse temporal annotations, such as point-level,
interval-level, and curve-level labels.

• To address the limitations of pretraining corpus, we de-
velop an efficient annotation method that uses CLIP as
a teacher to produce scalable pseudo temporal labels.

• We demonstrate the effectiveness and flexibility of the
proposed framework across four settings and seven
datasets. Detailed ablation studies validate the supe-
riority of the proposed components.

(b) Interval-wise (c) Curve-wise

(d) UniVTG
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Figure 2: Diverse VTG labels can be divided into three types, each
mainly associated with specific benchmarks: (a) point-level labels
for video summarization [43] and timestamp narrations [13]; (b)
interval-level labels for moment retrieval [13, 10, 21]; (c) curve-
level labels for highlight detection [46, 21]. (d) UniVTG uni-
fies diverse labels and tasks within one framework, enabling large-
scale pretraining with diverse labels (dotted gray line) that can be
transferred to various downstream tasks (solid green line).

2. Related Work
2.1. Video Temporal Grounding

We review three VTG tasks: moment retrieval, highlight
detection, and video summarization, and compare them as
different variations of a common problem.
Moment Retrieval aims to localize target moments i.e.,
one [10] or many [21] continuous intervals within a video
by a language query, as shown in Fig. 2 (b). Previous meth-
ods fall into two categories: proposal-based and proposal-
free. The proposal-based methods [2, 10, 67] employ a
two-stage process of scanning the entire video to generate
candidate proposals, which are then ranked based on their
matching to the text query. In contrast, the proposal-free
methods [7, 62, 11, 64, 31] learn to regress the start and end
boundaries directly without requiring proposal candidates.
Our UniVTG borrows from proposal-free approaches but
extends it by incorporating diverse temporal labels and tasks
with a concise design.
Highlight Detection aims to assign a worthiness score to
each video segment e.g., Fig. 2 (c), and then return the top
highest scoring segment as the highlight. Previous high-
light detection datasets [41, 47, 46] tend to be domain-
specific and query-agnostic, in which many efforts [15, 53,
16, 57, 3] treat this task as a visual or visual-audio scoring
problem. Nevertheless, video highlights typically have a
theme, which is often reflected in the video titles [46] or top-
ics [47] e.g., “surfing”. Recently, [21] proposes a joint mo-
ment retrieval and highlight detection benchmark QVHigh-
lights that enables users to produce various highlights for
one video conditional on different text queries.
Video Summarization aims to summarize the whole video
by a set of shots to provide a quick overview e.g., Fig.2 (a),
which contains two forms: Generic video summariza-
tion [14, 46, 28, 17] that captures the important scene using
visual clues merely, while Query-focused video summariza-
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Figure 3: Illustration of UniVTG pipeline. (i) Given any kind of labels, such as interval label, we first convert it into our (a) unified
formulation (§ 3.1) by deriving other two labels (point and curve labels). (ii) Once we have collect a large-scale diverse labels (§ 3.2), we
leverage them to pretrain a unified grounding model (§ 4). (iii) Next, the unified model is transferred to various VTG downsteam tasks
e.g., highlight detection.

tion [43, 33, 50] that allows users to customize the summary
by specifying text keywords (e.g., tree and cars). The latter
is closer to practical usage hence we focus on it. Recently,
IntentVizor [50] proposes an interactive approach allowing
users to adjust their intents to obtain a superior summary.

In general, each of the three tasks represents a specific
form of VTG that grounds different scales of clips from
videos (e.g., a consecutive clip set, a single clip or a dis-
joint clip set) by offering customized text queries (e.g., sen-
tences, titles or keywords). However, previous methods ad-
dress some subtasks solely. Based on this insight, our goal
is to develop a unified framework to handle all of them.

2.2. Vision-Language Pretraining
The emergence of large-scale vision-language datasets,

such as [44, 42, 29, 4], has paved the way for the develop-
ment of VLP [37, 23, 20, 35, 22] to enhance video-text rep-
resentation for various vision-language tasks [61, 55, 54].
The representative CLIP [37] has shown that image-level vi-
sual representations can be effectively learned using large-
scale noisy image-text pairs. Furthermore, GLIP [24, 65]
makes an effort along the spatial axis, which leverages var-
ious image annotations, such as image labels, captions, and
bounding boxes, to develop strong region-level understand-
ing capacity for spatial grounding tasks. However, due to
the expensive manual cost of fine-grained temporal-level
annotations i.e., temporal bounding box, this grounding
pretraining has not been extended to the temporal axis in
videos, limiting its progress to match the spatial counter-
parts. To address this limitation, we explore alternative ap-
proaches that leverage accessible timestamp narrations [13]
and derive pseudo supervision as the pretraining corpus.

On the other hand, there are several efforts have been
made to perform temporal-friendly video pretraining [1, 56,
6, 63] to pursue a better video representation for grounding
tasks. But the resulting pretraining model still requires an
additional grounding model such as 2D-TAN [67] to per-
form video grounding. In contrast, powered by our unified
framework and scalable pseudo annotations, we can directly

conduct VLP with grounding as a pretraining task. This
way eliminates the need for additional grounding models
and enables zero-shot grounding capacity.

3. Towards Unified VTG: Tasks and Labels
The UniVTG pipeline is displayed in Fig. 3. In this sec-

tion, we start by introducing the unified formulation.
3.1. Unified Formulation

Given a video V and a language query Q, we first divide
V into a sequence of Lv fixed-length clips {v1, · · · , vLv

},
where each clip vi is of length l and has a centered times-
tamp ti. The free-form text query Q has Lq tokens, denoted
as Q = {q1, · · · , qLq}. We then define three elements for
each clip vi = (fi, di, si), described as follows:

• Foreground indicator fi ∈ {0, 1}: a binary value in-
dicating whether the i-th clip vi belongs to the fore-
ground or not. If clip vi is the foreground of Q, then
fi = 1, otherwise fi = 0.

• Boundary offsets di = [dsi , d
e
i ] ∈ R2: the temporal

distance that converts the clip timestamp ti to its inter-
val boundaries. Here, di is valid when fi = 1. The dsi
is the distance between the starting of the interval and
ti, whereas dei is the distance between the ending and
ti. Thus, the whole temporal interval bi of vi can be
represented as bi = [ti − dsi , ti + dei ]

• Saliency score si ∈ [0, 1]: a continuous score de-
termining the relevance between the visual content of
clip vi and the query Q. If the clip and query are highly
correlated, si = 1; If they are totally irrelevant, then
si = 0. Notably, it is reasonable to assume that si > 0
if a clip is in the foreground of Q, otherwise si = 0.

In Fig.3 (a), we draw a schematic diagram to represent
these three elements of clip vi in our definition.
3.2. Revisiting Various VTG Tasks and Labels

Treating clips as the atom composition of a video, we
define the VTG problem as collecting a target clip set M =
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{vi ∈ V |Q} from V , conditional on language query Q. We
next illustrate how to extend this definition to various tasks
and labels. Especially, for each label, we answer:

1. How to collect scalable label corpus for pretraining?
2. When using the unified formulation, how can we ob-

tain unknown elements based on the available one?

3.2.1 Moment Retrieval and Interval-wise Label.
Moment retrieval aims to localize one [10] or many [21] in-
tervals in a video corresponding to a sentence Q. As shown
in Fig. 3 (Right blue), moment retrieval aims to select m
consecutive clip sets M = M1 ∪ · · · ∪Mm, where m ≥ 1,
and Mj is the j-th target moment. M can be simplified as
the boundary set of foreground clips {bi|fi = 1}.

The temporal interval with specific target boundaries is
a common label for moment retrieval. However, annotating
intervals requires manually reviewing the full video, which
is expensive. A solution is ASR [29, 58] that provide start
and end timestamps, but ASR is often too noisy and poorly
aligned with the visual content, making it suboptimal. Here,
we sought an alternative solution. We found that visual cap-
tions [44, 4] tend to be descriptive, making them well-suited
as grounding queries, thus if we can know how these videos
are cut from the raw source, we can use this information to
create pseudo intervals. We find that VideoCC [32] is a vi-
able option for this purpose. It is worth noting that VideoCC
is initially developed for video-level pretraining (e.g., power
video-text retrieval), and we are the pioneer to investigate its
potential in temporal grounding pretraining.

Once we obtain intervals, we convert interval labels into
the proposed formulation by defining fi = 0 and si = 0 for
clips that are not in target interval, and we assign fi = 1 and
assume si > 0 for clips that belongs to the target interval.

3.2.2 Highlight Detection and Curve-wise Label.
Highlight detection aims to assign an importance score to
each video clip (making its annotations like a curve), then
return the few highest-scoring clips as the highlight, where
queries may [21] or may not [47, 46] be provided as input.
For video highlighting datasets without language queries,
we can use video titles [46] or video domain name [47] as
Q because they are highly related to the topic of the video.
Then, this task is equivalent to picking clips with the top
highest saliency scores i.e. M = {vi|si ∈ top-K}.

Due to the interestingness contain subjectivity, the same
video usually needs to be labeled by several people to elim-
inate bias. This makes curve labels the most expensive yet
informative temporal annotations. Therefore, we are moti-
vated to find an efficient way of producing scalable curve
labels. Intuitively, interestingness reflects how each clip is
relevant to the video gist. As depicted in Fig. 4 (a), we first
define a concept bank using an open-world detection class
list [42]. Next, we use CLIP as a teacher to get the clip-
level cosine similarities between each concept. Then, we
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Tour guide
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…
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Text Enc.

CLIP Image Enc.
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𝒇𝟏 = 𝟏 𝒇𝟐 = 𝟎 𝒇𝟑 = 𝟏

𝒅𝟏 𝒅𝒌

(c) Derive (𝒇𝒊, 𝒅𝒊) based on 𝒔𝒊

(b) Derive 𝒔𝒊	 based on CLIP similarity
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Gladiator
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𝑸
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𝝉

Figure 4: Process of using CLIP to produce temporal labels.
(a) We first use a concept bank to cover diverse open-world con-
cepts. (b) Next, we use CLIP as teacher to calculate the clip-level
scores between each concept to get top-5 concepts as video gist,
and treat their clip scores as saliency si. (c) Based on si, we fur-
ther derive the interval and point labels via thresholding.

select top-5 concepts as the video gist, and save their CLIP
similarities as pseudo curve labels, i.e., Fig. 4 (b).

As shown in Fig. 4 (c), after obtaining curve labels, we
assign fi = 1 for clips with si greater than a threshold τ ,
otherwise fi = 0. The τ is estimated based on the similarity
of each video, refer to Supp. for details. The offsets di are
defined as the distance between the foreground clip and its
nearest neighboring clips where fi = 0.

3.2.3 Video Summarization and Point-wise Label.

Query-focused video summarization [43] aims to summa-
rize the entire video with a set of shots to provide a quick
overview, with user-specific concepts (for example, trees
and cars). The generated summary should be succinct while
representative of the entire video around the given query.
We define this task by regarding keywords as Q, and se-
lect a set of clips M = {vi|fi = 1}, where the size of M
is required to not exceed α% of the original video length
|M | ≤ α%|V | e.g., α = 2%.

The annotations in QFVS [43] are point labels that indi-
cate whether each shot belongs to the concept or not. The
cost of point labels is much cheaper than that of interval and
curve labels since people only need to glance at a specific
time. The recently Ego4D [13] dataset uses this point label-
ing to annotate massive-scale data by assigning a narration
to an exact timestamp, such as “I am opening the washing-
machine” at ti = 2.30 sec. Due to the favorable scale, it is
natural to adapt them for large-scale pretraining. Recently,
there have been attempts to improve video-text representa-
tion using point-wise annotations to improve the video-text
representation [25, 68, 36] and augment NLQ [13] base-
lines [38]. Despite this, these methods mainly focus on
transferring within the same domain.

For point labels, we derive si > 0 if clip fi = 1, other-
wise si = 0. During pretraining, we estimate its temporal
label bi based on the average distance between consecutive
narrations within the video [25, 38, 36].
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4. Towards Unified VTG: Model
We here introduce our unified model which seamlessly in-
herits our proposed unified formulation.

4.1. Overview
As shown in Fig. 5, our model mainly comprises a frozen

video encoder, a frozen text encoder, and a multi-modal en-
coder. The video and text encoders are keep consistent with
Moment-DETR [19], which employs the concatenation of
CLIP [37] (ViT-B/32) and SlowFast [9] (R-50) features as
video representation, and use the CLIP text encoder [37] to
extract token level features. Our multi-modal encoder con-
tains k self-attention blocks that followed by three specific
heads to decode the prediction.

Given an input video V with Lv clips and a language
query Q with Lq tokens, we first apply the video encoder
and the text encoder to encode the video and text respec-
tively, then project them to the same dimension D by two
Feed-Forward Networks (FFN), and thus obtain video fea-
tures V = {vi}Lv

i=1 ∈ RLv×D and text features Q =

{qj}
Lq

j=1 ∈ RLq×D. Next, we design two pathways for
cross-modal alignment and cross-modal interaction.

(i) For cross-modal alignment, we first adopt an attentive
pooling operator to aggregate the query tokens Q ∈ RLq×D

into a sentence representation S ∈ R1×D. Especially,

S = AQ, (1)

where the weight A = Softmax (WQ) ∈ R1×Lq and
W1×Lq is a learnable embedding. Then V and S are sent
to perform contrastive learning (described in § 4.2).

(ii) For cross-modal interaction, learnable position em-
beddings Epos and modality-type embeddings Etype are
added to each modality to retain both positional and modal-
ity information:

Ṽ = V +Epos
V +Etype

V ,

Q̃ = Q+Epos
T +Etype

T .
(2)

Next, the text and video tokens are concatenated and get
a joint input Z0 = [Ṽ; Q̃] ∈ RL×D, where L = Lv +
Lq . Further, Z0 is fed into the multi-modal encoder, which
contains k transformer layers with each layer consisting of
a Multi-headed Self-Attention and FFN blocks.

Zd = MLP
(
MSA

(
Zd−1

))
, d ∈ {1 . . . k}. (3)

We take the video tokens Ṽk ∈ RLv×D from the multi-
modal encoder Em as output Zk = [Ṽk; Q̃k] ∈ R, and feed
Zk into the following heads for prediction.

4.2. Pretraining Objectives
To match the previous unified formulation i.e.,

(fi, di, si), we devise three different heads to decode
each element respectively, each one calling a capability.

A".
Pooler

Video Encoder Text Encoder

A view of a bamboo fountain of 
water in a tea house and people 
scoop from and wash off

Feed Forward Feed Forward

Mul8-head Self-A"en8on

Feed forward

ConvConv Dot Product

Indicator 𝒇" Offsets 𝒅$ Saliency 𝒔&

×k

❄ ❄

𝑉 𝑄

Figure 5: Unified grounding model contains a video encoder, a
text encoder, and a multi-modal encoder followed by three out-
put heads, corresponding to three key elements

(
f̃i, d̃i, s̃i

)
. Be-

sides, our model has two pathways: one for cross-modal interac-
tion (solid red line) and the other for cross-modal alignment (bro-
ken orange line).

Foreground head for Matching. Taking the output Ṽk ∈
RLv×D from the multi-modal encoder, this head applies
three 1×3 Conv layers, each with D filters and followed by
a ReLU activation. Finally, sigmoid activations are attached
to output the prediction f̃i per clip. We use the binary cross-
entropy loss as a training objective.

Lf = −λf

(
fi log f̃i + (1− fi) log

(
1− f̃i

))
. (4)

Boundary head for Localization. The design of this head
is similar to the foreground head except for the last layer,
which has 2 outputs channel for the left and right offsets.
Taking the Ṽk ∈ RLv×D, this head outputs offsets {d̃i}Lv

i

per clip. Then, we devise the predicted boundary b̃i and
use the combination of smooth L1 loss [12] and generalized
IoU loss [40] as our training objectives.

Lb = 1fi=1

[
λL1LSmoothL1

(
d̃i, di

)
+ λiouLiou

(
b̃i, bi

)]
.

(5)
Notably, this regression objective is only devised for

foreground clips i.e., fi = 1.
Saliency head for Contrasting. Since we define saliency
as the relevance between visual context and text query, it
is natural to interpret this score as a similar measurement
between video and text modalities. Taking the video tokens
V = {vi}Lv

i=1 ∈ RLv×D and sentence representation S ∈
R1×D, we define the predicted saliency score s̃i between

5



clip vi and text query Q as their cosine similarities:

s̃i = cos(vi,S) :=
vT
i S

∥vi∥2∥S∥2
, (6)

where ∥ · ∥2 represents the L2-norm of a vector.
For each video V, we randomly sample a foreground

clip vp with fp = 1 and sp > 0 as a positive sample; we
treat other clips in the same video vj with saliency sj less
than sp as negative samples, i.e., Ω = {j|sj < sp, 1 ≤ j ≤
Lv}, and perform intra-video contrastive learning:

Lintra
s = − log

exp (s̃p/τ)

exp (s̃p/τ) +
∑

j∈Ω exp (s̃j/τ)
, (7)

where τ is a temperature parameter and set as 0.07.
Besides, we regard sentences from other samples within

batches k ∈ B as negative samples, and develop the inter-
video contrastive learning for cross-sample supervision:

Linter
s = − log

exp (s̃p/τ)∑
k∈B exp

(
s̃kp/τ

) , (8)

where B is the training batch size and s̃kp = cos(vi,Sk).
Our saliency score head training loss is the combination

of inter- and intra-video contrastive learning:

Ls = λinterLinter
s + λintraLintra

s . (9)

To this end, our total training objective is the combina-
tion of each head loss overall clips in the training set.

L =
1

N

N∑
i=1

(Lf + Lb + Ls) , (10)

where N is the clip number of the training set.

4.3. Inference

During inference, given a video V and a language query
Q, we first feed forward the model to obtain {f̃i, b̃i, s̃i}Lv

i=1

for each clip vi from three heads. Next, we describe how
we carry out output for individual VTG tasks respectively.
Moment Retrieval. We rank clips predicted boundaries
{b̃i}Lv

i=1 based on their {f̃i}Lv
i=1 probabilities. Since the pre-

dicted Lv boundaries are dense, we adopt a 1-d Non-Max
Suppression (NMS) with a threshold 0.7 to remove highly
overlapping boundary boxes, yielding a final prediction.
Highlight Detection. For each clip, to fully utilize the fore-
ground and saliency terms, we rank all clips based on their
{f̃i + s̃i}Lv

i=1 scores, and then return the few top clip (e.g.,
Top-1) as predictions.
Video Summarization. Using the same preprocessing set-
tings [43, 52], the videos are first divided as multiple seg-
ments via KTS algorithm [34]. Then the clip scores from
each segment are computed, and these scores are integrated.
We rank all clips based on their foreground {f̃i}Lv

i=1 and re-
turn the Top-2% clips as a video summary.

Dataset Task Pseudo? Label # Samples Domain

Ego4D [13] PT ✗ Point 1.8M Egocentric
VideoCC [32] PT ✓ Interval 0.9M Web
CLIP teacher PT ✓ Curve 1.5M Open

QVHighlights [19] MR + HL ✗ Interval + Curve 10.3K VLog, News
NLQ [13] MR ✗ Interval 15.1K Egocentric
Charades-STA [10] MR ✗ Interval 16.1K Indoor
TACoS [39] MR ✗ Interval 18.2K Kitchens
YoutubeHL [47] HL ✗ Curve 600 Web
TVSum [46] HL ✗ Curve 50 Web
QFVS [43] VS ✗ Point 4 Egocentric

Table 1: Dataset statistics. The upper side datasets are used for
pretraining (PT) which cover three label types, two of which are
pseudo. The lower side datasets are used for downstream tasks
(MR: Moment Retrieval, HL: Highlight Detection, VS: Video
Summarization).

5. Experiments
In this section, we conduct experiments on various

benchmarks to evaluate our approach. Mainly, we design
the experiments to study the following questions:
Q1: How much improvement could be made by Uni-
VTG grounding pretraining?
Q2: What are the effects of using different pretraining cor-
pus from various labels?
Q3: Is it necessary to use the proposed unified formulation
and unified model?

More ablation studies can be found in Supplementary.

5.1. Datasets and Settings
We have summarized the dataset information in Tab.1.

For pretraining, we gather 1.8M point labels from
Ego4D and 0.9M interval labels from VideoCC [32]. For
curve labels, we apply CLIP teacher method (Fig. 4) to
Ego4D and VideoCC datasets to get 1.5M pseudo labels.
Therefore, a total of 4.2M temporal annotations are used
for grounding pretraining. For downstream tasks, we assess
our methods on four VTG tasks across seven datasets, span-
ning (i) Jointly moment retrieval and highlight detection;
(ii) Moment Retrieval; (iii) Highlight Detection; (iv) Video
Summarization. Additional details are listed in Supp.
Evaluation Metrics. For QVHighlights, we follow of-
ficial [21], Recall@1 with IoU thresholds 0.5 and 0.7,
mean average precision (mAP) with IoU thresholds 0.5 and
0.75, and the average mAP over a series of IoU thresholds
[0.5:0.05:0.95] are used for moment retrieval. For highlight
detection, mAP and HIT@1 are used, a clip is treated as a
true positive if it has the saliency score of Very Good. For
Charades-STA, NLQ, TACoS, Recall@1 with IoU thresh-
olds 0.3, 0.5 and 0.7, and mIoU are used. For YouTube
Highlights and TVSum, we follow [27] and use mAP and
Top-5 mAP, respectively. For QFVS, we follow [50] that
reports F1-score per video as well as an average.
Implementation Details. We set k = 4 multi-modal trans-
former encoder layers, with d = 1024 hidden size and
8 attention heads. The drop path rates are 0.1 for trans-
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Moment Retrieval HD

R1 mAP ≥ Very GoodMethod

@0.5 @0.7 @0.5 @0.75 Avg. mAP HIT@1

BeautyThumb [45] − − − − − 14.36 20.88
DVSE [26] − − − − − 18.75 21.79
MCN [2] 11.41 2.72 24.94 8.22 10.67 − −
CAL [8] 25.49 11.54 23.40 7.65 9.89 − −
CLIP [37] 16.88 5.19 18.11 7.0 7.67 31.30 61.04
XML [21] 41.83 30.35 44.63 31.73 32.14 34.49 55.25
XML+ [19] 46.69 33.46 47.89 34.67 34.90 35.38 55.06

MDETR [19] 52.89 33.02 54.82 29.40 30.73 35.69 55.60
MDETR w/ PT 59.78 40.33 60.51 35.36 36.14 37.43 60.17
UMT†[27] 56.23 41.18 53.83 37.01 36.12 38.18 59.99
UMT† w/ PT 60.83 43.26 57.33 39.12 38.08 39.12 62.39

UniVTG 58.86 40.86 57.60 35.59 35.47 38.20 60.96
UniVTG w/ PT 65.43 50.06 64.06 45.02 43.63 40.54 66.28
UniVTG ZS 25.16 8.95 27.42 7.64 10.87 35.96 53.50

Table 2: Jointly Moment Retrieval and Highlight Detection re-
sults on QVHighlights test split1. †: introduce audio modality.
w/ PT: fine-tuning after pre-training; ZS: zero-shot inference.

former layers and 0.5 for input FFN projectors. During
the pretraining stage, our experiments are carried out on
8 A100 GPUs. When it comes to downstream tasks, we
use one GPU. For moment retrieval, all baselines and Uni-
VTG use the same video and text features. For highlight
detection and video summarization, we report results fol-
lowing [27] and [50]. See Supp. for more details.

5.2. Comparison with State-of-the-arts (Q1)

5.2.1 Joint Moment Retrieval and Highlight Detection
As illustrated in Tab. 2, we first evaluate our UniVTG on
QVHighlights test split: (i) Without pretraining, Uni-
VTG has shown comparable performance to two joint opti-
mization counterparts Moment-DETR [19] and UMT [27],
demonstrating its superior model design for joint task op-
timization. (ii) With large-scale pretraining, UniVTG ex-
hibits a significant improvement on all metrics, such as
+8.16 Avg. mAP and +5.32 HIT@1. As a result, Uni-
VTG surpasses all baselines by a large margin. Notably,
UMT introduces audio modality and ASR pretraining [27],

1Codalab QVHighlights Evaluation

but it is still worse than us by Avg. mAP of 5.55 and
HIT@1 of 3.89. (iii) Due to the large-scale pretraining,
UniVTG can perform zero-shot grounding and outperforms
several supervised baselines without any training samples.

5.2.2 Moment Retrieval
In Tab. 3, we compare the results of our method and
the mainstream moment retrieval methods on three widely
used benchmarks. (i) Similar to the observation made by
QVHighlights, without pretraining, we find that UniVTG is
still superior to other compared methods. This demonstrates
once more the effectiveness of our concise architecture. (ii)
Large-scale grounding pretraining has resulted in signifi-
cant improvements, leading to a considerable increase in
the mIoU i.e., +2.97 in NLQ, +2.07 in Charades-STA, and
+5.03 in TACoS. (iii) Notably, in NLQ, our zero-shot re-
sult has outperformed all the baselines methods due to the
close pretraining domain. However, it is worth mentioning
that the zero-shot performance on TACoS is inferior. This
could be because the videos have scenes that are very simi-
lar to each other, with only small spatial variations, making
it difficult to effectively apply zero-shot methods.

5.2.3 Highlight Detection
In Tab. 4 and Tab. 5, we conduct highlight detection ex-
periments on YouTube Highlights and TVSum respec-
tively, where the baselines with † (rows 6-9) are incorpo-
rate with audio features. We observe that (i) grounding
pretraining brings improvement on UniVTG and surpasses
all baselines in Avg. mAP. (ii) In TVSum, gain discrep-
ancy among domains may stem from its small scale (50
samples) and scoring subjectivity. In contrast, the larger
YouTube dataset (600 videos) yields more consistent pre-
training gains. (ii) Moreover, in zero-shot setting, Uni-
VTG beats several video-only baselines such as [47, 49].
5.2.4 Video Summarization
In Tab. 6, we present the QFVS benchmark results. Our pre-
trained UniVTG achieves a 0.8% higher Avg. F1-score than
IntentVizor [50], where the latter is an interactive method
and being tailored for the video summarization task. This
result demonstrates the generalization of our method on
video summarization task.

Method NLQ [13] Charades-STA [10] TACoS [39]
R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU

2D TAN [67] 4.33 1.83 0.60 3.39 58.76 46.02 27.50 41.25 40.01 27.99 12.92 27.22
VSLNet [64] 4.54 2.40 1.01 3.54 60.30 42.69 24.14 41.58 35.54 23.54 13.15 24.99
MDETR [19] 4.34 1.81 0.65 3.53 65.83 52.07 30.59 45.54 37.97 24.67 11.97 25.49

UniVTG 7.28 3.95 1.32 4.91 70.81 58.01 35.65 50.10 51.44 34.97 17.35 33.60
UniVTG w/ PT 11.74 7.54 3.25 7.88 72.63 60.19 38.55 52.17 56.11 43.44 24.27 38.63
UniVTG ZS 6.48 3.48 1.16 4.63 44.09 25.22 10.03 27.12 5.17 1.27 0.27 4.40

Table 3: Moment Retrieval results on NLQ, Charades-STA, and TACoS benchmarks. All baselines use the same video features (CLIP
ViT-B/32 and SlowFast R-50) and text features (CLIP text enc.). w/ PT means fine-tuning after pre-training; ZS means zero-shot inference.
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Method Dog Gym. Par. Ska. Ski. Sur. Avg.

RRAE [59] 49.0 35.0 50.0 25.0 22.0 49.0 38.3
GIFs [15] 30.8 33.5 54.0 55.4 32.8 54.1 46.4
LSVM [47] 60.0 41.0 61.0 62.0 36.0 61.0 53.6
LIM-S [53] 57.9 41.7 67.0 57.8 48.6 65.1 56.4
SL-Module [57] 70.8 53.2 77.2 72.5 66.1 76.2 69.3

MINI-Net† [16] 58.2 61.7 70.2 72.2 58.7 65.1 64.4
TCG† [60] 55.4 62.7 70.9 69.1 60.1 59.8 63.0
Joint-VA† [3] 64.5 71.9 80.8 62.0 73.2 78.3 71.8
UMT†[27] 65.9 75.2 81.6 71.8 72.3 82.7 74.9

UniVTG 71.8 76.5 73.9 73.3 73.2 82.2 75.2
UniVTG w/ PT 74.3 79.0 74.4 84.9 75.1 83.9 78.6
UniVTG ZS 36.8 62.8 65.9 39.2 64.5 54.0 53.9

Table 4: Highlight Detection results of mAP on
YouTube HL. † denotes using audio modality.

Method VT VU GA MS PK PR FM BK BT DS Avg.

sLSTM [66] 41.1 46.2 46.3 47.7 44.8 46.1 45.2 40.6 47.1 45.5 45.1
SG [28] 42.3 47.2 47.5 48.9 45.6 47.3 46.4 41.7 48.3 46.6 46.2
LIM-S [53] 55.9 42.9 61.2 54.0 60.4 47.5 43.2 66.3 69.1 62.6 56.3
Trailer [49] 61.3 54.6 65.7 60.8 59.1 70.1 58.2 64.7 65.6 68.1 62.8
SL-Module [57] 86.5 68.7 74.9 86.2 79.0 63.2 58.9 72.6 78.9 64.0 73.3

MINI-Net† [16] 80.6 68.3 78.2 81.8 78.1 65.8 57.8 75.0 80.2 65.5 73.2
TCG† [60] 85.0 71.4 81.9 78.6 80.2 75.5 71.6 77.3 78.6 68.1 76.8
Joint-VA† [3] 83.7 57.3 78.5 86.1 80.1 69.2 70.0 73.0 97.4 67.5 76.3
UMT†[27] 87.5 81.5 88.2 78.8 81.5 87.0 76.0 86.9 84.4 79.6 83.1

UniVTG 83.9 85.1 89.0 80.1 84.6 81.4 70.9 91.7 73.5 69.3 81.0
UniVTG w/ PT 92.0 77.8 89.8 83.8 82.2 85.8 74.3 91.8 90.5 77.6 84.6
UniVTG ZS 78.5 67.0 75.3 63.6 67.0 66.8 35.4 85.3 83.1 50.0 67.2

Table 5: Highlight Detection results of Top-5 mAP on TVSum. † denotes
using audio modality.

Method V1 V2 V3 V4 Avg.

QC-DPP [43] 48.68 41.66 36.51 29.96 44.19
CHAN [52] 49.14 46.53 58.65 33.42 46.94
QSAN [51] 48.52 46.64 56.93 34.25 46.59
WHM [33] 50.96 48.28 58.41 39.18 49.20
IntentVizor [50] 51.27 53.48 61.58 37.25 50.90

UniVTG 52.54 54.48 56.73 40.37 51.03
UniVTG w/ PT 49.85 56.97 59.35 40.62 51.70

Table 6: Video Summarization results of F-score on QFVS.

5.3. Ablation Studies

Effect of different labels for pretraining (Q2). In Tab. 7
top half, we investigate the effect of different labels cor-
pus for pretraining. The results here are before unified for-
mulation i.e., the original label provided by the pretraining
set. Our findings (rows 1-4) indicate that (i) incorporating
any type of label for pretraining yields considerable perfor-
mance gains on most benchmarks. (ii) Combining all three
types of data (row 5) for pretraining further boost the out-
comes, such as +5.2 MR’s mAP and +1.1 HL’s mAP over
baseline (row 1) on QVHighlights.
Effect of unified formulation (Q3). In Tab. 7 bottom half,
we further study the impacts of unified formulation i.e.,

Pretraining Corpus Unified Labels? QVHighlights TACoS YouTube
row Ego4D VideoCC CLIP Point Interval Curve MR HL MR HL

Point Interval Curve mAP mAP mIoU mAP

1 36.13 38.83 33.60 75.15

2 ✓ ✓ 39.89 39.48 35.33 75.32
3 ✓ ✓ 39.81 39.75 35.11 74.76
4 ✓ ✓ 39.16 39.80 35.68 75.44
5 ✓ ✓ ✓ ✓ ✓ ✓ 41.37 39.97 35.87 75.66

6 ✓ ✓ ✓ ✓ 41.53 39.66 36.52 75.27
7 ✓ ✓ ✓ ✓ 40.96 40.10 36.78 76.10
8 ✓ ✓ ✓ ✓ 42.19 40.43 35.85 77.48
9 ✓ ✓ ✓ ✓ ✓ ✓ 45.99 41.25 38.63 78.56

Table 7: Ablation studies on pretraining corpus. ✓ denotes the
elements derived by us, which are not provided in vanilla training
corpus: Ego4D, VideoCC, and CLIP teacher.
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Figure 6: Effect of pretraining scale on QVHighlights dataset.
the benefits of deriving unknown elements for pretraining.
From rows 2-4 vs rows 6-8, We find that (i) training corpora
receive performance gains in most settings, which proves
that the label converting methods are crucial for better uti-
lizing temporal labels. (ii) Among all settings, curve labels
appear to be the most effective ones, and beat the manual
point labels except in a few domains e.g., TACoS. (iii) We
get the optimal result (row 9) by using full three converted
corpus for pretraining, with 4.62 MR’s mAP and 1.28 HL’s
mAP increase over counterparts (row 5) on QVHighlights.
Effect or pretraining scale. In Fig. 6, we explore the effect
of utilizing various scales of labels for pretraining. We ob-
serve a steady performance improvement on both moment
retrieval and highlight detection tasks as the training sample
size increases. It also shows that unifying labels to construct
a large training corpus can greatly benefit the VTG.
6. Conclusion

This paper introduces UniVTG, a framework that uni-
fies diverse VTG tasks and labels by addressing three key
challenges: (i) We define a unified formulation for VTG to
convert various labels and tasks under a single framework,
and propose a label scaling scheme. (ii) We develop an ef-
fective yet flexible model that can handle various VTG tasks
and training labels. (iii) Due to the unified framework and
availability of scalable labels, it becomes feasible to per-
form large-scale temporal grounding pretraining over di-
verse labels. We demonstrate the effectiveness and flexi-
bility of our UniVTG on four settings across seven datasets,
spanning joint optimization as well as individual tasks.
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(a) QVHighlights: Vlog and News domains, videos are average 2.5 minutes long; Each video might
have several intervals

(b) Charades-STA: Indoor domains, most videos are less than 1 minutes.

(c) Natural Language Queries: Egocentric domain, videos are 8-20 minutes.

(d) TACoS: Kitchen domain, videos are average 4.8 minutes.

Figure 7: Visualization of Joint moment retrieval and highlight detection on (a) QVHighlights, and Moment Retrieval on
(b) Charades-STA, (c) Ego4D, (d) TACoS. Textual queries are mostly natural sentences.
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(e) TVSum: Web diverse domain, videos are average 4.2 minutes long.

(f) YouTube Highlights: Youtube diverse domain, videos are average 1.5 minutes long.

(g) Query-Focused Video Summarization: Egocentric domain, each video is between 3-5 hrs.

Figure 8: Visualization of Highlight Detection on (e) TVSum, (f) YouTube Highlights; and Video Summarization on
(g) QFVS. Textual queries can be video title (e), video domain (f), and keywords (g).
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Appendix of UniVTG
A. CLIP teacher strategy

The concept bank is a class list for open-world detec-
tion, sourced from here2. This list comprises 19, 995 class
names, such as ”Sandwich Cookies,” ”Air conditioning,”
and ”Advertising.” After conducting a manual check, we
determined that the class list can effectively encompass the
majority of common concepts.

In our approach, we begin by capturing frame-level clip
image features from the video at a rate of 2 fps. Following
this, we calculate their respective similarity scores in rela-
tion to the given class list. We then determine top-5 classes
with the highest average scores, representing the most sig-
nificant concepts within the video.
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Figure 9: Demonstration of how to threshold each video’s curve.

To derive intervals from the curve obtained from the di-
verse distributions, a fixed threshold is hard to determined
and lacks the flexiblity. Thus, we discretize the continu-
ous curve by a small value of 0.05 and pick the maximum
discrete value as our threshold. Then, adjacent clips that
share the maximum discrete value to form an interval. In
this way, we may produce multiple temporal windows from
one video. This process is shown in Fig. 9.

B. Datasets

Pretraining corpus. To establish our pretraining cor-
pus, we collect data through three ways: For point labels,
we extract the timestamped narrations from Ego4D [13]
by excluding the NLQ val / test splits. For interval labels,
we select a subset of videos (less than 300K) sourced from
VideoCC 3, and treat their start and end timestamp as win-
dows and caption as query. For curve labels, we derive them

2https://storage.googleapis.com/openimages/v6/
oidv6-class-descriptions.csv

3https://github.com/google-research-datasets/
videoCC-data

from the above VideoCC subset videos. Below, we describe
the benchmarks used for the four settings separately.

(i) Joint Moment Retrieval and Highlight Detection.
QVHighlights [19] is the only dataset with available anno-
tations for both moment retrieval and highlight detection,
making it an ideal choice for benchmarking multi-task joint
optimization. This dataset contains 10, 148 videos with an
average length of 150 sec that covers daily vlogs, travel
vlogs, and news events scenarios. There are a total of
10, 310 queries associated with 18, 367 moments (on aver-
age, 1.8 disjoint moments per query in the video).

(ii) Moment Retrieval. We utilize three bench-
marks to further evaluate moment retrieval: Charades-
STA [10], Ego4D Natural Language Queries (NLQ) [13]
and TACoS [39]. (a) Charades-STA contains 16, 128 indoor
videos with an average length of 30.6 sec, which are made
up of 12, 408 query-interval pairs for training and 3, 720
query-interval pairs for testing. (b) NLQ focuses on daily
egocentric scenarios, where videos are 8− 20 minutes long
and queries are question, e.g.“What did i pour in the bowl?”,
making this benchmark challenging. The training set con-
tains 11.3K annotated queries from 1K videos, whereas the
validation set contains 3.9K queries from 0.3K videos. (c)
TACoS contains 127 videos with an average duration of
4.78 minutes, where 75 videos are used for training, 27 and
25 videos for validation and testing, respectively.

(iii) Highlight Detection. We utilize two benchmarks
to further evaluate highlight detection: YouTube High-
lights [47] and TVSum [46]. (a) YouTube Highlights has
6 domains with 433 videos, where video titles are not pro-
vided, thus we use the domain name of each video as text
queries. (b) While TVSum includes 10 domains, each with
5 videos, we use their video titles as text queries. We follow
[27] data splits that the ratio of training:testing is 0.8:0.2.

(iv) Video Summarization. We utilize the QFVS [43]
benchmark to evaluate the video summarization. This
dataset includes the four videos in UT Egocentric
dataset [18]. Each video is recorded in daily life and lasts
between 3 − 5 hours. Each query in this dataset is repre-
sented by two words from a total of 48 pre-defined concepts.

C. Experimental settings

(i) In Tab. 8, we detail the parameters for each set-
ting. Notably, for highlight detection benchmarks YouTube
Highlights and TVSum, which contain multiple domains
treated as separate splits, we perform parameters tuning for
λintra within each domain. Then we aggregate the results
obtained using optimal settings. The optimal settings are
listed in Tab. 9-10.

(ii) During training, to maintain the balance between
positive and negative samples, we allocate a weight of 0.1
to the negatives (fi = 0) in binary cross-entropy loss Eq. 4.

(iii) When inferring highlights scores, we observe that
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Type Datasets l BS Epoch Warmup LR Weight dacay Gamma LR drop λSmoothL1 λiou λf λintra λinter

Pretraining 4.2M corpus 2 64 10 - 1e−4 1e−4 - - 10 1 10 0.1 0.1

Joint MR & HL QVHighlights 2 32 200 10 1e−4 1e−4 0.1 80 10 1 10 0.05 0.01

Moment Retrieval
NLQ 2 32 200 10 1e−5 1e−5 0.1 100 10 1 50 0.1 1.0
Charades-STA 1 32 100 10 1e−5 1e−5 0.1 100 10 1 10 1.0 0.5
TACoS 2 32 100 10 1e−4 1e−4 0.1 30 10 1 10 0.5 0.1

Highlight Detection YouTube Highlights 1† 4 100 10 1e−4 1e−4 - - 0 0 1 Search 0
TVSum 2 4 200 10 1e−4 1e−4 - - 0 0 1 Search 0

Video Summarization QFVS 5 20∗ 20 0 5e−5 5e−5 - - 0 0 1 0.9 0

Table 8: Parameter selections for each settings where l denotes the clip length; BS denotes the batch size; LR denotes the learning rate;
LR drop denotes the learning rate drop up epoch; Warmup denotes the warmup epoch. Search denotes to parameter searching individually
for each domain. † means YouTube Highlights clips has overlapping frames, which is align with the [27]. ∗ means batchsize in QFVS is
based on the segment-level instead of video-level.

Domains Dog Gyn Par. Ska. Ski. Sur.

λintra 0.6 0.5 0.4 0.5 0 0.7

Table 9: Optimal λintra under each domain in the Youtube HL.

Domains BK BT DS FM GA MS PK PR VT VU

λintra 0.7 0.9 0.6 0.4 0.1 0.1 0 0.6 0.1 0.5

Table 10: Optimal λintra under each domain in the TVSum.

{f̃i + s̃i}Lv
i=1 can typically achieves better performance in

QVHighlights, while for smaller datasets YouTube High-
lights and TVSum, using f̃i yield more reliable prediction.

(iv) For video summarization, we adhere to the same pre-
processing settings in [52], which extracts video frame fea-
tures at 1 FPS and take a 5 seconds as a clip and compute
the average frame feature within a clip to generate its clip-
level feature. By applying the KTS algorithm [34], we split
a long video into small segments under the conditions that
the number of segments in a video is no more than 20 and
each segment contains no more than 200 clips.

During evaluation, we compute the foreground scores f̃i

for each segment within a video, then aggregate these scores
to derive an overall video score which is used to compute
the metrics. We calculate the conceptual similarity between
each two video clip based on the intersection-over-union
(IOU) of their related concepts. This conceptual similarity
is then used as edge weights in a bipartite graph between
two summaries, which aids in identifying the maximum
weight match in the graph. Finally, precision, recall, and
F1 scores can be determined based on the matching pairs.

D. Ablation studies of training objective

Since we use identical training objectives during the
stages of pretraining and downstream transferring. To gain
a more thorough understanding of the impact each compo-
nent has, we have constructed ablation studies as seen in
Tab. 11, where the top half, we study the effect of down-
stream training objectives (without introduce any pretrain-
ing), while in the bottom half, we investigate the effect
of pretraining training objectives (the downstream tuning
use the same optimal parameter settings).

Pretraining Downstream MR@QVHL HL@QVHL MR@NLQ MR@TaCoS
Lf LSmoothL1 Liou Linter

s Lintra
s Lf LSmoothL1 Liou Linter

s Lintra
s R1@0.5 mAP mAP HIT@1 R1@0.3 mIoU R1@0.3 mIoU

✓ ✓ 54.71 29.64 33.12 46.13 5.96 3.97 48.46 30.20
✓ ✓ ✓ 58.71 35.89 33.21 45.03 6.50 4.43 50.09 32.42
✓ ✓ ✓ ✓ 59.16 36.24 38.59 61.81 6.97 4.88 51.14 33.05
✓ ✓ ✓ ✓ ✓ 59.74 36.13 38.83 61.81 7.28 4.91 51.44 33.60

✓ ✓ ✓ ✓ ✓ ✓ 62.00 39.45 39.59 64.00 8.83 5.82 52.04 32.72
✓ ✓ ✓ ✓ ✓ ✓ ✓ 63.29 40.43 39.82 64.19 8.49 5.73 51.71 34.76
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 64.52 41.65 39.93 63.68 8.49 5.74 53.11 34.48
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 64.45 41.84 40.07 64.32 9.86 6.52 53.89 36.76
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 68.39 45.99 41.25 67.42 11.74 7.88 56.11 38.63

Table 11: Ablation studies of downstream (top) and pretraining objective (bottom) on QVHighlights val split, NLQ val split and
TACoS val split.
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E. Parameters sensitivity

Transformer layers. In Tab. 12, we abalate the trans-
former layers L ∈ [1, 2, 3, 4, 6, 8] of multi-modal encoder
in our unified model (without pretraining).

# Layers MR HD
R1@0.5 mAP mAP HIT@1

1 47.16 26.62 37.35 60.65
2 55.25 30.70 38.33 60.52
3 59.03 34.06 38.57 62.13
4 59.74 36.13 38.83 61.81
6 61.55 39.88 39.20 63.42
8 60.32 38.24 38.72 60.90

Table 12: Ablation studies of different transformer layers for
multi-modal encoder on QVHighlights val split.

Projector dimension. In Fig. 10, we study the effect of
projector dimension from 256 to 1024 (without pretraining).
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(b) HIT@1 of highlight detection.

Figure 10: Ablation studies of projector dimension on QVHigh-
lights val split.

F. Loss weights

In Tab. 13, we study the effect of foreground loss on three
moment retrieval benchmarks (with pretraining).

λf
QVHighlights NLQ TACoS

R1@0.5 mAP R1@0.3 mIoU R1@0.3 mIoU

0.1 66.97 46.02 9.24 6.64 46.51 33.16
0.5 66.19 46.08 9.50 6.75 50.21 35.06
1 67.74 46.22 9.53 6.80 51.79 35.94
5 67.35 45.63 9.89 6.88 54.01 37.59
10 67.81 45.46 7.26 7.36 54.44 37.55
25 68.00 45.06 11.41 7.77 54.31 37.27
50 66.71 44.32 11.13 7.49 54.21 35.61

Table 13: Ablation studies of foreground loss weight λf on
QVHighlights, NLQ, and TACoS moment retrieval benchmarks.

G. Visualizations

In Fig. 7 and 8, we show quantitative visualizations of
UniVTG predictions across different settings and domains.
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