
RCD-SGD: Resource-Constrained Distributed SGD in Heterogeneous
Environment Via Submodular Partitioning

Haoze He*

New York University, NY, USA
hh2537@nyu.edu

Parijat Dube
IBM Research, NY, USA

pdube@us.ibm.com

Abstract

The convergence of SGD based distributed training al-
gorithms is tied to the data distribution across workers.
Standard partitioning techniques try to achieve equal-sized
partitions with per-class population distribution in propor-
tion to the total dataset. Partitions having the same over-
all population size or even the same number of samples
per class may still have Non-IID distribution in the feature
space. In heterogeneous computing environments, when de-
vices have different computing capabilities, even-sized par-
titions across devices can lead to the straggler problem in
distributed SGD. We develop a framework for distributed
SGD in heterogeneous environments based on a novel data
partitioning algorithm involving submodular optimization.
Our data partitioning algorithm explicitly accounts for re-
source heterogeneity across workers while achieving sim-
ilar class-level feature distribution and maintaining class
balance. Based on this algorithm, we develop a distributed
SGD framework that can accelerate existing SOTA dis-
tributed training algorithms by up to 32%.

1. Introduction
Stochastic gradient descent (SGD) is the skeleton of

most state-of-the-art (SOTA) machine learning algorithms.
Traditional SGD was designed to be run serially at a sin-
gle worker. However, with the increasing size of deep
learning models and dataset, too much time is required
to perform training using a single machine [7]. Paral-
lelism in training is inevitably necessary to deal with this
magnitude of model, data, and compute requirements [22].
Distributed SGD parallelizes the training across multiple
workers, through different types of parallelism (model [27],
data [26, 17], pipeline) to speed up training. While paral-
lelism can achieve high training throughput, guaranteeing
the stability and convergence of SGD is challenging in dis-
tributed training [18, 26]. It is a complex interplay of ma-

*Corresponding author.

chine learning hyperparameters and dataset distribution that
contributes to convergence of distributed machine learning
training. Most of the SOTA decentralized distributed ma-
chine learning frameworks [17, 26, 1, 11, 18] randomly par-
tition the original dataset into subsets and assign them to
different workers. Their convergence analysis simply as-
sumes the subsets in each worker are independent and iden-
tically distributed (IID). However, random partitioning can-
not guarantee IID at the feature level and the Non-IID issue
still exists.

Submodular optimization, associated with a rich family
of submodular functions that can measure the diversity of
a given subset, has been used in machine learning in the
past decade. Submodular optimization is well known for
its strong capability to select a representative subset. Ear-
lier work have tried applying submodular optimization to
real-world applications including speech recognition, ac-
tive learning, and computer vision [10, 13, 21, 12, 20, 32,
31, 29, 34]. To solve the Non-IID issue in distributed ma-
chine learning, [30] tries to use submodular optimization
to partition the original dataset into IID subsets. General
partition on any dataset ahead of training won’t give ad-
ditional computational costs and will lead to faster conver-
gence. However, the submodular partition algorithm Greed-
Max [30] will lead to different sized subsets after partition.
Different sized subsets will lead to straggler problem (the
delays in waiting for the learners with large batch size) due
to synchronization step in most distributed SGD. Straggler
problem” refers to delays caused by the slowest learners in
distributed machine learning. This problem is caused by the
”synchronization barrier,” which is the process of coordi-
nating updates to the model parameters across multiple ma-
chines or devices, typically done after each iteration of the
training process [24, 18]. Although some recent papers try
to explore the possibility of using submodular optimization
to partition dataset under certain constraints [28], it cannot
be applied to distributed machine learning directly due to
non-uniformly sized and imbalanced classes across parti-
tions. To solve these problems, we propose RCD-SGD, a
resource-constrained distributed SGD. Our main contribu-

ar
X

iv
:2

21
1.

00
83

9v
2

 [
cs

.L
G

]
 1

8
Se

p
20

23

tions are:

1. We propose a novel algorithm to partition data for
distributed SGD in heterogeneous environments. The
proposed algorithm partitions the dataset across work-
ers in proportion to their computational capabilities
while achieving similarity in class-level feature dis-
tribution and maintaining class balance. (Class-level
feature distribution refers to the pattern of specific fea-
ture values within different categories or classes in a
dataset, providing insights into the data’s character-
istics and feature importance. Maintaining class data
sample number balance means ensuring that the num-
ber of data samples in each class or category of a
dataset is equal.) Our algorithm reduces the compu-
tational complexity of earlier partitioning algorithms
by a factor proportional to the number of classes in the
dataset [28].

2. By partitioning the original dataset into subsets with
the same number of data points, the label-balanced
greedy partition algorithm addresses the straggler
problem in distributed synchronous SGD.

3. We evaluate the RCD-SGD algorithm using two differ-
ent submodular functions and two SOTA-distributed
SGD algorithms. By achieving IID partitioning of
the dataset our algorithm achieves faster convergence
than the SOTA baseline. With approximately local IID
subsets, we reduce the communication frequency of
distributed SGD and achieve up to 32% speedup in
wall-clock time when compared with the SOTA algo-
rithms [23]. The final model also achieves slightly
better loss and improves the final accuracy by 1.1%
(”Approximately local IID subsets” means subsets of
data partitioned from original dataset are expected to
be similar and follow similar distribution properties).

4. The proposed resource-constrained distributed SGD is
a general algorithm that is extendable to most dis-
tributed SGD SOTA algorithms. Using any algorithm
as a baseline, resource-constrained distributed SGD
can achieve faster convergence and shorter wall-clock
training time.

2. Preliminaries and Related Work
2.1. Problem Formulation

Distributed Stochastic Gradient Descent (SGD) aims to
accelerate the training process by parallelizing it across
multiple worker nodes, employing various types of paral-
lelism such as model, data, and pipeline parallelism. Let
us consider a network with N worker nodes implementing
distributed SGD. The model parameters are denoted by x,
where x ∈ Rd. Each worker node i has access only to its

own local training data, distributed as Di. The objective of
distributed SGD is to train a model by minimizing the ob-
jective function L(x) using N worker nodes. The challenge
of distributed SGD can be formulated as follows:

min
x∈Rd

L(x) = min
x∈Rd

1

N

N∑
i=1

Es∼Di
[li(x; s)], (1)

where l(x) is the loss function defined by the learning
model, and Es∼Di

[li(x; s)] represents the local objective
function at the i-th worker.

2.2. Related Work

Synchronous centralized SGD with a parameter server
is a form of parallel mini-batch SGD. In this approach,
workers compute stochastic gradients of their local objec-
tives in parallel and use the averaged gradient to update
model parameters after each iteration. The update rule is
as follows:

xk+1 = xk − η

[
1

N

N∑
i=1

gi(xk; ξi)

]
, (2)

where xk represents the model parameters of server at
the k-th iteration, gi(xk; ξi) denotes the gradient at learner
i in the k-th iteration, η is the learning rate, and ξi represents
randomly sampled mini-batches from the local data distri-
bution. gi is the gradient estimate at the ith learner in the
kth iteration calculated using xk. The convergence analysis
of this approach has been presented in previous work [6, 2].

Centralized SGD with a parameter server [4, 16, 3, 8, 5]
encounters the communication bottleneck problem when
the framework has either a large number of workers or low
network bandwidth [19, 18, 17, 25]. To overcome this bot-
tleneck, decentralized SGD frameworks have been pro-
posed. In the D-PSGD (Decentralized Parallel Stochastic
Gradient Descent) approach [30], workers perform one lo-
cal update and average their models only with neighboring
workers. The update rule for D-PSGD is as follows:

xk+1,i =

N∑
j=1

Wij [xk,j − ηgj(xk,j ; ξk,j)] , (3)

where xk,j denotes the model parameters of worker j at
iteration k, ξk,j represents a batch sampled from the local
data distribution of worker j at iteration k, W ∈ RN×N ,
and Wij is the (i, j)-th element of the mixing matrix W ,
which indicates the adjacency between nodes i and j. Wij

is non-zero if and only if nodes i and j are connected.
The convergence of distributed training is tied to the

data distribution across workers. For efficient distributed
training, the data partitions at different workers should have
similar data distribution. A simple random partitioning in

equal-sized partitions may not preserve class-level distri-
bution across partitions. Class-level random partitioning
ensures that the number of samples of different classes in
any partition is in the same proportion as in the original
dataset. However, this may still not guarantee that the fea-
ture distribution of a class is similar across different parti-
tions. Ensuring similar feature distributions across different
partitions accelerates convergence because it promotes con-
sistent learning, stable gradients, efficient data usage, and
better generalization, allowing the model to learn faster and
converge more quickly to an optimal solution.

Some recent works involve the use of submodular func-
tions for data partitioning for efficient distributed machine
learning. In [30] using a greedy algorithm involving the use
of submodular functions, the dataset was partitioned into
subsets with IID features. However, their greedy algorithm
has three major problems:

1. Non-uniform sized partitions The algorithm can lead
to different sized partitions. This will lead to a strag-
gler problem in any distributed training algorithms
with a synchronization barrier.

2. Class imbalance across partitions The algorithm can
lead to a different number of samples per class across
the partitions. This imbalance can lead to lower per-
formance of the aggregated model. The reason why
this can happen is that if there are two classes with
an overlap in feature space (e.g., Figure 1), then since
the greedy algorithm is only maintaining similar fea-
ture distribution across partitions, we can have uneven
number of samples from these two classes in different
partitions.

Figure 1. The similarity between dog (a) and cat (b) is higher than
similarity between cat (b) and cat (c). Similarity is calculated us-
ing cosine similarity and Gaussian kernel with L2 distance. More
details about similarity calculation can be found in Section 3.

3. High computational complexity: With n samples in
the dataset, the greedy algorithm requires O(n2) com-
putations which can be prohibitive for large datasets.

The approach was generalized in [28] to perform con-
strained submodular partitioning. The experiment demon-
strated that the average performance of models trained indi-
vidually on different subsets is better than random partition-
ing. However, this was never demonstrated in distributed
training setting with communication between workers. In

Algorithm 1 Ratio-Constrained submodular partitioning
for distributed SGD in heterogeneous environment

1: Initialization: submodular function f , ground set V ,
number of blocks N , number of classes L

2: Set the ratio of constraint according to the computa-
tional performance of different workers r1, r2, . . . , rN

3: Let A1 = A2 = ... = AN = ∅
4: Split the ground set V into L sets V1, V2, ..., VL accord-

ing to class labels.
5: for Vl = V1, V2, ..., VL do
6: Constraint Cl,j =

|Vl|rj∑N
j=1 rj

, j ∈ {1, . . . , N}
7: Let Al

1 = Al
2 = ... = Al

N = ∅, J = [N], R = Vl

8: while R ̸= ∅ and J ̸= ∅ do
9: j∗ ∈ argmin j∈Jf(A

l
j)

10: if ∃v ∈ R s.t. An
j∗ ∪ {v} ∈ Cl,j∗ then

11: v∗ := GreedyStep(R,Cl,j∗ , A
l
j∗)

12: Al
j∗ := Al

j∗ ∪ {v∗}, R := R\{v∗}
13: else
14: J = J\j∗
15: end if
16: end while
17: Joint subset: A1 = A1 ∪Al

1, ..., AN = AN ∪Al
N

18: end for
19: Output:(A1, A2, A3, ..., AN)

addition, it cannot handle heterogeneous environments, the
issues of class imbalance and high complexity remain.

3. Proposed Method
In this paper, we propose a novel algorithm called RCD-

SGD. RCD-SGD is a meta-scheme algorithm that can be
applied to most decentralized SGD algorithms. RCD-SGD
includes two parts: data partition and distributed machine
learning. Both of them are described in Algorithm 1 and
Algorithm 2.

3.1. Resource-Constrained submodular partition-
ing

Algorithm 1 is our proposed algorithm for ratio-
constrained submodular partitioning. The similarities be-
tween each data point are computed using vectors v, v

′
. The

vectors, which present the features of the encoded image,
are extracted as the output of the auto-encoder’s bottleneck.
In Figure 3, we present the process to calculate similarity
between two images. More details of the pre-trained auto-
encoder model can be found in Section 4. In heterogeneous
environments, there can be a wide gap in the compute capa-
bilities of different workers. To solve this problem, we set
different constraints in the submodular optimization algo-
rithm according to compute performance of workers to en-

Figure 2. RCD-SGD performs ratio-constrained partitioning of datasets, where the number of samples per class is proportional to the
compute capabilities of the workers while maintaining per class feature distribution across partitions. When training multiple epochs of
local SGD at workers leads to faster convergence with reduced communication overhead.

Figure 3. Features of images are extracted from the bottleneck of
pre-trained auto-encoder. We use a Gaussian Kernel to measure
the similarity.

sure that the number of samples in a subset is proportional
to the performance of the worker training with that subset.
(The compute performance of different GPU workers can
vary based on factors like GPU model, architecture, and the
number of cores, with high-end GPUs offering better per-
formance compared to mid-range ones.) Besides, instead of
doing partitioning on the whole dataset, we do class-level
partitioning of the dataset. By using consistent constraint
across all classes for a certain worker, we can get balanced
subclasses. The submodular optimization greedy algorithm
requires O(n2) computations, whereas our algorithm will
reduce the computation complexity from O(n2) to O(n

2

L)
in L classes dataset thereby achieving 100× speedup when
partitioning CIFAR-100.

Algorithm 2 Label-balanced submodular partitioning
1: Initialization: submodular function f , ground set V ,

number of blocks N , number of classes L
2: Let A1 = A2 = ... = AN = ∅
3: Split the ground set V into L sets V1, V2, ..., VL accord-

ing to class labels.
4: for Vl = V1, V2, ..., VL do
5: Constraint Cl =

|Vl|
N

6: Let Al
1 = Al

2 = ... = Al
N = ∅, J = [N], R = Vl

7: while R ̸= ∅ and J ̸= ∅ do
8: j∗ ∈ argmin j∈Jf(A

l
j)

9: if ∃v ∈ R s.t. Al
j∗ ∪ {v} ∈ Cl,j∗ then

10: v∗ := GreedyStep(R,Cl,j∗ , A
l
j∗)

11: Al
j∗ := Al

j∗ ∪ {v∗}, R := R\{v∗}
12: else
13: J = J\j∗
14: end if
15: end while
16: Joint subset: A1 = A1 ∪Al

1, ..., AN = AN ∪Al
N

17: end for
18: Output:(A1, A2, A3, ..., AN)

We formulate the general resources-constrained sub-
modular partitioning optimization task as follows: parti-
tion datasets into N groups such that each group contains
similar, sufficiently, and approximately-IID strong predic-
tion power. The dataset of class l: Vl = {X,y} is given,
where X ∈ RM×d and y ∈ {0, 1}M . Set the constraint
according to the computational capability of different work-
ers: Cl,1, Cl,2, ..., Cl,N so that

∑N
i=1 Cl,i = M . Define a

partition of Vl as {Al
1, A

l
2, . . . , A

l
N} where Al

n ∈ Vl for

n = 1, 2, . . . , N such that

Al
j ∩Al

i = ∅ ∀i, j ∈ {1, 2, . . . , N}, i ̸= j

N⋃
n=1

Al
n = Vl

The proposed Resource-Constrained submodular partition-
ing algorithm (Algorithm 1) addresses the partition task.
The GreedyStep(R,Cl, A

l
j∗) in Algorithm 1 utilizes the

submodular function to measure the value. The GreedyStep
is defined as:

v∗ = arg max
i∈Vl\V̂l

f
(
Al

j ∪
{
vi
})

where
⋃N

n=1 A
l
n = V̂l ⊂ Vl. After partition the subsets will

finally achieve:
⋃N

n=1 A
l
n = Vl. We define a discrete set

function f : V → R as a submodular function if

f
(
Âl

j ∪ {v∗}
)
− f

(
Âl

j

)
≥ f

(
Al

j ∪ {v∗}
)
− f

(
Al

j

)
where Âl

j ⊂ Al
j ,∀j ∈ {Vl\∪N

n=1A
l
j}. A submodular func-

tion f must be monotone non-decreasing, which is the basic
requirment:

f
(
Al

j ∪ {v∗}
)
− f

(
Al

j

)
≥ 0

When the performance of the workers are similar, the
Algorithm 1 can also be simplified to label-balanced sub-
modular partitioning, which is presented in Algorithm 2.

3.2. Distributed SGD

We next propose a synchronous distributed training algo-
rithm using our proposed partitioning algorithm. The main
steps are depicted in Figure 2. Partitioning the data as in
Algorithm 1 ensures that each worker gets total (and per
class) samples proportional to their processing speed. This
will achieve approximate IID partitioning across workers,
both at the feature level and label level. After partitioning
the data, we perform synchronous distributed training with
several rounds of local SGD before each synchronization
step. This will not be detrimental to our convergence as we
are ensuring IID partitions.

Our training algorithm is a modification of Distributed-
Parallel SGD (D-PSGD) [30] where the data partitions can
be Non-IID due to random partitioning. The Non-IIDness
can be in feature and/or label space. Non-IIDness in feature
refers that features or labels of the data used in a machine
learning model are not independently and identically dis-
tributed. Thus convergence can be poor with D-PSGD, es-
pecially for datasets with an overlap in feature space across
classes. Further D-PSGD has a communication barrier af-
ter every step of local training and hence takes a longer

Algorithm 3 Decentralized distributed SGD algorithm
1: Initialization: initialize local models {xi

0}Ni=1 with
the same initialization, the ratio of computational per-
formance for different workers is r1, r2, ..., rN , learn-
ing rate γ, batch size B r1

ri
, communication frequency

F , weight matrix W , and the total number of iter-
ations K. Import the local subset ξi from subsets
{A1, A2, ..., AN}, which is partitioned by Resource-
Constrained submodular partitioning algorithm

2: while k = 0, 1, 2, ...K − 1 do
3: Compute the local stochastic gradient

∇Fi(xk,i; ξk,i) on all nodes
4: if k%F == 0 then
5: Compute the neighborhood weighted average by

fetching neighbor models: x̂k,i =
∑N

j=1 Wijx
b
k,j

6: else
7: x̂k,i = xk,i

8: end if
9: Update local model: xk+1,i = x̂k,i −

γ∇Fi(xk,i; ξk,i)
10: end while
11: Output: Average of all workers 1

N

∑N
i=1 xK−1,i

time to converge. During training, the communication be-
tween workers happens over a computational graph where
the nodes represent the workers and the edges denote the
connection between the workers. Thus ith, jth component
of W , Wij , is non-zero if and only if node i and node j
are connected. The workers only communicate after F it-
erations of local SGD. Since the batch size and the dataset
shard per worker is proportional to its processing speed, our
partitioning ensures that all the workers take approximately
same amount of time to finish F iterations locally thereby
reducing the straggler problem with synchronous SGD.

4. Experiments

In Fig. 4 and Fig. 5, we report the results of RCD-SGD
using D-PSGD and MATCHA as baselines. Performance
of RCD-SGD using facility location and graph cut as
submodular functions are included. Results are compared
with baseline D-PSGD and MATCHA. MATCHA, like
D-PSGD, begins with a predetermined communication
network topology. However, unlike D-PSGD, MATCHA
allows the system designer to define a flexible communi-
cation budget cb, representing the average communication
frequency over network links. The dynamic construction
of the weight matrices W (k) is dependent on the chosen
budget cb. When cb = 1, MATCHA is equivalent to the
vanilla D-PSGD algorithm. If cb is less than 1, MATCHA
effectively decreases the communication frequency over
each link, taking into consideration the link’s significance

Figure 4. RCD-SGD use facility location in greedystep: (a, b, c, d); use graph cut greedystep: (e, f, g, h). Results were obtained
on CIFAR-10 data set using ResNet-50. (a), (b) and (e), (f) show convergence with number of epochs while (c), (d) and (g), (h) show
convergence with wall clock time.

Figure 5. RCD-SGD use facility location in greedystep: (a, b, c, d); use graph cut greedystep: (e, f, g, h). Results were obtained on
CIFAR-100 data set using WideResNet. (a), (b) and (e), (f) show convergence with number of epochs while (c), (d) and (g), (h) show
convergence with wall clock time.

in maintaining the overall graph connectivity. Furthermore,
MATCHA assigns probabilities to worker connections,
enabling their activation in certain iterations. Experiments
use the following setting:

1. Models, dataset, and compared algorithms: The
performance of all algorithms is evaluated on image
classification task using CIFAR-10 and CIFAR-100
(|V | = 500000) [14]. In our experiments, we employ
ResNet-50 [9] and Wide ResNet models [33]. We

implement RCD-SGD as modification of D-PSGD
and MATCHA with a communication budget cb = 0.5.

2. Submodular functions: We use facility location, i.e.,
f(Al

n) =
∑

v∈Vl
maxv′∈Al

n
sim(v, v′) and Graph

Cut, i.e., f(Al
n) =

∑
v∈Vl\Al

n

∑
v′∈Al

n
sim(v, v′)

in Greedystep (algorithm 1) separately to run the
experiments. sim(v, v′) is the similarity between
(v, v′). We use a Gaussian kernel with L2 distance
to measure the similarity. We set Gaussian Kernel

as σ =
∑

v,v′∈V ||v − v
′ ||2/n2, where σ is the

bandwidth of the kernel. Similarities between each
data point are computed by vectors v, v

′
. In CIFAR-10

and CIFAR-100, the vectors are obtained from the
bottleneck layer’s outputs of a deep auto-encoder
model. The partition step is not included in the
comparison of wall-clock times, since the partition
only needs to be done once to generate subsets.

3. Implementations: All algorithms are trained for a suf-
ficiently long time until convergence or onset of over-
fitting. The learning rate is fine-tuned for the D-PSGD
baseline and then used for all other algorithms. We
set the initial learning rate as 0.8 and it decays by 10
after 100 and 150 epochs. The batch size per worker
node is 64. RCD-SGD uses F = 2 and reduces the
communication frequency to 50%. The auto-encoder
is trained using ReLU non-linearity and batch normal-
ization. The network is trained in PyTorch using the
procedure described in [15, 28]. The auto-encoder is
pre-trained using image reconstruction task. The neu-
ral network architecture of auto-encoder can be found
in table 1. The auto-encoder utilizes ADAM as the op-
timization method. The initial learning rate of 5e-3,
with a weight decay of 5e-4 and a minibatch size of
100.

Group Block Type
(kernel size, stride, channels) Blocks

conv1 [3× 3], 2, 64 1

conv1 (residual)
[
3× 3
3× 3

]
, 1, 64 2

conv2 [3× 3], 2, 16 1

conv2 (residual)
[
3× 3
3× 3

]
, 1, 16 2

conv3 [3× 3], 2, 8 1

conv3 (residual)
[
3× 3
3× 3

]
, 1, 8 2

conv4 [3× 3], 1, 4 1

conv4 (residual)
[
3× 3
3× 3

]
, 1, 4 1

deconv4 (residual) [3× 3], 1, 4 1

deconv3
[
3× 3
3× 3

]
, 1, 8 1

deconv3 (residual)
[
3× 3
3× 3

]
, 1, 9 2

deconv2
[
3× 3
3× 3

]
, 2, 16 1

deconv2 (residual) [3× 3], 2, 16 2
deconv1 [3× 3], 2, 64 1

deconv1 (residual)
[
3× 3
3× 3

]
, 2, 64 2

deconv0 [3× 3], 2, 3 1

Table 1. Neural network architecture of the Auto-encoder.

4. Machines and clusters: All the implementations are
compiled with PyTorch and OpenMPI within mpi4py
and rtx8000 GPUs as workers. We conduct experi-
ments on a HPC cluster with 100Gbit/s Infini-band
network.

We conducted an analysis of the results obtained with
RCD-SGD. In both Figure 4 and Figure 5, we observed that
RCD-SGD, utilizing either facility location or graph cut as
submodular functions, consistently outperformed the base-
line methods. Notably, improvements were evident in both
the convergence rate over epochs and the convergence speed
with respect to wall-clock time.

When training the results from CIFAR-10 and ResNet-
50, RCD-SGD achieved a significant time saving of up to
30% (Fig.4 c). Similarly, when utilizing CIFAR-100 and
WideResNet, substantial performance improvements were
observed, with a time saving of up to 12% (Fig.5 c), mea-
sured until the log of training loss reached -1.0.

By analyzing the results, it becomes evident that RCD-
SGD not only accelerates the convergence speed of both
baselines but also demonstrates a remarkable improvement
in convergence. The use of IID subsets aids in achieving
faster convergence for RCD-SGD, as the localized training
process enables more efficient model updates and fosters
enhanced learning across the dataset. This advantage can
be attributed to the network’s ability to focus on specific
patterns and features within each subset, leading to better
training dynamics and overall performance.

An interesting aspect of RCD-SGD is that it maintains
convergence even after the baselines have already con-
verged, thanks to the independent and identically distributed
(IID) partitioned subsets. At the 100th epoch, before the
learning rate decay, RCD-SGD exhibited up to 30% wall-
clock time saving (Fig. 5 c) when measured until the log of
training loss reached -0.05.

Furthermore, the final loss and test accuracy were con-
sistently improved when employing RCD-SGD, as demon-
strated in Table 2. It is important to note that all the results
presented in Table 2 are the average of ten experiments, en-
suring robustness and reliability.

Dataset Model Algorithms Accuracy

CIFAR-100 WideResNet

D-PSGD 0.718
D-PSGD based RCD-SGD 0.752

MATCHA 0.755
MATCHA based RCD-SGD 0.762

CIFAR-10 ResNet-50

D-PSGD 0.925
D-PSGD based RCD-SGD 0.937

MATCHA 0.931
MATCHA based RCD-SGD 0.939

Table 2. Test accuracy obtained with MATCHA and MATCHA-
based AL-DSGD for ResNet-50 model trained on CIFAR-10 and
WideResNet model trained on CIFAR-100.

5. Conclusion
Distributed training in heterogeneous clusters requires

efficient data partitioning for faster convergence. RCD-
SGD achieves IID partitioning with similar per-class fea-
ture distribution across workers having different compute
capabilities. The training can be performed with increased
epochs of local training leading to reduced synchronization
overhead. We are exploring use of other submodular func-
tions and the sensitivity of distributed SGD convergence on
their choice.

References
[1] Michael Blot, David Picard, Matthieu Cord, and Nicolas

Thome. Gossip training for deep learning. arXiv preprint
arXiv:1611.09726, 2016.

[2] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimiza-
tion methods for large-scale machine learning. Siam Review,
60(2):223–311, 2018.

[3] Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Se-
unghak Lee, Abhimanu Kumar, Jinliang Wei, Wei Dai, Gre-
gory R Ganger, Phillip B Gibbons, et al. Exploiting bounded
staleness to speed up big data analytics. In 2014 USENIX An-
nual Technical Conference (USENIX ATC 14), pages 37–48,
2014.

[4] Jeffrey Dean and Luiz André Barroso. The tail at scale. Com-
munications of the ACM, 56(2):74–80, 2013.

[5] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Marc’aurelio Ranzato, Andrew
Senior, Paul Tucker, Ke Yang, et al. Large scale distributed
deep networks. Advances in neural information processing
systems, 25, 2012.

[6] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin
Xiao. Optimal distributed online prediction using mini-
batches. Journal of Machine Learning Research, 13(1),
2012.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[8] Sanghamitra Dutta, Viveck Cadambe, and Pulkit Grover.
Short-dot: Computing large linear transforms distributedly
using coded short dot products. Advances In Neural Infor-
mation Processing Systems, 29, 2016.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[10] Stefanie Jegelka and Jeff Bilmes. Submodularity beyond
submodular energies: coupling edges in graph cuts. In CVPR
2011, pages 1897–1904. IEEE, 2011.

[11] Peter H Jin, Qiaochu Yuan, Forrest Iandola, and Kurt
Keutzer. How to scale distributed deep learning? arXiv
preprint arXiv:1611.04581, 2016.

[12] Andreas Krause, H Brendan McMahan, Carlos Guestrin, and
Anupam Gupta. Robust submodular observation selection.
Journal of Machine Learning Research, 9(12), 2008.

[13] Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-
optimal sensor placements in gaussian processes: Theory,
efficient algorithms and empirical studies. Journal of Ma-
chine Learning Research, 9(2), 2008.

[14] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

[15] Chandrashekhar Lavania and Jeff Bilmes. Auto-
summarization: A step towards unsupervised learning
of a submodular mixture. In Proceedings of the 2019 SIAM
International Conference on Data Mining, pages 396–404.
SIAM, 2019.

[16] Mu Li, David G Andersen, Alexander J Smola, and Kai Yu.
Communication efficient distributed machine learning with
the parameter server. Advances in Neural Information Pro-
cessing Systems, 27, 2014.

[17] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei
Zhang, and Ji Liu. Can decentralized algorithms outperform
centralized algorithms? a case study for decentralized paral-
lel stochastic gradient descent. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

[18] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asyn-
chronous decentralized parallel stochastic gradient descent.
In International Conference on Machine Learning, pages
3043–3052. PMLR, 2018.

[19] Mingrui Liu, Wei Zhang, Youssef Mroueh, Xiaodong Cui,
Jarret Ross, Tianbao Yang, and Payel Das. A decentral-
ized parallel algorithm for training generative adversarial
nets. Advances in Neural Information Processing Systems,
33:11056–11070, 2020.

[20] Yuzong Liu, Kai Wei, Katrin Kirchhoff, Yisong Song,
and Jeff Bilmes. Submodular feature selection for high-
dimensional acoustic score spaces. In 2013 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing, pages 7184–7188. IEEE, 2013.

[21] Kiyohito Nagano, Yoshinobu Kawahara, and Satoru Iwata.
Minimum average cost clustering. Advances in Neural In-
formation Processing Systems, 23, 2010.

[22] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, et al. Efficient large-scale language model
training on gpu clusters using megatron-lm. In Proceedings
of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–15, 2021.

[23] Sebastian U Stich. Local sgd converges fast and communi-
cates little. arXiv preprint arXiv:1805.09767, 2018.

[24] Rashish Tandon, Qi Lei, Alexandros G Dimakis, and Nikos
Karampatziakis. Gradient coding: Avoiding stragglers in
distributed learning. In International Conference on Ma-
chine Learning, pages 3368–3376. PMLR, 2017.

[25] Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified
framework for the design and analysis of local-update sgd
algorithms. The Journal of Machine Learning Research,
22(1):9709–9758, 2021.

[26] Jianyu Wang, Anit Kumar Sahu, Zhouyi Yang, Gauri Joshi,
and Soummya Kar. Matcha: Speeding up decentralized sgd
via matching decomposition sampling. In 2019 Sixth Indian
Control Conference (ICC), pages 299–300. IEEE, 2019.

[27] Jue Wang, Binhang Yuan, Luka Rimanic, Yongjun He,
Tri Dao, Beidi Chen, Christopher Re, and Ce Zhang.
Fine-tuning language models over slow networks using
activation compression with guarantees. arXiv preprint
arXiv:2206.01299, 2022.

[28] Shengjie Wang, Tianyi Zhou, Chandrashekhar Lavania, and
Jeff A Bilmes. Constrained robust submodular partition-
ing. Advances in Neural Information Processing Systems,
34:2721–2732, 2021.

[29] Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in
data subset selection and active learning. In International
conference on machine learning, pages 1954–1963. PMLR,
2015.

[30] Kai Wei, Rishabh Iyer, Shengjie Wang, Wenruo Bai, and Jeff
Bilmes. How to intelligently distribute training data to mul-
tiple compute nodes: Distributed machine learning via sub-
modular partitioning. In Neural Information Processing So-
ciety (NIPS) Workshop, Montreal, Canada, 2015.

[31] Kai Wei, Yuzong Liu, Katrin Kirchhoff, Chris Bartels, and
Jeff Bilmes. Submodular subset selection for large-scale
speech training data. In 2014 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
pages 3311–3315. IEEE, 2014.

[32] Kai Wei, Yuzong Liu, Katrin Kirchhoff, and Jeff Bilmes.
Using document summarization techniques for speech data
subset selection. In Proceedings of the 2013 Conference of
the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pages
721–726, 2013.

[33] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. arXiv preprint arXiv:1605.07146, 2016.

[34] Jingjing Zheng, Zhuolin Jiang, Rama Chellappa, and
Jonathon P Phillips. Submodular attribute selection for ac-
tion recognition in video. Advances in Neural Information
Processing Systems, 27, 2014.

