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Abstract—Linear detectors such as zero forcing (ZF) or inverse is computationally expensive, especially whegdar
minimum mean square error (MMSE) are imperative for number of antennas are employed.
large/massive MIMO systems for both the downlink and uplink In this paper, we argue that an approximate matrix inverse

scenarios. However these linear detectors require matrixnver- ) - .
sion which is computationally expensive for such huge systes. suffices for finding a ZF/MMSE solution. In other words,

In this paper, we assert that calculating an exact inverse isiot Usage of an approximate inverse does not compromise the
necessary to find the ZF/MMSE solution and an approximate quality of a ZF/MMSE solution. Since the solution obtained
inverse would yield a similar performance. This is possiblef the  ysing linear detectors anyway needs to be quantized, ie@ cl
quantized solution calculated using the approximate invese is that there is a scope for using an approximate inverse as®ng
same as the one calculated using the exact inverse. We qudnti . . : -

the amount of approximation that can be tolerated for this the quantized _solu_tlon remains unchanged. We der_lve bounds
to happen_ Motivated by thiS, we propose to use the existing on the apprOXImatlon such that the ZF/MMSE solutions from
iterative methods for obtaining low complexity approximate the exact and approximate inverses are same. Further, we sho
inverses. We show that, after a sufficient number of iteratios, that the advantages of using an approximate inversion are no
the inverse using iterative methods can provide a similar eor limited to linear detectors. Thus, a class of Sphere Degpdin

performance. In addition, we also show that the advantage of . - . .
using an approximate inverse is not limited to linear deteabrs (SD) algorithmsl[10] require the ZF solution for computihgt

but can be extended to non linear detectors such as sphereBabai Radius (BR)[[11],[12], consequently requiring matri
decoders (SD). An approximate inverse can be used for any inversion. Hence, one can think of utilizing an approximate

SD that requires matrix inversion. We prove that application of  matrix inverse even in complex decoding schemes like SD.

approximate inverse leads to a_smaller radiu_s, vx_/hich in turn In this work, we propose the application of an approximate
reduces the search space leading to reduction in complexity . '

Numerical results corroborate our claim that using approximate inverse to compute the BR for usage in SD. The approximate

matrix inversion reduces decoding complexity in large/masive  inverse has two advantages. Firstly, it reduces the coritplex
MIMO systems with no loss in error performance. of matrix inversion. But secondly, and more importantly,

we prove that it results in a smaller BR. This is a bigger
advantage as complexity of decoding in such SD algorithms is

With growing demand for high throughput, Mutiple-Inputdargely governed by the choice of BR. Simulations results fo
Multiple-Output (MIMO) systems with large/massive numbelarge/massive MIMO systems corroborate that the proposed
of antennas are expected to become an indispensable paisbfprovides a low complexity solution with no loss in error
fifth generation wireless technologyl[1].1[2]. It employs gerformance.
large number of antennas at the base station (of the order
of hundreds) that operate to serve relatively fewer users.

However, we know that as the number of antennas grow, theConsider a massive MIMO downlink withV transmit
complexity of detection algorithms increases [3]. Thusrétis antennas at the base station aiidusers, each with a single
need for techniques which, while exploiting the extra degrereceive antenna. Such a system can be represented by

of freedom, are able to decode the transmitted signal eftigie
in terms of error performance and complexity.

In the literature, Zero Forcing (ZF) and Minimum Mearwheres; = Wx4, W is the linear precoder such as ZF or
Square Error (MMSE) have commonly been used as precod®SISE andx, is the N dimensional signal vector transmitted
in a massive MIMO downlink[[4],[I5] and as decoders irfrom the base station. Each elementipis drawn from a set
a massive MIMO uplink. Even the complex decoders fdr, all entries of which belong to an/-QAM constellation,
uplink transmission also require the computation of ZF/MMSwith average symbol energi,. H; represents théd{ x N
solution. For example, neighborhood search based algusithi.i.d. channel matrix with zero mean and unit variance apd
[6], [I7] or sparsity based detectors| [8].] [9] use such lined an i.i.d. zero mean Gaussian noise vector with dimension
detectors for initialization. Calculating a ZF or an MMSEK x 1 and varianceV,. Thei-th entry of the vectoy 4, y;.q.
solution requires inversion of a matrix. However, finding ais the signal intended for theth user, fori =1,2,--- | K.

I. INTRODUCTION

Il. SYSTEM MODEL

ya = Hgsq +ny, 1)
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Similarly, in the case of uplink, the system can be repr
sented by

Yu = Huxu + Ny, (2)

where x,, is the K dimensional transmitted signal vector

whosei-th entry is the symbol transmitted by tiwh user, for
1=1,2,---, K. Again, each element ir,, is drawn from the
set (), with average symbol energli,. Similarly, H, is the

N x K i.i.d. channel matrix with each coefficient having zerg, .

mean and unit variance. The noise veagris i.i.d. N x 1
Gaussian with each element having zero mean and varia

Ny, andy, is the N dimensional received signal vector at the

base station. This results iK' E, /N, Signal-to-Noise Ratio

@equalities are satisfied by the error matkix (a sufficient
condition)

o us oo
_ Em < &E(zl — ZEijgj) < o (6)
j=1
K
dmin dmin
- < S(zi — Z Eijg;) < ) (7)
j=1

=1,2,---,kandj = 1,2,--- .k, where z; is the i-

th element ofz, E;; is the (¢,j)-th element of matrixE,
%nem is the smallest distance between any two points in the
constellation, anét and< denote the real and imaginary parts
respectively. After combining thé& equations in[{(6) and {7)

(SNR) at each receive antenna. and taking expectations on all sides, we have

IIl. AL INEAR DETECTOR USINGAPPROXIMATE MATRIX

_dmin

INVERSE 1x < ER(z — Eg)] < =21,
Linear detectors such as ZF and MMSE are useful for both —do )
the uplink and downlink (as a precoder) in massive MIMO 1k < E[S(z - Eg)] < ——1k.

systems. The expressions for these detectors can be exgbress _ _ _
as wherely is a K x 1 vector with all entries as ones.

Here E(z;) = 0, for all ¢« = 1,2,---, N, because for a

xz¢ = [H'H)'H"y] (3) given transmitted vectox, xzr can take any point in the
H No. 1een constellation aroundk due to randomly and independently
xumse = |(H H+EIK) H%y |, (4)  distributed noise and hence the expectation of difference

o ] between the two quantities would be zero. Therefore
where [-] quantization operator to the s& and H is the

N x K channel matrix. Quantization allows us to use an dmin
approximate inverse instead of exact inverse while giving t 2
same ZF/MMSE solution. Since the operations are similar ¥ghich, after substituting foE andg, yields
both the uplink and downlink scenarios, we consider only the

_dmin

1K < E[%(Eg)] < 1K

uplink scenario for the analysis. For notational simpficive ——221, < E[R((C;, — C~")(H?Hx + H"n))] < nin 1k
have removed the subscripts here onwards.

Let us define the error in the approximation of the inverse of s '
a matrixC asE = C—C~!, whereC=H"HisaK x K = — 1 < E[R(Sx)] < —1k, (8)

matrix that needs to be inverted ard is its approximate

inverse. Also, defing = Hy. where we defin® = I— CC as the residual matrix. Similarly,

_dmin dmin

A. A Bound on the Acceptable Error in the Matrix Inverse

1x < E[S(Sx)] < 1k 9)
We will consider an approximate matrix inverse good if the
ZF solution calculated through it is equal to that calcudatédence, if [8) and[(9) are together satisfied $yfor a given
through the exact inverse. In this section, we evaluate adouransmitted vector, the ZF solutions through approximate
on the error which can be tolerated in the computation of &nd exact inverses would be equal. Next, we discuss some
approximate matrix inverse. low complexity approximate matrix inversion methods which

For the ZF solutions calculated using the exact and apprd@n be used to find ZF solution accurately.

imate matrix inverses to be equal, the following equalitysinu

be satisfied B. Low Complexity Iterative Methods for Computing Approx-

imate Matrix Inverses
argmin||x — C"*Hy||?
Q

argmin|x — CHy||?
x€e xEQ

Several low complexity iterative methods for finding the
inverse of a matrix have been proposed in [13]] [14]. Cgtbe
the approximate inverse ar), be the residual matrix after
iterations. The order of the iterative methogis the residuals
after k and k + 1 iterations satisfyS,; = S}. For e.g., in
a third order method, approximate matrix is calculated m th

following manner([183]

= argmin|jx — C~!g||? argmin|x — Cg||?
x€Q x€Q
argmin||x — C~'g — Eg||.
x€N
(6)

Let the solution of the L.H.S. of 5) b&zr and letz =
xzrg — C~'g. Therefore,[(b) will be satisfied if the following

= argmin||x — C™'g||?
x€eN

Crs1 = Ci(31 — CCL(31 — CCy)), (10)



wherel is the identity matrix. Here, we note thé,.; = S;.  Algorithm 1: Proposed SD Scheme

Similarly, a seventh order iterative method is defined as Input :y, H,Q k
Cis1 = Cp(TI+ CCk(21I + CCy(351 + CCy (351 Output - x
+  CCi(21I+ CC(7TI+ CCy)))))), (11) Initialization i = K, cost =Tk ¢ =0;
[Q R] + QR decomposition ofI andz = Qfy;
and here, we havB,; = S]. % + DFTS(z, R, Q, cost, &, d, i);

In our simulations, we use Newton’s iterative method for
finding approximate matrix inverse which has low latency,
low complexity [10] and is also easy to implement|[14]. The
approximate inverse is updated in each iteration accortting

Function: DFTS(z, R, Q, cost, ¢;, 1)
for j < 1 to length2) do
| ¢j = lzi —riixj|?, Vo € Q;

Ciy1 = (2I - C,C)Cy. (12) Sorte;’s in ascending order and keep only those symbols

Here,Si+1 = S? l drati | . for which ¢; < (cost — ¢;);
ere,5i+1 = Sy, revealing qua ratic convergence. Increasing if ¢ ﬁ (cost - Ei) then

the number of iterations increases accuracy, but alsoasese
the number of operations required and hence affects complex
ity, resulting in a trade-off between performance and efficiy.
Initial matrix Cy needs to be chosen with care as it decides 5=
the number of iterations required for the method to converge ,5_1 - 57“4_ o
if it converges at all. The applicability of iterative mett®o i i — 1 then
is restricted since global convergence is not inherent o al
initial matrices. A general condition for initializatios igiven
by ||I — CCyll2 < 1 or ||So||2 < 1. This condition ensures
that the residual converges towards zero after each erati
However, there are some conventional initialization mdtgho else
which guarantee convergence. [In[14], theorem 2 shows that F=z—R., 1,
to find the inverse of a matrixC, the initialization Cy = Extend thé tregl for all O
aCH, wherea satisfies) < a < a?fax ando?,,, is denoted %, cost] « DFTS(z, R Q,cost Gi—1);
as the largest eigenvalue of the matdx = C* C, ensures end ’ S Y
convergence. To reduce the complexity, following bound is end
used [14] end
02 0w < Aupper =m + (N — 1)3 (13)

maxr —

| return X, cost;
else
for u « 1 to length(c) do

if costiemp < cost then
cost < ¢;;
return X, cost;
end

2
wherem = o) gng 2 = irace(A’) m? anda is : . .
selected ag — 2N//\ which ensﬁres converaence. In thgerformance. In this section, we propose a mechanism to
N Uppers 9 : feduce the complexity of SD.

next section, we propose a low complexity SD algorithm for

) Our SD algorithm combines both the strategies wherein we
large-antenna and massive MIMO systems that uses above Ma_lize with a BR computed using a low complexity itexati
trix inversion methods to accurately estimate the trartsihit P g plexity

signal vector. matrix in_verse and also update the radius ada_lptivel_y wiénye_v
good point. The number of updates when using this algorithm
IV. SPHEREDECODING USINGITERATIVE MATRIX would be significantly less, as the radius will be updateq onl
INVERSE when a new point is closer to the transmitted signal than ZF.
Now, let us investigate the advantages of using iteratife>0: W€ aré always guaranteed a solution as the ZF soluion i
matrix inverses for non-linear detectors, such as SD. Rtigse 2Ways inside the searched domain. In Algorithm 1, we show

there are two main versions of SD. The first is the SchnoHle steps of the proposed SD scheme.

Euchner enumeration_[1L5],_[16] that updates the radius fgr . . . .
SD adaptively, where after starting with an infinite radius,” Comparison of Babai Radii Calculated through Approxi-

the search space shrinks with each good point until we gﬁé?te and Exact Matrix Inverses

the optimal solution. In large/massive MIMO systems, such a Though iterative methods provide a good approximate in-
technique would result in a huge decoding complexity. Theerse, it is important to analyze the effect of approximatio
other one is Fincke-Pohst algorithm based S$DI [1A]] [17n the BR, as the choice of radius largely governs the
which uses a fixed radius approach, and all the points that ammplexity of SD. Interestingly, we show that the applioati
inside the search space defined by the radius are comparedfoapproximate matrix inversion methods also reduces the
detecting the transmitted signal. This technique is extfgm value of radius which leads to further savings in complexity
sensitive to the choice of the radius. It has been shown inTo prove this, let us define. as the BR computed through
the literature that both these approaches provide near Mkact inverse and;, as the BR computed through the iterative
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Fig. 1. BR with Newton'’s iterative method for 6 x 16 system. Fig. 2. Bit error performance for the MMSE decoder in a mas$itiMO

system withNV = 128, K = 8 for 16-QAM.

method afterk iterations. We know that, = limp_ o 7%. )
Now, from the definition of BRI[T1],T12], we can write ~ and therefore, can be rewritten as

E@7HS,C 'g] = E[@R7HS,C'H”q]
re = |[R(xzr — %), (14) = NoTr(HS,C™'H"), (21)
re = |[R(xzr — %2)|, (15) where T(X) denotes the trace of matriX. From [I8) and
wherex; = C'g, %» = Cig andR is obtained from the @D
QR decomposition o asH = QR. Let @i denote the noise E[r? —r?] = 2NoR[Tr(HS,C 'H)]
with respect toxzr, i.e., = 2NoR[Tr(S,C 'H"H)]
y = Hxzr + 1. (16) = 2N0§R[Tr(sk)]' (22)
Now, let us define the relation between transmitted vegtorSmiiarly, for the radius obtained aftér+ 1 iterations, we get
and detected ZF vectotzr as E[r2 — r?.,] = 2NoR[Tr(Sp41)]. (23)
X =xzr + A, (17) 1t can be seen that for the residual mat8x = I — C,C,

we have T(S;) > 0. If the iterative methods used for matrix

where [|A[| denotes the magnitude of error iye. Sincex  jhyersion converges to the exact inverse, it can be assumaed t
andxzr both belong to the same constellation, expectation ?F(Sk) > Tr(Sp41), as the elements of the residual matrix

the difference betw?en andxzr would be ZET0. Substituting i tend towards zero as the number of iterations increase.

(L7) in {I6), we gefi = n — HA, and thusi(n) = 0. Therefore, from equation§ (22) and [23), it can be deduced
For a sufficient number of iterations, we can write thg,5¢

expected difference between the squares of the two radii in

(I4) and [(Ib) as E[Tg — r,%+1] < E[rz — Ti]

E[r? - r}] = 2R[E{a" HS,C~'g}). (18) =E[r,] > E[}

o . which means that, in general, BR afteiterations is smaller
We prove the above equation in Appendix . than the BR calculated aftér + 1 iterations. In Fig[dL, we
We next show that the L.H.S. i {118) decreases as thge Newton’s iterative method for computing the approxenat
number of iterations increase. Usigg= H"y in (I8), We jnverse and plot the BR for different iterations forl@ x 16
can write MIMO system. A monotonic rise in the value of BR with
E[67HS,C'g] = E[a"HS,C~ H” (Hxzr + 7)] increasing iterations corroborates the above analysis.

As r. = limy_, o 11, therefore
= E[a” HS;xzf] + E[@“HS,C'H"a]. (19) -
E[r2] > E[r7] for finite k,
Also, for a given channel matrid and received vectay, xz¢

would be a constant. Therefore, we can take vestgr out i.e. the BR calculated using the exact inverse is larger than
of the first expectation term i (IL9) and it becomes BR calculated through an iterative method for all the itiers.

Thus, as stated before, an approximate inverse can provide
E[a”HSyxzr] = E[@”|HS xzF = 0, (20) twofold savings in complexity.
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V. SIMULATION RESULTS We compare these conventional schemes with the SD scheme

We first examine the performance of ZF and MMSE detegroposed in AlgorithmI1 in terms of performance and average
tors for massive MIMO scenarios. Subsequently, we compdrgmber of computations required to find the solution. We use
the simulation results for different SD methods that exist iNewton’s iterative method with 7 iterations to calculate th
the literature to the scheme proposed in Algortim 1. In Big.approximate matrix inverse. In Figl 4, we compare the averag
and Fig[B, we plot Bit-Error-Rates (BER) for MMSE and zmumber of computations required by the three schemes for
decoders, respectively, for the cases when the matrix save 16 x 16 system. It can be observed from the figure that
is calculated exactly and using Newton's iterative metiwd. the proposed SD scheme takes at least 35% less number of
calculate the approximate inverse for 3, 5 and 7 iteratiorgmputations compared to the other two schemes. Also, from
We see that for 3 and 5 iterations, the error performanEég.[H, we can deduce that there is no reduction in the quality
in the case of MMSE is slightly away from the case wheff performance as all the three schemes give the same BER.
the exact inverse is used. However, increasing the numberFig.[8 and Fig[l, we present similar numerical results for
of iterations to 7 provides identical performance. Usingienoan N = 32 and K = 8 massive MIMO system. We again
number of iterations would not result in any performancagainote that our SD scheme outperforms the conventional scheme
Similarly, in the case of ZF decoding, performance improvaghile providing the same error performance.
with the number of iterations, and 7 iterations provides the
same performance as the ZF decoder using the exact inverse.

We also perform Monte Carlo simulations for BER and We have shown the advantages of using an approximate
average number of computations for the three different SDatrix inverse for detectors in large/massive MIMO systems
schemes discussed above. The first two are adaptive radies obtained the maximum error which can be tolerated in the
(SE-SD) and fixed radius (FP-SD) algorithms respectivelywverse to arrive at the same quantized ZF/MMSE solution.

VI. CONCLUSION
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Simulation results show that iterative inversion methaged

as
| E2R{(-C'H”na)"R¥RE,g}] = E2R(27 HE,g)]

(1]

to calculate the ZF and MMSE solutions, reached the same
performance as provided by the exact inverse for sufficiert®!

number of iterations. Extending the idea to complex detscto

like SD, we show that the value of BR calculated using iter{3]

ative methods is less than the BR obtained through the exact
method. To this end, we proposed an adaptive SD scheme that

uses BR as the initial radius. Simulation results show that t

proposed SD scheme outperforms FP-SD and SE-SD in terms

of complexity without any loss in performance.

APPENDIX

To prove [I8), we use the definition ef andr, from (14)
and [1%) so that

re—ri = IR —xz6)||* — [[R(%2 — xz¢)||*
IRC™"g|* — | RCugl|”

2{R[(Rxzr)"R(C), — C)g]}

+
Now, using the fact tha€C, = C~! + E;, we get
r2 —r?2 = 2R[(xzr — C'g)"RYRE,g] — |RE:g|%. (24)

. —

(5]

(6]

(7]

(8]

El

After using [16) and taking expectations on both sides, vie ééo]

E[r? - r}] = ERR{(-CT'H"n)"R"RE:g) — | REsg|*]. (25)

We will be neglecting the second term in R.H.S.[ofl(25) citing
the following assertion

|IRErg|”> = (RE g)" (RE;g) = g"Ef/RYRE;g. (26)

[12]

(23]

From the orthogonal property o€, we have RFR
HPH = C and therefore[{26) becomes

IRExg|[”

gHEkHCEkg

Using E;, = C; — C~!, we have

[14]

[15]

[16]

IREgl|” = g”(C{ —(C™H")C(Cr—C g
gh(ci/c” —n(Cc,c-1C'g

g Sy Sk%ka,

[17]

= E2R(@7THS,C 'g)].

For sufficient number of iterationS;, would be very small and
hence the terni[||RE,g?||] can be neglected when compared
to first term in the R.H.S. of equatiofh_25), as the former is
proportional toSZ S, while the latter is proportional t&.
N : : : Hence, [[2b) can be rewritten as

~
~

E[r? — 7] E[2R(A7HS,C 'g)]

which proves[(18) for sufficient number of iteratiohs
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