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Abstract

Deep co-training has been introduced to semi-
supervised segmentation and achieves impressive results,
yet few studies have explored the working mechanism be-
hind it. In this work, we revisit the core assumption that
supports co-training: multiple compatible and condition-
ally independent views. By theoretically deriving the gen-
eralization upper bound, we prove the prediction similarity
between two models negatively impacts the model’s gener-
alization ability. However, most current co-training mod-
els are tightly coupled together and violate this assump-
tion. Such coupling leads to the homogenization of net-
works and confirmation bias which consequently limits the
performance. To this end, we explore different dimen-
sions of co-training and systematically increase the diver-
sity from the aspects of input domains, different augmen-
tations and model architectures to counteract homogeniza-
tion. Our Diverse Co-training outperforms the state-of-the-
art (SOTA) methods by a large margin across different eval-
uation protocols on the Pascal and Cityscapes. For ex-
ample. we achieve the best mIoU of 76.2%, 77.7% and
80.2% on Pascal with only 92, 183 and 366 labeled im-
ages, surpassing the previous best results by more than
5%. Code will be available at https://github.com/
williamium3000/diverse-cotraining.

1. Introduction

Deep learning has demonstrated impressive success in
various applications [41, 32, 66, 35, 92, 93]. However, such
SOTA performance heavily depends on supervised learning
which requires expensive annotations. Particularly, labeling
images for semantic segmentation is much more laborsome
and time-consuming compared with that of image classifi-
cation [13]. Therefore, how to leverage the unlabeled im-
ages available in much larger quantities to improve the seg-
mentation performance becomes crucial. Semi-supervised
segmentation is thus proposed to alleviate the expensive an-
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notation and is attracting growing attention [68].
One line of research in semi-supervised segmentation is

co-training, which was first proposed by [5] with two com-
patible and independent views to guarantee the theoretical
learnability [57]. It was first introduced to semi-supervised
segmentation for cross pseudo supervision (CPS) [12].
Since most computer vision tasks provide only one view
(RGB image) for each sample, CPS adopts two networks
with identical architectures and different initializations to
provide different opinions. Later researchers improve upon
CPS through one or multiple extra networks [20], additional
consistent constraints [38], multiple heads with a shared
backbone [19, 60] and EMA teachers [83]. Despite these
new variants of co-training, few studies have discussed the
working mechanism behind the remarkable performance of
co-training in semi-supervised segmentation. In this paper,
we revisit the assumptions behind co-training: two or mul-
tiple independent views compatible with the target function.
By deriving the generalization upper bound of Co-training,
we theoretically show that the homogenization of networks
accounts for the generalization error of Co-training meth-
ods. Empirically, we examine the existing co-training ar-
chitectures and discover that they provide insufficient di-
versity (only by different initialization). We argue that sim-
ilar decision boundaries or predictions will further lead to
confirmation biases [1, 59] as no additional information or
correction is induced. Given this problem, a natural ques-
tion emerges, how to create two or multiple views that are
mutually independent? To answer this question, we system-
atically explore different dimensions of the Co-training pro-
cess to increase diversity. Specifically, both RGB and fre-
quency domain are adopted as two inputs that cater to differ-
ent properties of an image. Different augmentations of the
same image first provide distinct views for each model. Dif-
ferent architectures including CNN and Transformer-based
networks are then demonstrated to be quite effective in co-
training due to the diverse inductive biases. Combining
these findings, we propose our holistic approach: Diverse
Co-training. Diverse Co-training. To summarize, we make
the following contributions:

• We theoretically prove that the homogenization of net-
works accounts for the generalization error of Co-
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training and discover the lack of diversity in current
co-training methods that violate the assumptions.

• We comprehensively explore the different dimensions
of co-training to promote diversity including the input
domains, augmentations and architectures and demon-
strate the significance of diversity in co-training.

• We propose a holistic framework combining the above
three techniques to increase diversity and discuss two
variants with high empirical performances.

2. Related Work
Semi-supervised Learning. Early works introduce self-

training to tackle semi-supervised learning with an iterative
EM algorithm [58, 14, 76]. Instead of labeling the unla-
beled data before training, consistency regularization typ-
ically enforce invariance to perturbations on the unlabeled
data in an online manner [65, 44, 85, 4, 55, 3, 67, 81]. Along
this line of studies, researchers notice the significance of
strong data augmentation. Combining with EMA Teacher
[72], the ”Teacher-Student” paradigm emerges. However,
this framework suffers from the coupling problem since the
teacher comes form the aggregation of student parameters
[39], which fails to transfer meaningful knowledge and fur-
ther leads to confirmation biases [72, 59]. We refer to [39]
for detailed analysis. To this end, Deep Co-training is pro-
posed [63, 39]. Initially, co-training is proposed to solve
the semi text classification problem with two models and
two views [5]. The author proves the learning ability with
PAC framework [75] with the assumption that two views are
compatible and independent given the class [57]. Unfortu-
nately, most tasks in computer vision provides only single
view for each sample (i.e. RGB image) [48, 15, 45, 13].
To simulate the condition required by co-training, [101, 39]
propose to use different initialization while Tri-training [16]
creates diverse training sets by injecting noise to true la-
bels. Deep Co-training proposes a novel view difference
constraint and adversarial examples as an additional pseudo
view [63]. Other methods such as resampling [2], bagging
[71] or bootstrapping [22] is also used to generate pseudo
views. Deep Co-training is closely related to our work. De-
spite the two views increases diversity, adversarial exam-
ples are generated from the the original sample leading to
large dependence. Moreover, models trained with adversar-
ial examples suffers from a degraded performance [74, 70]
resulting to unequal roles where the original model serves
as teacher and the model trained on adversarial examples
the student (since original model is better with higher per-
formance).

Semi-supervised Segmentation evolves from the early
GAN-based methods [24, 68, 36, 54] which leverage the
discriminator [25] to provide an auxiliary supervision for
unlabeled images to simpler training paradigms of consis-

tency regularization [23, 38, 40, 34, 82, 61, 103] and en-
tropy minimization [37, 33, 94, 91]. CPS first introduces
co-training to provide cross supervision by using two identi-
cal networks with different initialization [12]. n-CPS builds
upon CPS and propose to add additional models with differ-
ent initialization [20] while [83] leverages the EMA of each
model to teach the other model acting as teacher. Another
variant [19, 60] of Co-training is the form of shared back-
bone and two heads, which is parameter and computation
efficient. The co-training between CNN and transformer
is also explored [98, 53] but focuses mainly on the power-
ful representation ability brought by the transformer. [98]
propose to distill the feature maps between the CNN and
transformer models leading to more coupled networks. Our
work, on the contrary, explores the diversity presented in
different architectures and demonstrate that such diversity
along can achieve the SOTA performance.

Dense Vision Transformer. Recent works starting with
ViT [17] prove the transformer’s adaptability in CV. Later
works such as Swin Transformer [52, 51] and PVT [78, 79]
proves its superiority over CNN with different inductive bi-
ases trained [28, 30, 95, 73]. Recent work also demonstrates
that transformer outperforms traditional CNN on dense pre-
dictions tasks such as object detection [6, 102, 9, 47] and
semantic segmentation [69, 96, 84, 97]. SETR first intro-
duce transformer to extract feature for segmentation [97].
Segmenter [69] leverages mask transformer to dynamically
generate class masks while SegFormer [84] designs a novel
transformer backbone with pyramid structures and simple
multi-layer perceptron (MLP) head for aggregation of the
multi-scale features.

3. Theoretical Analysis and Motivation
In this section, we first provide preliminary knowledge

on co-training. Then a theoretical analysis on Co-training
is provided to show the relation between homogenization
and generalization bound. Thirdly, we conduct a thorough
investigation of the existing variants of co-training and dis-
cover that they suffer significantly from the homogenization
problem, which is mainly caused by a lack of two indepen-
dent views. These findings further motivate our work: how
to approximate these assumptions by introducing more di-
versity into co-training?

3.1. Preliminary

We describe Co-training in the context of segmentation.
Segmentation network typically possesses an encoder f and
a decoder head h. As aforementioned, co-training in semi-
supervised segmentation generally utilizes two segmenta-
tion networks fi(·, θe1), hi(·, θd1) parameterized by θei , θdi ,
i = 1, 2. Co-training simultaneously trains two models
and the confident prediction from one model is used to
supervise the other in sense of mutual teaching. Specif-
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Figure 1. Illustrating the architectures for (a) FixMatch [67, 90], (b) CPS [12], (c) cross heads with shared backbone [19, 60] (d) n-CPS
[20], (e) Diverse Co-training (2-cps) and (f) Diverse Co-training (3-cps).

ically, each network generates pseudo segmentation con-
fidence map pi after softmax operation and then the one-
hot pseudo maps yi by argmax for each unlabeled data x:
pi = hi(fi(x, θ

e
i ), θ

d
i ). The generated pseudo maps are

used to supervise the other network on unlabeled data.

Lu =
1

|Du|
∑
x∈Du

1

W ×H

W×H∑
k=0

CE(p1k, y2k)+CE(p2k, y1k)

where Du denotes the unlabeled data set, W and H denotes
the size of input image and k denotes the kth pixel. Cross
entropy loss CE is adopted here and for the rest of the pa-
per. For labeled data, each network is trained in a standard
fully supervised manner:

Ls =
1

|Dl|
∑
x∈Dl

1

W ×H

W×H∑
k=0

CE(p1k, y
∗
k)+CE(p2k, y

∗
k)

where Dl denotes the labeled data set and y∗k is the ground
truth label for pixel k. Then, the overall objective function
is a combination of the above two losses with a balance term
λ: L = Ls + λLu

3.2. Theoretical Analysis

We provide a generalization bound in the PAC learning
framework following [5] on the Co-training method with
two models. We first give the definition of homogenization.
We simplify notations from above and denote the model
f j
i , i = 1, 2 as the ith model of jth iteration and the optimal

model as f∗.

Definition 1 We define homogenization as the similarity
between two networks, which can be approximated by the
percentage of the agreement (agree rate) of all pixels.

H = Prx∈D

[
f1(x) = f2(x)

]
=

1

HW

HW∑
i=1

1(p1i = p2i)

With different architectures, direct measures in parameter
space are meaningless, we thus consider target space to

quantify homogenization. Diversity is exactly the opposite
d(f1, f2) = Prx∈D

[
f1(x) ̸= f2(x)

]
, which can be used to

quantify the difference between any model. For instance,
we can compute the generalization error with d(f, f∗).
We simplify the Co-training pipelines for easy theoretical
derivation.

Assumption 1 At each step of optimization, pseudo labels
of all unlabeled data are updated prior to optimization in-
stead of online pseudo labeling.

Assumption 2 At each step of optimization, all unlabeled
data is used except for the first step where only labeled data
is used to get the initial model f0

1 , f
0
2 .

With the PAC learning framework and the two assumptions,
we can extend the generalization bound of [80] to iterative
Co-training instead of one-step optimization and obtain the
following.

Theorem 1 Given hypothesis class H and labeled data set
Dl of size l that are sufficient to learn an initial segmentor
f0
i with an upper bound of the generalization error of b0i

with probability δ (i.e. l ≥ max{ 1
b0i

ln |H|
δ }), we use em-

pirical risk minimization to train f0
i on the combination of

labeled and unlabeled set σi where pseudo label are pro-
vided by the other model f0

3−i. Then we have

Pr
[
d(fk

i , f∗) ≥ bki
]
≤ δ

if lb0i ≤ e M
√
M ! − M , where M = ub03−i and bki =

max{ lb0i+ub03−i−ud(fk−1
3−i ,fk

i )

l , 0}.

Theorem 1 shows that the bigger the difference between the
two models fk−1

3−i and fk
i , the smaller the upper bound of the

generalization error. Thus from Theorem 1 and Definition
1, we can conclude.

Remark 1 Homogenization negatively impacts the gener-
alization ability of the Co-training method leading to sub-
optimal performance.



With the condition that the difference between the two mod-
els is large enough d(fk−1

3−i , f
k
i ) ≥ b03−i, we can see that the

larger the u the smaller the upper bound of the generaliza-
tion error. Then we have Remark 2.

Remark 2 Given a large difference between the two mod-
els, more unlabeled data decreases the generalization error
of Co-training.

This remark is consistent with empirical results that more
unlabeled data leads to better performance. Further, with
this remark, we provide theoretical guarantees for strong
augmentations used in our method.

3.3. Homogenization in Co-training

Given the statement that homogenization negatively im-
pacts performance, we now investigate the existing Co-
training methods. Other than CPS ((b) of Figure 1), we
summarize two co-training paradigms. co-training with
cross heads and shared backbone is widely adopted in previ-
ous works [19, 60], as shown in (c) of Figure 1. n-CPS [20]
leverages multiple models to perform co-training, which
can be seen as a generalized CPS ((d) of Figure 1). We
also display the paradigms used in FixMatch in (a) of Fig-
ure 1. Co-training is first introduced for its merit of pro-
viding decoupled models for cross-supervision, which can
alleviate confirmation biases and generate additional infor-
mation for its counterpart [39]. We demonstrate the superi-
ority of co-training over FixMatch in Figure 2, from which
co-training outperforms FixMatch consistently on all parti-
tions and thresholds.
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Figure 2. Comparison between FixMatch and co-training under
different partition protocols and thresholds (a) with or (b) without
strong augmentation (SA). Best viewed in color.

Despite the benefit, current deep co-training strongly vi-
olates the second assumption of co-training, as discussed
in Section 1, since only a single view is used. The second
assumption can weekly fulfilled through different initializa-
tions but it contributes too little difference for the two mod-
els to learn distinct decision boundaries. As shown in Fig-
ure 3, we can observe that all three paradigms have a severer
homogenization issue. We also provide rigorous analysis in
logits and prediction space with L2 distance and KL Diver-
gence demonstrating similar phenomena in Appendix B.

Specifically, we find that co-training with a shared back-
bone has the most severe homogenization as the shared
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Figure 3. Homogenization problem (measured by agree rate) with
different partitions. 3-cps refers to n-cps when n = 3.

backbone delivers the same features for each head. n-CPS
also suffers from a severer homogenization problem than
CPS because cross-supervision of a stack of models fur-
ther enforces these models to predict similarly. We em-
phasize that agree rate alone is not sufficient to judge the
effectiveness of a co-training method, as we cannot simply
say a method is worse because they provide similar predic-
tions. Thus, we empirically show in Table 1 that less sim-
ilar models bring performance benefits (i.e. co-training
outperforms the other two consistently over all settings).
On the other hand, co-training with diverse input domains
or different architectures achieves a much lower prediction
similarity providing much more information to complement
the counterpart. We show in Section 4 and evaluate in Sec-
tion 5.2 that they both bring significant empirical benefits
and thus can be viewed as two relatively more independent
views compatible with the target function.

4. Diverse Co-training
After analyzing the limitation of current co-training

paradigms, we provide a comprehensive investigation of co-
training to i) promote the diversity between models and ii)
provide a relatively more independent pseudo view that bet-
ter fits the assumption in the PAC framework. We first in-
troduce a better co-training baseline by adopting the strong-
weak augmentation. Then, we propose and analyze three
techniques to better increase the diversity between models.

Method
1/32 1/16 1/8
(331) (662) (1323)

Sup Baseline 61.2 67.3 70.8

w/o SA
Co-training 65.66 71.28 73.77

shared backbone 58.97 65.94 71.25
3-cps 65.41 70.81 72.84

w/ SA
Co-training 70.28(+4.62) 73.36(+2.08) 74.82(+1.05)

shared backbone 69.48 70.16 73.47
3-cps 69.68 71.83 74.36

Table 1. Co-training methods on ResNet50 with or without strong
augmentation (SA).

Strong-Weak Augmentation. Strong-weak augmenta-
tion paradigm supervises a strongly perturbed unlabeled im-
age xs with the pseudo label provided by its corresponding
weakly perturbed version xw. A better pseudo label can
be obtained with xw while more efficient learning can be



conducted on xs since xs expands the knowledge [86, 90],
alleviates confirmation biases [1] and enforce models with a
decision boundary in the low-density regions [59]. Theoret-
ically, we can also see the positive effect of strong augmen-
tations through Remark 2 by showing that strong augmenta-
tions can potentially increase the size of unlabeled data. We
argue that the improvements brought by strong augmenta-
tion are orthogonal to that of co-training with mutual bene-
fits. In light of this statement, we combine the strong-weak
augmentation with co-training to provide a better baseline
for semi-supervised segmentation. Formally, we denote the
weak augmentation Ow sampled from weak augmentation
space Sw (i.e. random cropping and flipping) and strong
augmentation Os from Sw (detailed in Appendix G). For
each image x, we obtain the strongly augmented image
xs = Os(Ow(x)) and the weakly perturbed xw = Ow(x).
To combine co-training with strong-weak augmentation,
each model is fed with both xw and xs and predicts on xw

to supervise the other model as illustrated by (e) of Figure
1. This can be formulated by replacing the Lu with Lu

st,
where the subscript st stands for ”strong-weak”.

Lu
st =

1

|Du|
∑
x∈Du

1

W ×H

W×H∑
i=0

CE(ps1i, y
w
2i)+CE(ps2i, y

w
1i)

where ps1 = h1(f1(x
s, θe1), θ

d
1 , p

w
1 = h1(f1(x

w, θe1), θ
d
1)).

ps2 and pw2 are similar and thus omitted. We empirically
evaluate the effectiveness of strong-weak augmentation in
combination with different co-training methods in Table 1.
The improvement is significant and consistent on all co-
training frameworks, demonstrating our argument that co-
training and strong augmentation takes effect orthogonally
and complements each other. We strongly suggest taking
the improved co-training as the baseline for future studies.

Diverse Input Domains as Pseudo Views. Co-training
methods build upon two independent views while most vi-
sion tasks provide only a single view. To relax the condi-
tion, the objective is to create pseudo views with the prop-
erty of i) compatibility with the target function and ii) in-
dependent with the RGB view. To this end, we propose to
learn two models from different input domains. We lever-
age the discrete cosine transform (DCT) coefficients to gen-
erate the frequency domain input, as illustrated in Figure 4.
We refer to Appendix E for more details. The frequency
domain, in its appearance, is extraordinarily different from
the RGB domain. The compression and quantization pro-
cess renders the DCT relatively more independent with the
RGB image than, say, an image with augmentation or adver-
sarial perturbations. The compressed representations in the
frequency domain also contain rich patterns distinct from
RGB domains [99, 89, 27] which not only provides addi-
tional information to the training process but also introduce
additional inductive biases in data for different perspectives
in the Co-training.
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Figure 4. Illustration of the DCT transform process.

Different Augmentation Provides Different Views.
Given a single view (i.e. RGB image), augmentation is
the most straightforward way to generate pseudo views
[31, 11, 26, 10]. With different strong augmentation ap-
plied to the same image, distinct views can be generated
so that predictions of the two models are not too similar.
Particularly, random cropping has been proven effective to
produce different views [8]. By randomly cropping images
to different view crops, we inject view differences into the
input data and Co-training is performed only on overlapping
regions. Besides, random augmentations such as color jitter
and greyscale also help prevent homogenization. We pro-
vide the details of augmentations used in Appendix G. Be-
sides the diversity concern, different augmentations for each
model also potentially increase the unlabeled data, which
we show in Remark 2 can provide a better upper bound for
generalization error.

Diverse Architecture Provides Different Inductive Bi-
ases. Due to the lack of two views, deep co-training uti-
lizes different initialization to relax the condition. By tak-
ing one more step, we propose to utilize models instanti-
ated from different architectures, i.e. f1 ̸= f2. In addi-
tion to different weights, diverse architectures provide dif-
ferent inductive biases to model the input. For the inde-
pendence assumption, we provide an intuitive explanation
to demonstrate why diverse architecture provides diverse
views. Given the model as a function f parameterized by
θ, it’s essentially a composite function with each layer l
as a function zl = f l(·, θl) with input from the previous
layer zl−1. By freezing the layers below some ith layer
f l(·, θl), l = i− 1, i− 2, · · · , 1, we can view the ith layers
and above as a trainable function that maps the output of
the i − 1th layer to the target class. Intuitively, the output
of the two models from the i − 1th layer is different and
less dependent compared with the input (i.e. same image)
as different architectures or initialization are used. This in-
tuitively explains why different initialization can relax the
requirement of two independent views for co-training. It
also explains why different architectures are better: due to
the different inductive biases by different architectures, the
output of every layer i is much more different compared
with that of different initialization, thus better fulfilling the
assumption. Practically, one can leverage different CNN ar-
chitectures to instantiate the two models (e.g. ResNet and



ResNeXT [87]). But to promote diversity, the co-training
of CNN and transformer can provide a distinct set of in-
ductive biases that benefit each other (i.e. CNN with local
modeling and transformer with the long-range dependence
[17, 62, 64, 77, 46]).

Holistic Approach: Diverse Co-training. Following
the spirit of the above sections, we combine the three pro-
posed techniques to promote a holistic framework for di-
verse co-training. We provide two variants of Diverse Co-
training, termed by 2-cps and 3-cps following [20], which
leverage two models and three models to co-training re-
spectively. Concretely, we leverage CNN and transformer
as the two different architectures to maximize the discrep-
ancy with one model trained on RGB and the other on DCT
domain, as illustrated in (e) and (f) of Figure 1. The semi-
supervised nature of co-training brings noise into pseudo
labels for unlabeled data [67, 59, 90], thus we also pro-
vide confidence thresholding following FixMatch to filter
out noisy pseudo labels in which the model has low confi-
dence. Intuitively, each model should supervise the other
model with the pseudo labels it’s most confident in. We in-
troduce n (n = 2, 3) additional scalar hyperparameters τi
(i = 1, 2, · · · , n) denoting the threshold above which we
retain a pseudo-label. Formally, we reformulate the unla-
beled term as followed. We omit the sum over H ×W for
simplicity.

Lu
st =

1

|Du|
∑
x∈Du

1(max(pw2i) > τ2)lce(p
s
1i, y

w
2i)+

1(max(pw1i) > τ1)lce(p
s
2i, y

w
1i)

Unlike other methods [19, 94, 98] which either inserts mod-
ules or utilize the output of intermediate layers, we em-
phasize that our holistic approach leverages off-the-shelf
segmentation networks without changing or probing its in-
side components, which can be quickly incorporated with
any new SOTA segmentation methods and even be easily
adapted to other fields such as semi-supervised classifica-
tion and object detection.

Input Domain
1/32 1/16
(331) (662)

w/o SA

RGB 65.66 71.28
DCT 65.33 67.37

RGB & DCT 69.45 / 69.03 72.46 / 72.03
RGB & HSV 69.65 / 67.05 71.74 / 69.89

w/ SA

RGB 70.28 73.36
DCT 70.65 73.26

RGB & DCT 71.88 / 72.00 74.10 / 73.94
RGB & HSV 70.40 / 68.30 72.64 / 70.91

Table 2. Performance of co-training with different domains. For
cells with two numbers, the left one is the result of RGB model.

5. Experiment
We conduct experiments in this section. The objective

is to i) demonstrate our argument that diversity plays a cru-
cial role in co-training ii) by illustrating that the three pro-
posed techniques can effectively improve the performance
and prevent the model from being tightly coupled with each
other and iii) demonstrate the effectiveness by comparing
with other state-of-the-arts.

5.1. Experiment Setup

Datasets. We leverage two datasets for evaluating the
effectiveness of our idea. PASCAL VOC 2012 [29] is con-
structed by a combination of the Pascal dataset [18] with
high-quality train and validation images and the coarsely
annotated SBD dataset [29], resulting in a total of 10582
training images. Following prior arts, we randomly sam-
ple labeled images from i) the original high-quality training
images, and ii) the mixed 10582 images. Cityscapes [13] is
an urban scene dataset with 19 classes and a total of 2975
high-resolution (2048 × 1024) training images as well as
500 validation images. We follow prior arts and divide the
dataset by randomly sub-sampling 1/4, 1/8 and 1/30 of the
total training images as labeled set and the rest as the unla-
beled set. We crop each image to 769x769 during training.

Evaluation. We evaluate the segmentation performance
with the mean Intersection-over-Union (mIoU) metric. For
all partition protocols, we report the results on the PAS-
CAL VOC val set with single scale testing on origin resolu-
tion and Cityscapes val set with single scale sliding window
evaluation with crop size of 769 following [90, 82]

Implementation Details. For fair comparisons, we
leverage the widely adopted DeepLabv3+ with ResNet as
CNN and the SegFormer as the transformer architecture.
The backbones of both architectures are pre-trained on Im-
ageNet 1K. We utilize the pre-trained weights on ImageNet
1K for frequency domain from [89]. During training, we
leverage a batch size of 16 for Pascal and 8 for Cityscapes
with a labeled-unlabeled ratio of 1. We train Pascal and
Cityscapes for 80 and 240 epochs with an initial learning
rate of 0.001 and 0.005 respectively and polynomial learn-
ing rate decay following [12].

5.2. Analysis on How to Promote Diversity

We empirically analyze the three techniques proposed
with ResNet50. All experiments and figures in Section 3.3
and this sections are conducted on PASCAL VOC with par-
tition protocol 1/32 and 1/16.

Different Input Domains provides two views that are
relatively independent of each other. We demonstrate that
the DCT domain better fulfills the two assumptions of co-
training. Firstly, we show in Table 2 that training only on
the DCT domain achieves similar accuracy as the RGB do-
main, demonstrating that the DCT view is compatible with



Backbone
1/32 1/16
(331) (662)

w/o SA
R50 65.66 71.28

mit-b2 71.01 74.53
R50 & mit-b2 71.58 / 71.03 74.94 / 74.84

w/ SA

R50 70.28 73.36
mit-b2 74.51 75.29

R50 & mit-b2 74.85 / 74.87 75.12 / 75.85
ResNeSt50 70.92 75.58
ResNeXt50 71.18 72.77

R50 & ResNeST50 72.70 / 73.56 73.41 / 75.65
R50 & ResNeXT50 72.15 / 72.39 74.41 / 74.56

Table 3. Performance of co-training with different architectures.
We refer ResNet50 as R50 and SegFormer-b2 as mit-b2 [84]. For
cells with two numbers, the left one is the result of ResNet50.
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Figure 5. (a) Empirical evaluation of co-training with or without
different strong augmentation (SA); (b) Empirical evaluation of
co-training with different head structures.

the target function of the RGB domain and sufficient to train
a quality segmentor. As per Figure 3, co-training with dif-
ferent domains significantly lowers the similarity between
models, illustrating that different domains increase the di-
versity of the two models. We further evaluate empiri-
cally on VOC PASCAL where the RGB & DCT outperforms
the baselines with single view consistently on all settings.
Notice that both models of RGB & DCT obtain a signifi-
cant improvement, demonstrating that diversity benefits two
models mutually instead of a unidirectional teacher-student
one. We also conduct experiments on HSV, a color space
different from RGB and also observe similar but fewer im-
provements over baseline compared with DCT. We hypoth-
esize this is due to the discrepancy between DCT and RGB
being larger than that of HSV and RGB. Different Aug-
mentation further promotes diversity in co-training. We
empirically show in (a) of Figure 5 that different augmenta-
tions for each model are effective and show consistent im-
provement over the baseline.

Different Architectures provides different inductive bi-
ases and thus better independent views as discussed in Sec-
tion 4. From Figure 3, we already demonstrate that less sim-
ilar decision boundaries can be obtained with different ar-
chitectures. We here empirically evaluate the performance

Method Resolution 92 183 366 732 1464
ResNet50

Sup Baseline 513x513 39.1 51.3 60.3 65.9 71.0
PseudoSeg [103] 512x512 54.9 61.9 64.9 70.4 -

PC2Seg [100] 512x512 56.9 64.6 67.6 70.9 -
Ours (2-cps) 513x513 71.8 74.5 77.6 78.6 79.8
Ours (3-cps) 513x513 73.1 74.7 77.1 78.8 80.2

ResNet101
Sup Baseline 321x321 44.4 54.0 63.4 67.2 71.8

ReCo [49] 321x321 64.8 72.0 73.1 74.7 -
ST++ [91] 321x321 65.2 71.0 74.6 77.3 79.1

ours (2-cps) 321x321 74.8 77.6 79.5 80.3 81.7
ours (3-cps) 321x321 75.4 76.8 79.6 80.4 81.6
Sup Baseline 512x512 42.3 56.6 64.2 68.1 72.0

MT [72] 512x512 48.7 55.8 63.0 69.16 -
CPS[12] 512x512 64.1 67.4 71.7 75.9 -

U2PL [82] 512x512 68.0 69.2 73.7 76.2 79.5
PS-MT [50] 512x512 65.8 69.6 76.6 78.4 80.0
ours (2-cps) 513x513 76.2 76.6 80.2 80.8 81.9
ours (3-cps) 513x513 75.7 77.7 80.1 80.9 82.0

Table 4. Comparison with state-of-the-art methods on the Pascal
dataset. Labeled images are from the high-quality training set.
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Figure 6. Homogenization (measured by agree rate) with different
architectures.

of co-training with different architectures, as presented in
Table 3. Both R50 and mit-b2 can be further improved
through co-training compared with their corresponding in-
dividual baseline. For instance, we observe a remarkable
improvement of ResNet50 over single R50 co-training (e.g.
5.37% and 3.56% on 1/32 and 1/16 w/o SA), which can
be attributed to the high performance of mit-b2. However,
ResNet50 of R50 & mit-b2 even surpasses the individual
mit-b2 demonstrating that the cross-supervision between
different architectures provides additional information other
than the pseudo labels from mit-b2. We also provide co-
training with different CNN architectures and illustrate in
Figure 6 that different CNNs are more coupled compared
with CNN and transformer. Empirically, despite baseline
ResNeSt50 obtaining better performance than baseline mit-
b2, R50 & mit-b2 outperforms R50 & ResNeSt50 in all set-
tings. We also notice the improvement of ResNet50 in co-
training with different CNN architectures is less than that of
R50 & mit-b2, which further illustrates our point. To fur-
ther prove the concept, we additionally conduct experiments
on co-training with shared backbone and leverage different



decoder head structures, as shown in (b) of Figure 5. Co-
training with DeepLabv3+ head [7] and UPerHead [88] is
better than any baselines with single-head architecture con-
sistently.

Method Resolution
1/32 1/16 1/8 1/4
(331) (662) (1323) (2646)

Sup Baseline 321x321 55.8 60.3 66.8 71.3
CAC[43] 320x320 - 70.1 72.4 74.0
ST++[91] 321x321 - 72.6 74.4 75.4

Ours (2-cps) 321x321 75.2 76.0 76.2 76.5
Ours (3-cps) 321x321 74.9 76.4 76.3 76.6
Sup Baseline 513x513 54.1 60.7 67.7 71.9

CPS[12] 512x512 - 72.0 73.7 74.9
3-CPS [20] 512x512 - 72.0 74.2 75.9
ELN [42] 512x512 - - 73.2 74.6

PS-MT [50] 512x512 - 72.8 75.7 76.4
U2PL* [82] 513x513 - 72.0 75.1 76.2
Ours (2-cps) 513x513 75.2 76.2 77.0 77.5
Ours (3-cps) 513x513 74.7 76.3 77.2 77.7

Table 5. Comparison with state-of-the-art methods with ResNet50
on the Pascal VOC 2012 dataset. Labeled images are sampled
from the blended training set. The result of U2PL is reproduced
with the same setting as ours.

5.3. Comparison with State-of-the-arts
Pascal VOC 2012. We only compare the most recent

SOTA models due to limited space and a full comparison
can be found in Appendix J. We first compare the perfor-
mance of Diverse Co-training with SOTA on PASCAL VOC
on two groups of data partition protocols described in 5.1.
To ensure a fair comparison, we conduct training with res-
olutions of 321 and 513, which is reported with the results.
On the first partition protocol, our Diverse Co-training out-
performs the prior methods by a remarkable margin, as dis-
played in Table 4. For instance, we obtain an improvement
of over 10% on ResNet50 compared with the PC2Seg on
92, 183 and 366 partitions. With ResNet101, our method
surpasses the up-to-date SOTA (i.e. PS-MT) by a margin
as large as 9% under scarce label conditions such as 92 and
183, and outperforms all prior arts consistently on other set-
tings. On the second protocol, as indicated by Table 5, our
method also gains remarkable improvements over most up-
to-date studies. We emphasize that our performance on 1/32
(i.e. 75.2%) already outperforms other SOTA with 1/16
(around 72%) by 3%, which shows the effectiveness of our
approach. We further report the comparison on ResNet101
and SegFormer-b3 in Appendix D. Cityscapes. We com-
pare the SOTA with our method in Table 6. We report re-
sults on both ResNet50 & SegFormer-b2 and ResNet101 &
SegFormer-b3. We can see that our method outperforms the
current SOTA (i.e. U2PL) by more than 3% on 1/30 and 1/8
and 1.6% on 1/4 with ResNet50 & SegFormer-b2. Similar

trends can also be observed on ResNet101, where we con-
tribute an improvement of 0.5% and 1.1% over PS-MT on
1/8 and 1/4 protocol.

Method
ResNet50

Method
ResNet101

1/30 1/8 1/4 1/16 1/8 1/4
(100) (372) (744) (186) (372) (744)

Sup Baseline 54.8 70.2 73.6 Sup Baseline 66.8 72.5 76.4
CAC [43] - 69.7 72.7 CutMix [23] 67.9 73.5 75.4
CPS [12] - 74.4 76.9 CPS [12] 70.5 75.7 77.4

ST++ [91] 61.4 72.7 73.8 U2PL [82] 74.9 76.5 78.5
U2PL* [82] 59.8 73.0 76.3 PS-MT [50] - 76.9 77.6
Ours (2-cps) 64.5 76.3 77.1 Ours (2-cps) 75.0 77.3 78.7
Ours (3-cps) 65.5 76.5 77.9 Ours (3-cps) 75.7 77.4 78.5

Table 6. Comparison with state-of-the-art methods on the
Cityscapes dataset. Result of U2PL on ResNet50 (marked with
*) is from [90] which is reproduced with the same setting as ours.

5.4. Ablation Study and Analysis
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Figure 7. Comparison with baseline model with (a) Diverse Co-
training (2-cps) (b) Diverse Co-training (3-cps); (c) Ablation
study of combining diverse domains and different architectures.

Comparison with Baseline. We compare our methods
with baseline in Figure with ResNet50 and SegFormer-b2
on PASCAL VOC. We compare both variants of our method,
i.e. 2-cps and 3-cps, to each corresponding baseline (i.e.
CPS and n-CPS) and the labeled-only baseline. As per Fig-
ure 7, we achieve an improvement 9.55%, 4.71%, 2.46%
and 9.47%, 4.83%, 3.44% over their corresponding baseline
respectively. The improvement over the supervised baseline
is larger. It’s worth mentioning that the n-CPS baseline with
single architecture suffers from homogenization which con-
sequently limits the performance compared with the CPS
baseline (shown in Table 1). With the diversity boosted, Di-
verse Co-training (3-cps) now outperforms both baselines
by a large margin, further demonstrating that diversity is
crucial in co-training. Co-training is similar to knowledge
distillation (KD) in the sense that they both possess a teach-
ing process, the difference lies in that the teacher in KD
is usually fixed and teaching is unidirectional. We provide
a KD baseline comparison in Appendix F. Combining Di-
verse domains and Different Architectures renders model
less coupled further increasing the diversity and encourag-
ing the exploration at early stage of training. Empirically,
we also demonstrate a improvement of the combination
over the each individual, as shown in (c) of Figure 7. We



also provide a more complete ablation study on each one of
the component and their combinations in Appendix K. Con-
fidence Threshold τ and Unlabeled Weight λ. As pro-
posed in Section 4, our holistic Diverse Co-training lever-
ages confidence threshold τ to retrain confident samples as
pseudo label and balance the losses on unlabeled data with
weight λ. To be as simple as possible, we set the threshold
τ = 0.0 and λ = 1.0 as default for the experiments reported
in this paper. But we also report the performance of differ-
ent values in Figure 8. We emphasize that a better perfor-
mance can be obtained if optimal hyperparameters is thor-
oughly searched on each setting as in [50], which is omitted
due to computation reason. Number of parameters. We
report the parameters of all backbones used in Section 5.2
in Appendix H. We also provide a rigorous analysis to show
that our improvement is not trivial by adding more parame-
ters.
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Figure 8. Performance on (a) different confidence thresholds τ and
(b) different weight λ.

6. Conclusion
In this paper, we revisit the two core assumptions be-

hind the deep co-training methods in semi-supervised seg-
mentation and provide a theoretical upper bound over the
generalization error that links with the homogenization of
the two networks. We discover that the existing co-training
paradigms suffer from severe homogenization problems and
by exploring different dimensions of co-training and sys-
tematically increasing the diversity from three aspects, we
propose a holistic framework: Diverse Co-training which
achieves remarkable improvement over previous best re-
sults on all partitions of the Pascal and Cityscapes bench-
marks.
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A. Proof of Theorem 1.

First, we can show with PAC learning [56] that with la-
beled data set Dl of size l where l ≥ max{ 1

b0i
ln |H|

δ }, the

generalization error of the initial segmentor f0
i is bounded

by b0i with probability δ, which is a standard PAC supver-
sied learning problem. Then, without loss of generality, we
show the probability that the generalization error of fk

2 de-
noted by d(fk

2 , f∗) is larger than bki is at most δ.
we analyze the prediction difference between the seg-

mentor fk
2 and the total dataset which, at the kth iteration,

contains the labeled set and the unlabeled set annotated by
the previous segmentor fk−1

1 . We denote this dataset as σ2.

d(f∗, σ2) =
u× d(fk−1

1 , f∗)
l + u

d(fk
2 , σ2) =

l × d(fk
2 , f∗) + u× d(fk

2 , f
k−1
1 )

l + u

Since the upper bound of the generalization error of the seg-

mentor fk−1
1 is bk−1

1 , we have d(f∗, σ2) ≤ ubk−1
1

l+u . Since σ2

contains unlabeled data which may be incorrectly labeled,
σ2 must be sufficient to guarantee that if the difference of
fk
2 and σ2 is less than that of f∗ which means fk

2 ”learns”
the mistake, then the probability that the generalization er-
ror of fk

2 is less than bk2 is less than δ. Let M = ubk−1
1 , then

the probability that fk
2 has a lower observed difference with

σ2 than f∗ is less than

P = CM
l+ud(f

k
2 , σ2)

M (1− d(fk
2 , σ2))

l+u−M

Let bk2 = max{ lb02+ub01−u×d(fk−1
1−i ,fk

i )

l , 0},

d(fk
2 , σ2) =

l × d(fk
2 , f∗) + u× d(fk

2 , f
k−1
1 )

l + u

≥ lbk2 + u× d(fk
2 , f

k−1
1 )

l + u

≥ lb02 + ub01
l + u

As the function Ct
sx

t(1−x)s−t is monotonically decreasing
in t

s < x < 1, it follows that

P ≤ CM
l+u(

lb02 + ub01
l + u

)M (1− lb02 + ub01
l + u

)l+u−M

We can approximate the RHS with Poisson Theorem.

CM
l+u(

lb02 + ub01
l + u

)M (1− lb02 + ub01
l + u

)l+u−M

≈ (lb02 + ub01)
M

M !
e−(lb02+ub01)

When lb02 ≤ e M
√
M !−M ,

(lb02 + ub01)
M

M !
e−(lb02+ub01) ≤ elb

0
2

We show at the beginning that l ≥ 1
b02

ln |H|
δ , thus

P ≤ elb
0
2 ≤ δ

|H|

Given at most |H| − 1 (excluding the optimal f∗) segmen-
tor with generalization error no less than bk2 having a lower
observed difference with σ2 than f∗ in hypothesis class H,
the probability that

Pr
[
d(fk

2 , f∗) ≥ bk2
]
≤ δ

. In order to let the above derivation holds, we need one
more condition which is that the generalization error of
fk−1
1 , which is the counterpart model in the last iteration,

is bounded by bk−1
i by probability δ. When k = 0, which is

the initial segmentor that trains on the labeled set only, this
condition is satisfied (by supervised PAC learning). When
k = 1, the above holds as the the generalization error of f0

1

is bounded by b01 by probability δ. Then, by deduction, we
can prove that the above holds for any k.

B. Quantitative Analysis of Homogenization
problem

To quantitatively analyze the homogenization problem
of Co-training (or to quantify the diversity between two
models in the Co-training), we further propose two metrics
to measure the similarity in target space. As discussed in
Section 3.3, we can only quantify in the target space since
measures in parameter space of different architectures is
meanless. Specifically, we use L2 distance to measure the
similarity of logits output by the two models in Co-training
methods.

Dl2 =
1

HWC

HW∑
i=0

C∑
j=0

∥logitj1i − logitj2i∥2

As the model outputs probabilistic distributions, we can also
measure the similarity of models by KL Divergence.

Dkl =
1

HW

HW∑
i=0

C∑
j=0

sj1i log
sj1i
sj2i

As shown in Figure 9, we can see that Co-training with a
shared backbone suffers the most from the homogenization
problem while different architecture and different input do-
mains allow more diverse model in Co-training, which is
consistent with the findings in Section 3.3.
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Figure 9. Demonstration of homogenization problem in Co-
training

C. Quatification of Diversity in Different Tech-
niques

After identifying the homogenization problem in Co-
training methods, we provide three techniques to alleviate
this problem. As discussed in Section 3.3, 5.2 and Appendix
B, we first show that the three techniques can reduce the ho-
mogenization (measured by prediction similarity) and then
empirically show the effectiveness of each technique indi-
vidually and combined. Here, we are curious about how
much diversity they each introduce, or more specifically,
to compare the diversity they bring to the Co-training. We
conjecture that with more diversity introduced, the empiri-
cal performance is better. The first and simplest approach
is to directly and qualitatively analyze the homogenization
plots. We can see that different architectures provide more
diverse predictions than different input domains as well as
Co-training, and Co-training (shared backbone). The sec-
ond approach can quantify the diversity brought by leverag-
ing one of the three metrics (agree rate, l2, or kld discussed
in Appendix B). Due to the stochastic nature of SGD opti-
mization, we can use an exponential moving average to esti-
mate the metrics. An alternative can be a weighted average
of the metrics at the last epoch over the whole dataset. How-
ever, we emphasize here that the three techniques tackle ho-
mogenization in three different perspectives in the training
process and they mutually benefit each other as shown in
the ablation study.

D. VOC PASCAL 2012 Results on ResNet101
and Comparison with SOTA

We provide comparison with ResNet101 and
SegFormer-b3 on VOC PASCAL 2012 under the sec-
ond partition protocol mentioned in Section 5.1. For
Diverse Co-training, we use ResNet101 and SegFormer-b3
as backbones and compare two variants (i.e. 2-cps and
3-cps) with other methods with ResNet101 in Table 7.
We further demonstrate the effectiveness of our Diverse
Co-training by showing that the improvement over current
SOTA methods with resolutions of 321 and 513. We
outperform the previous best consistently by more than

2% with resolution of 321 and around 1% with resolution
of 513. For instance, ours (3-cps) surpasses ST++ [91]
by 2.8%, 2.0% and 2.0% on 1/16, 1/8 and 1/4 partition
protocols respectively. We also compare with AEL [34],
U2PL[82] and PS-MT [50] which obtains the best previous
performance. We outperforms the best of them by 0.7%,
0.8% and 1.3% on 1/16, 1/8 and 1/4 partition protocols
respectively. It’s worth mentioning that, our performance
with resolution 321 already outperforms the previous SOTA
with resolution 512. The remarkable performance of our
Diverse Co-training illustrate the significance of diversity
in co-training.

Method Resolution
1/16 1/8 1/4
(662) (1323) (2646)

Sup Baseline 321x321 67.5 70.4 73.7
CAC [43] 321x321 72.4 74.6 76.3

CTT* 321x321 73.7 75.1 -
ST++ [91] 321x321 74.5 76.3 76.6

ours (2-cps) 321x321 77.6 78.3 78.7
ours (3-cps) 321x321 77.3 78.0 78.6
Sup Baseline 513x513 66.6 70.5 74.5

MT [72] 512x512 70.6 73.2 76.6
CCT [61] 512x512 67.9 73.0 76.2
GCT [38] 512x512 67.2 72.2 73.6
CPS [12] 512x512 74.5 76.4 77.7

CutMix [82] 512x512 72.6 72.7 74.3
3-CPS [20] 512x512 75.8 78.0 79.0

DSBN‡ 769x769 - 74.1 77.8
ELN [42] 512x512 - 75.1 76.6
U2PL [82] 513x513 74.4 77.6 78.7

PS-MT [50] 512x512 75.5 78.2 78.7
AEL [34] 513x513 77.2 77.6 78.1

ours (2-cps) 513x513 77.9 78.7 79.0
ours (3-cps) 513x513 77.6 79.0 80.0

Table 7. Comparison with state-of-the-art methods with
ResNet101 on the Pascal VOC 2012 dataset. Labeled im-
ages are sampled from the blended training set. Results of MT,
CCT, GCT are from [12]. Results of CTT (denoted by *) is based
on DeepLabv2 and results of DSBN (denoted by ‡) is based on
Xception65

E. Detailed DCT Transform

We detailed the DCT trasform in this section. As illus-
trated in Figure 4, we first transform images to YCbCr color
space, consisting of one luma component (Y), represent-
ing the brightness, and two chroma components, Cb and
Cr, representing the color. Since the spatial resolution of
the Cb and Cr channel is reduced by a factor of two, we
upsample the original image by two to obtain the same res-
olution as Y channel. The image is then converted to the
frequency domain through DCT transform where each of
the three Y, Cb, and Cr channels is split into blocks of 8×8



pixels and transformed to DCT coefficients of 192 chan-
nels. The two-dimensional DCT coefficients at the same
frequency are grouped into one channel to form the three-
dimensional DCT cubes. After the DCT transform, we ob-
tain frequency domain input of 192 channels but with res-
olution downsampled by 8. Following [89], we select 64
channels (44, 10 and 10 channels each from Y, Cb and Cr
components respectively) close to upper-left squares from
the total 192 channels to reduce computation. We refer to
[89] for more details regarding the channel selections.

Since the number of channels for frequency domain is
different than the RGB domian (i.e. three), we have to mod-
ify the backbone to adapt it. We take ResNet [32] as an
example. To be as simple as possible and further reduce
training parameters and computation, we remove the stem
layers at the beginning of ResNet and modify the first con-
volution layer in the first ResLayer to have 64 in channels.

Notice that, the above DCT transform are not contradic-
tory to standard pre-processing techniques widely applied
to RGB images it takes RGB images as input, requiring
minimum modifications to the current pre-process pipeline
and model architecture. To maintain the strong-weak aug-
mentation proposed above, we first perform augmentations
on RGB images and then transform it to DCT for training
models on the frequency domain.

F. Comparison with Knowledge Distillation

As discussed in Section 5.4, Co-training is similar to
knowledge distillation (KD) in the sense that they both pos-
sess a teaching process, the difference lies in that the teacher
in KD is usually fixed and teaching is unidirectional while
Co-training does not possess the ”teacher” and ”student”
concept and the model teaches each other mutually. To
demonstrate that the effectiveness of our method is not sim-
ply a knowledge transfer from one model to another but
a mutually beneficial process, we compare the knowledge
distillation with our method. Specifically, a Segfromer with
mit-b2 is trained alone and distills the knowledge to Fix-
match with ResNet50. From Table 8, we show knowl-
edge transfer do take effect improving the original Fix-
Match baseline by 3% 1%, which can be attributed to the
diverse inductive bias and the high-quality pseudo label in-
troduced by the transformer model. However, we show that
our method still outperforms knowledge distillation by 1%
consistently. This is because Co-training mutually bene-
fits the two models while KD fails to enjoy this benefit.
This can be demonstrated from Figure 3 that Co-training
improves the mit-b2 by 1% while KD uses a trained and
fixed model.

Method Param 1/32 1/16 1/8 1/4
FixMatch 40.5M 70.28 73.36 74.0 74.3

FixMatch Distill 65.2M 74.1 74.9 75.6 75.8
Ours (2-cps) 65.2M 75.2 76.0 76.2 76.5

Table 8. Comparison with knowledge distillation. Labeled images
are sampled from the original high-quality training set.

G. Detail of Strong Augmentation
We provide a full list of strong augmentations applied in

Table 9.
CutMix is applied twice to the two different views in-

dividually. Notably, instead of batch-wise CutMix adopted
by CPS [12, 90], we use in-batch CutMix which leverages
the shuffled samples of the same batch to cutmix. We lever-
age the random cropped image directly as a weakly aug-
mented view to generate labels. Despite CutMix is applied
to each strong view individually, in-batch CutMix allows
us to generate cutmixed pseudo labels by forwarding each
model only once.

H. Number of Parameters
The objective of this section is to (1) demonstrate that

our improvement is not trivial by simply adding more pa-
rameters and (2) facilitate a fair comparison with the SOTA
method. We first report the parameters of the different ar-
chitectures used in Table 3.

Backbone Param
R50 2 × 40.5M = 81M

mit-b2 2 × 24.7M =49.4M
R50 & mit-b2 40.5M + 24.7M = 65.2M

ResNeSt50 2 × 42.3M = 84.6M
ResNeXt50 2 × 39.8M = 79.6M

R50 & ResNeST50 40.5M + 42.3M = 82.8M
R50 & ResNeXT50 40.5M + 39.8M = 80.3M

Table 10. We show the parameters of each architecture.

As per Table 10, our R50 & mit-b2 possess 20M param-
eters less than CNN variants such as R50 & ResNeSt50
and R50 & ResNeXt50 but still achieve better perfor-
mance. Then we compare FixMatch-Distill and FixMatch-
Ensemble which uses exactly the same or more parame-
ters than ours but a different learning paradigm. FixMatch-
Distill uses a trained Segformer-b2 to distill knowledge to
ResNet50 model as described in Appendix F. FixMatch-
Ensemble is an ensemble of two ResNet50 model is uses
20M parameters more than ours. As shown in the first sec-
tion of Table 11, our model outperforms both FixMatch-
Distill and FixMatch-Ensemble consistently by a large mar-
gin. This demonstrates that the improvements by our Di-
verse Co-training is not trivially by adding more parame-
ters. Finally, we also compare the parameters used in our



Weak Augmentation
Random Rescale Resizes randomly the image by [0.5, 2.0].

Random Flip Flip the image horizontally with a probability of 0.5.
Random Crop Randomly crop a region from the image.

Strong Augmentation
Color Jitter Randomly jitter the color space of the image with a probability of 0.8.

Gaussian Blur Blurs the image with a Gaussian kernel with a probability of 0.5.
Random Grayscale Turn the image to greyscale with a probability of 0.2.

Cutmix Cut a patch from one image and paste the patch to another image. We always apply Cutmix to every image.
Table 9. List of various image transformations.

method and the previous SOTA methods. CPS [12] uses two
models to perform Co-training while n-CPS (n=3) [21] uses
three. Although PS-MT [50] uses only one architecture,
they leverage two teachers (which are two different sets of
parameters) and one student which equals three times the
parameters of one model. U2PL [82] leverages the popular
teacher-student framework which also leverages two sets of
parameters. We show dominant performance with 20M pa-
rameters less which further demonstrates the effectiveness
of our Co-training.

Method Param 1/32 1/16 1/8 1/4
FixMatch Ensemble 81.0M 73.0 74.3 75.6 75.9

FixMatch Distill 65.2M 74.1 74.9 75.6 75.8
CPS [12] 81.0M - 72.0 73.7 74.9

n-CPS (n=3) [21] 121.5M - 72.0 74.2 75.9
PS-MT [50] 121.5M - 72.8 75.7 76.4
U2PL* [82] 81M - 72.0 75.1 76.2
Ours (2-cps) 65.2M 75.2 76.0 76.2 76.5

Table 11. Comparison of parameters and performance with differ-
ent learning paradigms and previous SOTA. Labeled images are
sampled from the original high-quality training set.

I. Visualization

Figure 10 visualizes some segmentation results on PAS-
CAL VOC 2012 validation set. First, we can observe the bet-
ter results obtained by co-training methods (i.e. (d) and (e))
as shown in the third and last row, where FixMatch is prone
to under-segmentation (classifies many foreground pixels as
background). Our Diverse Co-training, compared with co-
training baseline, can better segments the small objects that
FixMatch and co-training baseline tends to ignore (e.g. the
forth and fifth row). The FixMatch and co-training base-
line tends to ignore some foreground while our Diverse Co-
training does not, such as the visualization of the second
row. These visualization further demonstrate the remark-
able performance of Diverse Co-training and proves the ar-
gument that diversity matters significantly in co-training.

(a) RGB input (b) Ground truth (c) FixMatch (d) Co-training
(e) Diverse Co-training 

(ours)

Figure 10. Example qualitative results from PASCAL VOC 2012.
(a) RGB input; (b) ground truth; (c) FixMatch; (d) Co-training
baseline; (e) Diverse Co-training (ours). (c) and (d) use
DeepLabv3+ with ResNet50 as the segmentation network while
(e) uses DeepLabv3+ with ResNet50 and SegFormerb2 (with MLP
head) as the two segmentation networks.

J. Full Comparison with SOTA on Pascal VOC
2012

Due to limited space, we only compare the most recent
SOTA in Section 5.3. We provide a full comparison here.

K. Full Ablation Study
We further provide a table to show the importance and

performance gain of each component. As per table 14, we
can see that all component is effective when incorporate
into the holistic framework. The combination of diverse do-
mains and different architecture provides the best result of
75.21%, 75.85% and 76.23$ on 1/32, 1/16 and 1/8 labeled
data.



Method Resolution 92 183 366 732 1464
ResNet50

Sup Baseline 513x513 39.1 51.3 60.3 65.9 71.0
PseudoSeg [103] 512x512 54.9 61.9 64.9 70.4 -

PC2Seg [100] 512x512 56.9 64.6 67.6 70.9 -
Ours (2-cps) 513x513 71.8 74.5 77.6 78.6 79.8
Ours (3-cps) 513x513 73.1 74.7 77.1 78.8 80.2

ResNet101
Sup Baseline 321x321 44.4 54.0 63.4 67.2 71.8

PseudoSeg [103] 321x321 57.6 65.5 69.1 72.4 73.2
PC2Seg [100] 321x321 57.0 66.3 69.8 73.1 74.2

ReCo [49] 321x321 64.8 72.0 73.1 74.7 -
ST++ [91] 321x321 65.2 71.0 74.6 77.3 79.1

ours (2-cps) 321x321 74.8 77.6 79.5 80.3 81.7
ours (3-cps) 321x321 75.4 76.8 79.6 80.4 81.6
Sup Baseline 512x512 42.3 56.6 64.2 68.1 72.0

MT [72] 512x512 48.7 55.8 63.0 69.16 -
GCT [38] 512x512 46.0 55.0 64.7 70.7 -
CTT* [83] 512x512 64 71.1 72.4 76.1 -
CPS[12] 512x512 64.1 67.4 71.7 75.9 -

U2PL [82] 512x512 68.0 69.2 73.7 76.2 79.5
PS-MT [50] 512x512 65.8 69.6 76.6 78.4 80.0
ours (2-cps) 513x513 76.2 76.6 80.2 80.8 81.9
ours (3-cps) 513x513 75.7 77.7 80.1 80.9 82.0

Table 12. Full Comparison with state-of-the-art methods on the
Pascal dataset. Labeled images are from the original high-
quality training set. Results of CTT (denoted by *) is based on
DeeplabV2.

Method Resolution
1/32 1/16 1/8 1/4
(331) (662) (1323) (2646)

Sup Baseline 321x321 55.8 60.3 66.8 71.3
CAC[43] 320x320 - 70.1 72.4 74.0
ST++[91] 321x321 - 72.6 74.4 75.4

Ours (2-cps) 321x321 75.2 76.0 76.2 76.5
Ours (3-cps) 321x321 74.9 76.4 76.3 76.6
Sup Baseline 513x513 54.1 60.7 67.7 71.9
CutMix [82] 512x512 - 68.9 70.7 72.5

CCT [61] 512x512 - 65.2 70.9 73.4
GCT [38] 512x512 - 64.1 70.5 73.5
CPS[12] 512x512 - 72.0 73.7 74.9

3-CPS [20] 512x512 - 72.0 74.2 75.9
ELN [42] 512x512 - - 73.2 74.6

PS-MT [50] 512x512 - 72.8 75.7 76.4
U2PL* [82] 513x513 - 72.0 75.1 76.2
Ours (2-cps) 513x513 75.2 76.2 77.0 77.5
Ours (3-cps) 513x513 74.7 76.3 77.2 77.7

Table 13. Full Comparison with state-of-the-art methods with
ResNet50 on the Pascal VOC 2012 dataset. Labeled images are
sampled from the blended training set. The result of U2PL is re-
produced with the same setting as ours.



Table 14. Ablation study of different component combinations on PASCAL VOC datatset with ResNet50 and SegFormer-b2. The results
are obtained under 1/32, 1/16 and 1/8 partition protocols and the observations are consistent for other partition protocols. Ls represents the
supervision loss on the labeled data. Lul represents the pseudo supervision loss on the unlabeled data. SA (strong augmentation) denotes
strong-weak augmentation is used. Diff SA stands for different strong augmentation for each model. Diff domain means using RGB and
frequency domain to train separate models with cross supervision. Diff arch means different architectures are used to instantiate the two
models. Components PASCAL VOC

Ls Lu SA diff SA diff domain diff arch 1-32 1-16 1-8
✓ 55.78 60.3 66.79
✓ ✓ 65.66 71.28 73.77
✓ ✓ ✓ 70.28 73.36 74.82
✓ ✓ ✓ 69.45 72.43 74.84
✓ ✓ ✓ 71.58 74.94 75.97
✓ ✓ ✓ ✓ 71.07 74.09 74.98
✓ ✓ ✓ ✓ 72.00 74.10 74.93
✓ ✓ ✓ ✓ 74.89 75.82 76.08
✓ ✓ ✓ ✓ ✓ 75.21 75.99 76.23


