
Supervised Hierarchical Dirichlet Processes with Variational Inference

Cheng Zhang Carl Henrik Ek Xavi Gratal Florian T. Pokorny Hedvig Kjellström
Computer Vision and Active Perception Lab, Centre for Autonomous Systems

KTH Royal Institute of Technology
Stockholm, Sweden

{chengz, chek, javiergm, fpokorny, hedvig}@kth.se

Abstract

We present an extension to the Hierarchical Dirichlet
Process (HDP), which allows for the inclusion of super-
vision. Our model marries the non-parametric benefits of
HDP with those of Supervised Latent Dirichlet Allocation
(SLDA) to enable learning the topic space directly from data
while simultaneously including the labels within the model.
The proposed model is learned using variational inference
which allows for the efficient use of a large training dataset.
We also present the online version of variational inference,
which makes the method scalable to very large datasets. We
show results comparing our model to a traditional super-
vised parametric topic model, SLDA, and show that it out-
performs SLDA on a number of benchmark datasets.

1. Introduction
During the last decade, topic models have successfully

been used for modelling data across several different do-
mains such as information retrieval [1, 2, 13], computer
vision [3, 5, 10, 16, 18], and robotics [19]. This success
stems from the fact that I) the interpretation in terms of top-
ics is a natural description for many types of data, and II)
the theoretical foundation of the models provides a princi-
pled approach for learning and inference. The original work
on topic models comes from the text-mining community
[4], and with the introduction of Latent Dirichlet Alloca-
tion (LDA) [2], topic models were then later applied widely
to other domains.

Many learning tasks, e.g., in computer vision, make use
of supervised models where data are associated with la-
bels. There have been several extensions of the LDA model
[1, 7, 11] to accommodate supervision in such a way that the
model can be directly used for classification tasks. These
can be roughly divided into two different approaches: up-
stream supervision, where the latent topics are dependent
on the label, and downstream supervision, where the label
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is set as a response variable of the topics. The different LDA
extensions use different learning procedures. Supervised
LDA (SLDA) [1], which uses downstream supervision, op-
timizes the joint likelihood of the data and the label of the
document. Given the recent success of SLDA [1, 14, 20],
the model presented in this paper uses the same supervision
approach.

The main drawback of LDA, and its predecessor Latent
Semantic Analysis [4], is that the number of topics needs to
be set manually. This is especially troublesome for appli-
cations where the topic space lacks a clear semantical inter-
pretation, as often is the case in computer vision. Moreover,
it was shown in [13] that the performance of the LDA model
is very dependent on the number of topics. To rectify this
problem, Teh et al. [13] proposed a non-parametric model
capable of learning the number of topics, referred to as Hi-
erarchical Dirichlet Processes (HDP).

In this paper, we describe a supervised version of HDP,
SHDP. The contributions of this method are twofold:

• Firstly, its non-parametric property (that the topic
space size is automatically learned from the data) gives
it an advantage compared to current supervised topic
models such as SLDA.

• Secondly, it allows us to use an HDP framework in a
supervised setting, which increases the range of prob-
lems (not least in computer vision) to which HDP
methods can be applied.

We provide experimental results which show that the SHDP
model outperforms SLDA on a number of benchmark
datasets.

2. Related Work
Latent Dirichlet Allocation [2] assumes a generative pro-

cess where each document is modeled as a distribution over
topics, and topics are modeled as distributions over the ob-
served words. This hierarchical structure of the represen-
tation is natural for many types of data, e.g., in computer
vision, where an image corresponds to a document and the
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words are visual features extracted from the image. Blei
and McAuliffe [1] firstly introduced supervision in a down-
stream manner as an additional response variable. Later,
Wang et al. [14] accommodated a discrete response vari-
able to achieve a model suitable for classification. Taking
a different approach, Fei-Fei and Perona [5] used upstream
supervision, where the topic space is directly affected by the
labels, to perform natural scene classification. The success
of these works has shown that LDA is a suitable framework
for numerous computer vision tasks that require supervi-
sion. Supervised approaches to LDA have further been de-
veloped for computer vision. For example, Cao and Fei-
Fei [3] proposed a spatially coherent LDA model which
achieved promising results on both segmentation and clas-
sification, and Zhang et al. [18] introduced a model that
learned a factorized topic space that separated signal (de-
scriptive of class) and noise (not descriptive of class) into
different topics, making the topics more interpretable and
giving a better classification result.

When learning an LDA model, the number of topics
needs to be set a-priori. Experimentally, and not surpris-
ingly, it has been shown [13] that the performance of the
model is influenced by the number of topics. For many
types of data, e.g., image data, the appropriate number of
topics is not obvious. To circumvent this problem, the no-
tion of a Hierarchical Dirichlet Process (HDP) was pro-
posed by Teh et al. [13]. An HDP is a non-parametric
approach to topic modelling which automatically learns
the number of topics from data. Applied to natural lan-
guage processing, Xie and Rassoneau [17] proposed a semi-
supervised HDP model, where the “label” is the distribu-
tion of topics of the words – effectively a word-level label-
ing. Thus, this model is not directly applicable to document
classification tasks of the type common in computer vision.
To our knowledge no fully supervised HDP models exists,
which is why most topic models in computer vision are still
based on LDA rather than HDP. Therefore, we expect our
SHDP model to be of great use to the computer vision com-
munity.

Variational inference is in general an efficient method
[2, 1, 14] in itself. However, to adapt variational inference to
massive amounts of data, online variational inference meth-
ods have been developed. Hoffman et al. [6] accommodated
online variational inference in the LDA framework, devel-
oping Online LDA. Building on this, Wang et al. [15] pro-
posed Online HDP. In the experiments in this paper, we use
the SHDP framework with variational inference. We also
present an extension of SHDP to accommodate online vari-
ational learning which makes it useful for computer vision
tasks with massive amounts of data.

3. Model
In coherence with most other research articles on topic

modeling, we use the notion of a corpus, documents, top-
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Figure 1. Graphic representation of Supervised HDP

ics and words to describe our model. In our experiments
concerning action classification, a corpus is a set of video
sequences, a document is a single video clip, and words are
bag-of-STIP [8] features. Our model (Figure 1) is an exten-
sion of HDP [13]. In the following, we omit some details
about HDP and focus on the extension required to introduce
supervision.

3.1. The Stick Breaking Construction for HDP
The stick-breaking construction [12] is an intuitive way

to construct a Dirichlet process DP(H,γ) with base distri-
bution H and concentration parameter γ . We use the same
approach as Wang et al. [15], which we review now.

To sample G ∼ DP(H,γ), we draw, for k ∈ N, φk ∼ H
and

β
′
k ∼ Beta(1,γ),

βk = β
′
k

k−1

∏
l=1

(1−β
′
l ),

where one can think of β ′k as proportions of a unit length
stick which is recursively being broken into two, with one
part being put aside. The resulting βk sum to one and G =

∑
∞
k=1 βkδφk , where δφk denotes a delta function supported

at φk and G ∼ DP(H,γ) yields a draw from DP(H,γ). In
a topic model, H is typically a symmetric Dirichlet dis-
tribution over the vocabulary simplex and with parameter
η > 0. The φk then correspond to topics which are distribu-
tions over words and the βk form topic weights. Here, γ is
a parameter for the Beta process, and βk can be interpreted
as the length of the kth resulting stick part.

There are different ways to derive an HDP using a stick
breaking process. In [15], the HDP is constructed by ap-



plying two stick-breaking constructions successively, first
on the corpus and then on the document level. On the cor-
pus level, the above construction yields G0 = ∑

∞
k=1 βkδφk ∼

DP(H,γ). Next a per-document stick breaking yields G j ∼
DP(G0,α0), which depends on the corpus level topics:

G j =
∞

∑
t=1

π jtδψ jt , (1)

where π jt are the weights for topic ψ jt of document j gen-
erated in a similar manner as the weights βk on the corpus
level by sampling π ′jt ∼ Beta(1,α0). The important differ-
ence is how the topics themselves are drawn. On the corpus
level, topics are drawn from the prior distribution H, but on
the document level, the topics ψ jt are drawn from G0 in the
following way:

c jt ∼ Mult(β ),

ψ jt = φ c jt
, (2)

where c jt are indicator variables which index the corpus-
level topic corresponding to ψ jt .

The document-level topics depend on the latent variable
c = (c jt), which constitutes a link between the corpus and
document topics, in the following way: let z jn denote the
document level topic indicator for document j and word
n. Given a stick-breaking partitioning on both corpus and
document level, the nth word in the jth document, w jn, is
generated by first drawing the indicator variable z jn from a
multinomial parameterized by the topic weights on the doc-
ument level π j as z jn ∼ Mult(π j). The word w jn is then
drawn from the corpus level topic space mapped by c:

θ jn = c jz jn ,

w jn ∼ Mult(φ θ jn
) = Mult(φ c jz jn

). (3)

Both z jn and θ jn have the role of a topic assignment indi-
cator, z jn by choosing a topic from the support of the doc-
ument level topic distribution G j and θ jn by mapping from
the document level topic assignment z jn to the corpus level
topics though c. As Figure 1(b) shows, the generation of
a word w jn depends on the document level topic assign-
ment z jn, the indicator c j which maps the document level
topic assignment to the corpus level topic assignment, and
the corpus level topic-words distribution π . Instead of us-
ing topic indicators in the stick-breaking representation of
the model as Figure 1(b), the Bayesian representation uses
the topic mixtures directly. In Figure 1(a), H is a symmet-
ric Dirichlet distribution parametrized by η , defined over
a V -dimensional simplex, where V is the vocabulary size;
G0 denotes the corpus level topic mixture; G j denotes topic
mixture for document j. Figure 1(a) yields a visualiza-
tion which can be used to compare the model with HDP
[13] while Figure 1(b) provides more intuition on the stick-
breaking constructions of the model and for the variational
inference of the model. We will now proceed to show how
supervision can be incorporated with HDP using the above
construction.

3.2. Supervised HDP
As discussed in the related work, there are generally two

different ways to introduce supervision or labels into topic
models, upstream or downstream. The model we present
uses a downstream approach [1, 14] where the labels can
be seen as an additional response variable to the topics. In
this paper, we will focus on applications where the labels
are discrete, i.e., classification tasks. The goal is then to
infer a discrete response y, given a set of words {wn} for a
document.

The addition compared to standard HDP (Figure 1) is
that y is generated as a response to the topics along with the
words. The distribution over labels {y1, . . . ,yC} within the
model is implemented using a soft-max function [14]:

p(y j|θ̄ j,µ) =
exp(µT

y j
θ̄ j)

∑
C
l=1 exp(µT

l θ̄ j)
, (4)

where µ is the parameter of the soft-max function that will
be inferred from data as described in the next section. The
parameter θ̄ j is a vector representing the accumulative topic
count:

θ̄ j =
1
N

N

∑
n=1

Θ jn =
1
N

N

∑
n=1

c jz jn , (5)

where Θ jn is the binary indicator vector representation of
θ jn ∈ N. Similarly, c jt denotes the binary indicator vector
representation of c jt which is 0 except at position c jt ∈ N
where it takes value 1. Note that, if K ∈ N denotes the
largest index i of any topic φi giving rise to some word in the
finite corpus, then all entries of θ̄ j and hence also of µT

y j
θ̄ j,

for indices larger than K and all j ∈ {1, . . . ,M} are zero,
and we can then think of these as finite K-dimensional vec-
tors. It is furthermore easy to exchange the soft-max func-
tion with any generalized linear model to model response
variables with a different distribution.

We will now proceed to show how the parameters of this
HDP model with additional supervision can be learned from
data in an efficient manner.

4. Inference
In this section, we will describe how the parameters of

the model are inferred from data. This will be done with
a variational inference method. We will focus on the dif-
ferences between the proposed model and the original HDP
rather than deriving the full model. However, for the sake
of clarity, we provide a more detailed description as supple-
mentary material to the paper. Our derivation will first focus
on a batch approach, based on [2, 15], which we will pro-
ceed to extend to an online version adopting the inference
scheme used in [6, 15] and enabling us to use very large
datasets.

4.1. Variational Inference
Given the model, we need to estimate all the latent vari-

ables: the corpus level stick breaking relevance proportion



β
′, per document stick breaking relevance proportion π ′,

per document topic indices c (which map the document top-
ics to corpus level topics), per word topic indices z (which
are the document level topic indices for each word in the
document), the topics φ (the word distribution for each
topic), and the soft-max parameter µ . We will follow the
standard mean field variational steps [15] and use a fully
factorized variational distribution:

q(β ′,π ′,c,z,φ) = q(β ′)q(π ′)q(c)q(z)q(φ), (6)

where

1. q(β ′) = ∏
K
k=1 q(β ′k|v1k,v2k), where v1k,v2k are varia-

tional parameters for a beta distribution.

2. q(π ′)=∏
M
j=1 ∏

T
t=1 q(π jt |a1 jt ,a2 jt), where a1 jt ,a2 jt are

variational parameters for a beta distribution.

3. q(c) = ∏ j ∏t q(c jt |ρ jt), where ρ jt is a variational pa-
rameter for a multinominal distribution.

4. q(z) = ∏ j ∏n q(z jn|ζ jn), where ζ jn is a variational pa-
rameter for a multinominal distribution.

5. q(φ) = ∏k q(φk|λk), where λk is a variational parame-
ter for a Dirichlet distribution.

In SHDP, the number of topics, K, on the corpus level is
unbounded. However, due to the nature of the stick break-
ing constructions, the weight β ′k tends towards 0 when k
becomes large, simply because less and less of the stick
remains to partition. We exploit this by truncating the
weights; with a large K, we consider only β ′j for j ≤ K.
A similar strategy can be deployed for the document level
where we only consider the first T topics on the document
level and discard the remainder, resulting in truncated π j
and c j vectors. The parameters v1k, v2k, a1 jt and a2 jt con-
trol the beta distributions governing the stick breaking on
the corpus and the document level respectively. ρ jt is a
K-dimensional multinomial parameter which controls the
probability to select corpus level topics for the jth docu-
ment’s tth topic, while ζ jn is a T -dimensional multinomial
parameter which governs the probability of topic assign-
ment from the document level topics.

In a standard variational inference, using Jensen’s in-
equality, we get:

log p(w,y|γ,α0,η ,µ)

= log
∫

β
′,π ′,φ

∑
c,z

p(β ′,π ′,c,z,φ ,w,y|γ,α0,η ,µ)

= log
∫

β
′,π ′,φ

∑
c,z

p(β ′,π ′,c,z,φ ,w,y|γ,α0,η ,µ)
q(β ′,π ′,c,z,φ)
q(β ′,π ′,c,z,φ)

≥ E
q
[log p(β ′,π ′,c,z,φ ,w,y|γ,α0,η ,µ)]−E

q
[logq(β ′,π ′,c,z,φ)].

(7)

Hence, the right hand side above yields a lower bound,
which is:

L = E
q
[log p(β ′,π ′,c,z,φ ,w,y|γ,α0,η)]−E[logq(β ′,π ′,c,z,φ)]

=
M

∑
j=1

(
E
q
[log p(w j|c j,z j,φ)]+E

q
[log p(c j|β ′)]+E

q
[log p(z j|π j)]

+E
q
[log p(π ′j|α0)]+E

q
[log p(y j|z j,c j,µ)]

)
+E

q
[log p(φ |η)]

+E
q
[log p(β ′|γ)]−

M

∑
j=1

(
E
q
[logq(π j)]+E

q
[logq(c j)]+E

q
[logq(z j)]

)
−E

q
[logq(β ′)]−E

q
[logq(φ)].

(8)

Computation details of Equation 8 can be found in the sup-
plementary material to this paper.

Compared to standard variational inference on HDP,
the extra terms we need to compute are of the form
Eq[log p(y j|z,c,µ)]. These terms contain the per document
class label y j, as implemented with the softmax function in
Equation (4). It depends on the average of the topic distri-
bution for each document, and hence on the per word topic
indices z j and per document topic indices c j. The softmax
parameter µ also needs to be updated. Using the same trick
as [15], we get:

E
q
[log p(y j|z,c,µ)]≥ µ

T
y j
(

1
N

N

∑
n=1

T

∑
t=1

ρ jtζ jnt)

− log

(
C

∑
l=1

N

∏
n=1

( K

∑
e=1

T

∑
i=1

ρ jieζ jni exp(
1
N

µle
)))

.

(9)

Details on the computation of this inequality can be found
in Appendix A.1. Eq[log p(y j|z,c,µ)] is part of the lower
bound. Compared to variational HDP, this is the only new
term that we introduced to the bound. Hence, the update
equation for ρ and ζ will be influenced. Other variational
parameters will be updated in the same manner as HDP
[15]. Using the right-hand side of the inequality, we get
a new bound, which is used in the following.
To update ρ , we see that the part of the new lower bound
with ρ terms is:

Lρ =
M

∑
j=1

T

∑
t=1

K

∑
k=1

(
N

∑
n=1

ζ jntρ jtk Eq [log p(w jn|φ k)]

+ρ jtk Eq [logβk]−ρ jtk logρ jtk

)
+

M

∑
j=1

(
µ

T
y j
(

1
N

N

∑
n=1

T

∑
t=1

ρ jtζ jnt)

− log
( C

∑
l=1

N

∏
n=1

( K

∑
e=1

T

∑
i=1

ρ jieζ jni exp(
1
N

µle)
)))

.

(10)

There is no closed form solution to compute ρ to max-
imize (10). Hence, optimizing ρ becomes a constrained
non-linear optimization problem. There are many algo-
rithms and libraries for solving this. For example, the con-
jugate gradient method, which only requires the computa-
tion of partial derivatives, can be used. The partial deriva-
tives are given in Appendix A.2. In order to update ζ ,



Algorithm 1: Batch Variational Inference for SHDP

Initialize all the variational parameters1

while Not converged or within MAX iteration do2

E Step:3

For each document4
Update per document stick5

a1 jt = 1+
N

∑
n

ζ jnt a2 jt = α0 +
N

∑
n

T

∑
s=t+1

ζ jns
6

Update per document topic indices ρ numerically using
Equations (10) and (18)
Update per word topic indices ζ using Equation (23)7

M Step:8

Update corpus level stick9

v1k = 1+
M

∑
j

T

∑
t=1

ρ jtk v2k = γ +
M

∑
j

T

∑
t=1

K

∑
l=k+1

ρ jtl
10

Update topic mixture11

λki =
M

∑
j=1

T

∑
t=1

ρ jtk(
N

∑
n=1

ζ jnt [w jn = i])+η

Update the label parameter µ using Equation (12) and (24)

we observe that ∑
C
l=1 ∏

N
n=1

(
∑

K
e=1 ∑

T
i=1 ρ jieζ jni exp( 1

N µle)
)

can be considered as a linear function of ζ jn, for fixed
j, n. We define h not involving ζ jn (see A.3) so that

hT ζ jn = ∑
C
l=1 ∏

N
n=1

(
∑

K
e=1 ∑

T
i=1 ρ jieζ jni exp( 1

N µle)
)

. Fol-
lowing [14], we derive the fixed point update:

ζ jnt ∝ exp
( K

∑
k=1

ρ jtk Eq [log p(w jn|φ k)]+E
q
[logπ jt ]

+
1
N

µ
T
y j

ρ jt − (hT
ζ

old
jn )−1ht

)
.

(11)

Details of this derivation is shown in Appendix A.3.
Finally, we need to estimate the soft-max parameter µ .

The part of the lower bound which varies with µ is

Lµ =
M

∑
j=1

(
µ

T
y j
(

1
N

N

∑
n=1

T

∑
t=1

ρ jtζ jnt)

− log
( C

∑
l=1

N

∏
n=1

( K

∑
e=1

T

∑
i=1

ρ jieζ jni exp(
1
N

µle
))))

.

(12)

Compared with Eq. 9, we can see that this is the labeling
component that we introduced to the lower bound. The op-
timization of this term does not have a closed form solu-
tion either since it is highly non-linear in µ . Thus, we will
estimate an optimal solution using the conjugate gradient
method as well. The derivatives of this expression are given
in Appendix A.4. We sum up the batch variational SHDP
algorithm in Algorithm 1.

4.2. Online Variational Inference
We will now extend the batch variational inference to an

online setting which scales well with large data sizes. Let M

be the total number of documents. The basic idea is [15, 6]:

L =
M

∑
j

L j = E
j
[ML j]. (13)

Given the corpus level parameters, the document level pa-
rameters (a1 j., a2 j., ρ j., ζ j.) are computed in the same
way as in the batch variational inference. As in [15],
we update the corpus level parameters using the gradi-
ent DL j and follow the gradient with learning rate ωto .
ωto is decreasing as t0 increases, which denotes the num-
ber of the documents that the model has read. As in [6],
λ = (1− ωto)λ + ωto λ̃ ( j), v1 = (1− ωto)v1 + ωto ṽ1( j),
v2 = (1−ωto)v2+ωto ṽ2( j), and µ = (1−ωto)µ +ωto µ̃( j),
where λ̃ ( j), ṽ1( j) ,ṽ2( j) ,µ̃( j) are the estimates for DL j.
The online variational inference and its implementation is
available for download on the first author’s homepage1,
however, only the batch variational inference was evaluated
in this paper.

4.3. Classification
As shown in Equation (4), the class labels y j ∈{1, . . . ,C}

are estimated with a softmax function. Classification is
done using a variation approximation of θ̄ j (the corpus level
topic distribution of document j): θ̄ j =

1
N ∑

N
n=1 ∑

T
t=1 ρ jtζ jnt .

Since the denominator of Equation (4) is constant with re-
spect to class, only the numerator has to be regarded when
computing the MAP estimate of y:

ŷ j = argmaxy j∈{1,...,C}E[µ
T
y j

θ̄ j] (14)

corresponding to the MAP class estimate in SLDA [14].

5. Experiments
We tested our algorithm with two classification tasks:

natural scene classification and action classification, which
are typical computer vision tasks. As we will see, our exper-
imental evaluation shows that our proposed SHDP is able
to achieve the same level of performance as SLDA with an
optimal number of topics. The open source code for SLDA
from Wang2 was used for our SLDA experiments. Batch
variational inference is used in all the experiments below,
since the considered datasets are sufficiently small. The
source code for these experiments are available on the first
author’s homepage. Next, we describe the details of our
experiments.

5.1. Natural Scene Classification

Our experiment on natural scene classification is per-
formed with 4 common classes of natural scenes as in
[5, 18]. Here, documents in the topic model are images.
Words are features. We use a bag-of-visual-words presenta-
tion of SIFT [9] to adapt the discrete presentation of the

1http://www.csc.kth.se/ chengz/TopicModelCode.html
2http://www.cs.cmu.edu/ chongw/slda
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Figure 2. The top figure shows the confusion matrix for scene clas-
sification. The bottom figure displays a comparison of average
performance over classes using SLDA and SHDP. The horizontal
axis indicates the number of topics used for SLDA and is plotted
on a log10 scale.

words. The class label for each document is the natural
scene class on each image. There are more than 300 im-
ages for each class. For each class, a random selection of
80% the total images is used for training and 20% are used
for testing. α0 = 1, γ = 1, η = 0.5 as in [15], K = 150,
T = 20 are used in our experiment. A classification rate of
86.68% can be obtained by the proposed SHDP. Figure 2
(a) shows the confusion matrix. To compare, we ran SLDA
with different numbers of topics with α = 0.1. Figure 2 (b)
shows the performance of SLDA with different numbers of
topics and the SHDP performance. This result is consis-
tent with the comparison of LDA and HDP shown in [13].
When the number of topics is too small, the result suffers
from under-fitting. However, blindly increasing the number
of topics could on the other hand make the computation cost
extremely high without further improving the performance.
SHDP is able to achieve the same level of performance as
SLDA with an optimal number of topics in our experiments.

5.2. Action Classification

For action recognition, we used 3 actions from the KTH
action dataset [8] as in [18]. The documents in this action
classification task are video clips. Words are video features.
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Figure 3. The top figure shows the confusion matrix for action
classification. The bottom figure displays the comparison of av-
erage performance over classes using SLDA and SHDP. The hor-
izontal axis indicates the number of topics used for SLDA and is
plotted on a log10 scale.

We use a bag-of-visual-words presentation of STIP features
[8]. The class label for each document is the action label
on each video clip. There are around 100 video clips for
each class. A random selection of 80% of the video clips
is used for training and the rest is used for testing. α0 = 1,
Here, we set γ = 1, η = 0.5, K = 80, T = 20. An average of
86.67% test video clips can be correctly classified. Figure 3
(a) shows the confusion matrix and Figure 3 (b) displays the
comparison of SLDA with α = 0.1 and SHDP. The result is
consistent with the unsupervised version of the models [13]
and the previous natural scene classification result. SHDP
is able to achieve better performance than the SLDA setting
could achieve.

6. Discussion
In this paper, we presented Supervised HDP with varia-

tional inference and further extended it to an online setting.
In our experiments, we show that SHDP can achieve the
same level of performance as SLDA with an optimal set-
ting for the number of topics. We have released our topic
modeling code for public usage which includes variational
LDA, variational SLDA, variational HDP, online HDP, vari-



ational SHDP and online SHDP.3 Since online SHDP is a
model which is intended to be used on large scale datasets,
we intend to develop an incremental learning image classi-
fication system by fetching different classes of images, for
example from Google image search. We furthermore intend
to extend the model by e.g., factorizing noise and useful in-
formation in the SHDP framework [18], and we would like
to apply the model on multi-modal data for contextual mod-
eling [19].
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A. Appendix
A.1. The expectation of the label part is:
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The second term is:
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Now plugging the result of 16 back into 15, we obtain:
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A.2. Update of ρ

The partial derivative is given below:
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A.3. Update of ζ
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where Ψ is the digamma function. For i ∈ {1, . . . ,T}, we
write:
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We follow the approach of [14] to derive the fixed point
update. Suppose we have a previous value ζ old

jn . Consider

the inequality log(x) ≤ x−1x + log(x)− 1, where equality
holds if and only if x = x. Thus, set x = hT ζ jn and x =

hT ζ old
jn . The new bound becomes:
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We compute the derivative for the new bound:
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Finally, we set the derivative to zero to get the fixed point
update: 4
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A.4. Update of µ
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4To incorporate the constraint that ∑
T
t=1 ζ jnt = 1, ∝ is used here instead

of =, since the normalizing factor is dropped in the above result.


