FlashLite: A User-Level Library to Enhance Durability of SSD for P2P File Sharing

Hyojun Kim and Umakishore Ramachandran
College of Computing
Georgia Institute of Technology
{hyojun.kim, rama} @cc.gatech.edu

Abstract

Peer-to-peer file sharing is popular, but it generates ran-
dom write traffic to storage due to the nature of swarming.
NAND flash memory based Solid-State Drive (SSD) technol-
ogy is available as an alternative to hard drives for notebook
and tablet PCs. As it turns out, random write is extremely
detrimental to the lifetime of SSD drives.

This paper focuses on the following problem, namely,
P2P file downloading when the target of the download is
an SSD drive. We make three contributions: first, analysis
of write patterns of downloading program to establish the
premise of the problem; second, development of a simple
vet powerful technique called FlashLite to combat this
problem, by automatically converting the random writes
to sequential writes; third, showing through performance
evaluation using modified eMule file downloading program
that FlashLite does change random writes to sequential, and
most importantly eliminates about 94% of erase operations
of the original eMule program.

1. Introduction

Peer-to-peer (P2P) file sharing programs, such as Bit-
Torrent [1] and eMule [2], have become popular today. A
significant portion of the Internet traffic is generated by P2P
programs now [3], and it is easy and efficient to download
a huge Linux distribution with P2P method.

The possible reasons for the success of P2P file sharing
are scalability and robustness. It downloads a file from
multiple peers simultaneously, and also uploads some parts
already downloaded at the same time. In a traditional down-
loading method, more clients implies longer downloading
time. In contrast, P2P file downloading program works more
efficiently when there are a number of clients trying to
download the same file because they help one another.
Moreover, P2P protocol usually provides robust download
because it is less dependent on a single server.

This distributed downloading mechanism, called swarm-
ing, causes a special file write pattern in P2P file sharing
programs. Because small parts are concurrently downloaded
from many peers and written to a destination file, its write
pattern tends to be random, and the degree of the randomness
is highly dependent on the size of the downloading chunk

T T T T
100 Mbytes/s

=) 4
=

s}

§ 80 Mbytes/s |
B

2L

>

e

g 4
5 44 Mbytes/s

Q.

= 4
[=2]

>

[

=

= 4

520 Kbytes/s
Seq. Read Seq. Write 4K Rand. Read 4K Rand. Write

Figure 1: Sequential and 4Kbytes random read/write performance
of MTron MSD-SATA3025 SSD [4]

and the number of peers that are connected to get the file
simultaneously.

Recently released Solid-State Drive (SSD) using NAND
flash memory is getting popular due to its attractive benefits.
It is energy efficient, light-weight, and absolutely silent. In
addition, delay-free random reads of SSD enable a system
to boot fast.

However, SSD suffers from random writes in general.
Figure 1 shows the performance of MTron MSD-SATA3025
SSD [4]. The 4Kbyte sized random write speed is only
520Kbytes/second while the sequential write performance is
80Mbytes/second. Random write performance is only 0.6 %
of sequential performance. While the level of performance
difference is specific to each SSD, they show poor perfor-
mance for random writes in general [S]-[7].

Random writes also shorten the lifetime of SSDs. When
a write request takes a long time to complete in SSD, it
means that the request causes many physical operations on
flash memory such as page writes and block erasures. Due to
the nature of the technology, NAND flash memory can incur
only a finite number of erasures for a given physical block.
Therefore, increased erase operations due to random writes
shortens the lifetime of an SSD. In other words, random
writes make a flash storage wear out much faster than normal
writes.

While random writes are very slow as well on SSDs, the
durability issue is a more serious problem to solve because
the performance bottleneck of P2P file sharing program is
usually the network rather than storage. For example, our

experiments show that P2P download could make SSD wear
out over hundred times faster than normal FTP download.
The reality is of course that SSDs are becoming popular and
viable to use in place of hard disk on notebook and tablet
PCs. The user community on such gadgets will necessarily
use P2P file sharing. Therefore, solving the random write
problem on SSD is critical to the lifetime of such gadgets.

In this paper, we analyze the write patterns of P2P file
sharing programs, and explain the basics of flash storage
to show how harmful P2P program could be for SSD. We
also propose, a light weight library called FlashLite for P2P
file sharing programs. FlashLite changes random writes of
an application to sequential writes with logging technique
similar to log-structured file systems [8].

For evaluation, we have implemented FlashLite and ap-
plied it to a well known P2P file sharing program, emule
0.49b. We have collected write traces while downloading
a 3.3Gbyte sized Fedora 9 DVD ISO image using this
modified eMule, and we have verified that the writes are
effectively changed to be sequential. We have also performed
trace-driven simulation to find out the number of block
erasures inside an SSD. The results show that FlashLite
effectively eliminates about 94% of the physical erase op-
erations compared to the original for the test of Fedora 9
image downloading.

This paper makes three main contributions. First, we
show that the workload of P2P file sharing program is
very unique and could be harmful for flash storages. The
second contribution, perhaps the most important, is the new
library FlashLite to deal with the random write problem
of P2P swarming. Thirdly, we propose a novel method for
evaluating the lifetime of an SSD, using a combination of
trace-driven simulation and emulation of the SSD hardware.

The rest of the paper is organized as follows. Section 2
presents the background and related work and Section 3
analyzes the write pattern of P2P file share programs. Sec-
tion 4 describes FlashLite, and Section 5 presents evaluation
results. Section 6 contains our conclusions and future work.

2. Background and Related Work

2.1. P2P File Sharing

Before P2P file sharing, users shared their files using
an anonymous FTP server or ICQ messenger. Napster [9]
enabled users to share their music files directly. However,
Napster allowed downloading from only one peer.

eDonkey [10] released in 2000, used P2P swarming [11]
to download large files more efficiently. In this method,
clients are able to download different pieces of a single
file from different peers, effectively utilizing the combined
bandwidth of all of the peers instead of being limited to
the bandwidth of a single peer. BitTorrent [1] also uses the
swarming method, and has become the most popular P2P

file sharing protocol today. Due to the advantages of P2P
swarming, almost every P2P file sharing program uses the
technique now.

Most studies related to P2P file sharing focus on the
networking behaviors of the P2P network. After Cohen
proposed BitTorrent as an efficient and robust P2P file
sharing protocol [1], a considerable number of studies have
been conducted on the protocol [12]-[14]. However, so far
very little attention has been given to the workload of P2P
file sharing programs.

2.2. Flash Memory

Flash memories, including NAND and NOR types, have
a common physical restriction, namely, they must be erased
before writing [15]. In flash memory, the existence of an
electric charge in a transistor represents a 1 or a 0. The
charges can be moved both into a transistor by an erase
operation and out by a write operation. By design, the erase
operation, which sets a storage cell to 1, works on a bigger
number of storage cells at a time than the write operation.
Thus, flash memory can be written or read a single page at a
time, but it has to be erased at a time in units of an erasable-
block. An erasable-block consists of a certain number of
pages. The size of a page ranges from a word (NOR flash
memory) to 4 Kbytes depending on the type of the device.
In NAND flash memory, a page is similar to a hard disk
sector and is usually 2 Kbytes.

Flash memory also suffers from a limitation on the
number of erase operations possible for each block. The in-
sulation layer that prevents electric charges from dispersing
may be damaged after a certain number of erase operations.
In single level cell (SLC) NAND flash memory, the expected
number of erasures per block is 100,000 and this is reduced
to 10,000 in two bits multilevel cell (MLC) NAND flash
memory. If some blocks that contain critical information
are worn out, the whole memory becomes useless even
though many serviceable blocks still exist. Therefore, many
flash memory-based devices use wear-leveling techniques to
ensure that blocks wear out evenly [16].

2.3. Flash Translation Layer

Inside SSD, a special software, named flash translation
layer (FTL), is used. FTL overcomes the physical restriction
of flash memory by remapping the logical blocks exported
by a storage interface to physical locations within individual
pages [17]. It emulates a hard disk, and provides logical
sector updates as shown in Figure 2.

Some FTLs are designed to exploit the locality of the
write requests. If write requests are concentrated on a certain
address range, some reserved blocks not mapped to any
externally visible logical sectors can be used temporarily for
those frequently updated logical sectors. When we consider

File System

Logical A Logical
Sector Write Sector Read

FTL (Remapping Algorithm)
Page Block Page
Write Erase Read

Page

Block Block

NAND Flash Memory

Block

Figure 2: FTL and NAND flash memory.

the usage pattern of the flash storage, this is quite reasonable.
Because the number of reserved blocks is limited, more
flexible and efficient mapping algorithms can be applied to
the reserved blocks while most data blocks use simple block
mapping.

The log-block FTL algorithm [18] combines a coarse-
grained mapping policy of a block mapping method with a
fine-grained mapping policy of page mapping inside a block.
It is one of the most popular algorithms today because it
combines competitive performance with rather low cost in
terms of RAM and CPU usage.

The FTL algorithm is the primary determinant of the per-
formance of an SSD, and random writes represent the worst
case scenario for most FTLs. For example, locality based
log-block FTL shows poor performance for random writes
because it has to perform an expensive merge operation if
written sector does not hit existing log blocks.

2.4. Random Writes and Flash Storages

Several studies have been conducted on flash storages
concerning the performance of random writes at various
levels of the storage hierarchy. BPLRU [19] proposes a write
buffer to SSD at the device level to address the extremely
random nature of the write pattern for P2P file sharing, MFT
[20], a block device level solution, translates random writes
to sequential writes between the file system and SSD. As
we will see shortly, our FlashLite solution has similarity to
this idea, except we do it between application and the file
system. The idea of translating random writes to sequential
ones is also similar to the solution used in logical disk [21],
except MFT is targeting flash storages.

JFES [22] and YAFEFS [23] are file system level solutions:
they both propose implementing a log-structured file system

for flash memory. Log-structured file system is ideal for flash
memory since it does not overwrite existing blocks. The
downside is that such a file system has garbage collection
overhead and long latency at the time of mounting.

The FlashLite approach, which we will discuss shortly is
at the application level. This has pros and cons. The cons is
that we need the application source code for recompilation
with FlashLite library. Fortunately, this impacts only the
application developers and we will show that the effort
is quite small. But there are a couple of important pros
to our approach. Firstly, end users (who are not typically
system savvy) do not need to install special virtual block
drivers such as MFT; and, they do not have to change
their existing file system. Secondly, and more importantly,
FlashLite being an application level library, deals with the
random writes only for those applications that need it, while
MEFT and file system level solutions affect the entire storage
system. Standard file systems for SSD work well for normal
applications; given the side effects of log-structured file
system (garbage collection overhead and long mounting
time) it is not desirable to use it for the file system as a
whole, especially in a PC environment.

3. Write Patterns of P2P Downloading

We collected disk accesses on Windows XP with DiskMon
[24] while downloading a large enough test file with various
P2P file sharing programs.

Our test machine! has 8Gbyte sized SLC SSD for C drive
and 30Gbyte sized MLC SSD for D drive. We use an empty
D drive while Windows XP was installed on C drive to
filter out unrelated disk accesses to our test. Before every
download, we format the D drive with FAT32 to get rid of
disk aging effect. We use a 3.3Gbyte sized Fedora 9 1386
DVD ISO image as a test file for downloads because the file
is large and popular enough for our test. Popular file can be
downloaded fast by P2P file sharing program.

Figure 3 presents the collected write traces for eight
downloads: One is from ftp (Windows XP), four are from
BitTorrent clients, and the remaining three are produced
by eDonkey2000 clients. In the graph, Y-axis represents
the logical sector number of the write requests and X-
axis represents write sequence (i.e., temporal order of write
requests).

Figure 3 (a) presents perfectly sequential write pattern
by ftp. The file content is downloaded and written from its
beginning to the end in a fully sequential manner.

Unfortunately, the results are quite different when we use
P2P file downloading programs. The remaining graphs in
Figure 3 show these results. Figure 3 (b) shows the write
traces of BitTorrent. The sequential writes at the beginning
are due to the creation of a destination file. BitTorrent

1. Asus EeePC 1000 Netbook

Logical Sector Number { x 1,000,000) Logical Sector Number (x 1,000,000) Logical Sector Number (x 1,000,000)

Logical Sector Number (x 1,000,000)

01 2 3 4 5 6 7 8 9 10111213 14 15 16 17
Sector Write Seguence (x 1,000,000)

(a) ftp

: X H
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17
Sector Write Sequence (x 1,000,000)

(c) Vuze 3.1.1.0

01 2 3 45 6 7 8 9 10111213 14 15 16 17
Sector Write Sequence (x 1,000,000)

(e) BitTornado 0.3.17

0 T M- .
01 2 3 4 5 6 7 8 9 10111213 14 15 16 17

Sector Write Sequence (x 1,000,000)

(g) aMule 2.2.2

Logical Sector Number (x 1,000,000) Logical Sector Number (x 1,000,000) Logical Sector Number (x 1,000,000)

Logical Sector Number (x 1,000,000)

01 2 3 4 5 6 7 8 9 10111213 14 15 16 17
Sector Write Sequence (x 1,000,000)

(b) BitTorrent 6.1.1

01 2 3 4 5 6 7 8 9 101112 13 14 15 16 17
Sector Write Sequence (x 1,000,000)

(d) pTorrent 1.8.1

01 2 3 45 6 7 8 9 10111213 14 15 16 17
Sector Write Sequence (x 1,000,000)

(f) NeoMule 4.50

0 L
01 2 3 4 5 6 7 8 9 10111213 14 15 16 17

Sector Write Sequence (x 1,000,000)

(h) eMule 0.49b

Figure 3: Write Traces of P2P file sharing programs: Downloading 3.3Gbyte sized Fedora 9 Image

P2P File Sharing Program

Random File Writes

i

Logical File

RAM Resident|
Mapping
Information

FlashLite

Data

File System

Figure 4: Concept of FlashLite

first creates an empty destination file with final download
size, and then overwrites the blocks thus reserved almost
randomly. Vuze (Figure 3 (c)) and pTorrent (Figure 3 (d))
are also BitTorrent network clients, and the write patterns
are almost the same as BitTorrent.

Figure 3 (e) of BitTornado, another BitTorrent client,
presents a very unique write pattern. Instead of creating a
destination file with the final download size at the beginning
like other BitTorrent clients, it increases the file size gradu-
ally. This means that BitTornado gradually enlarges the size
of the downloading window.

Three eDonkey2000 (ED2K) network clients show almost
the same write tendencies as seen in Figures 3 (f), (g),
and (h). However, the writes of ED2K clients seem to be
less scattered than BitTorrent clients. It is possibly because
BitTorrent clients are more aggressive than ED2K clients,
and ED2K network is less popular than BitTorrent network
at the present time.

Even though there are some differences in the write
patterns among P2P file sharing programs, all the tested P2P
file sharing programs show extensive random write patterns,
thus establishing the premise of our work.

4. FlashLite
We now present our solution to the random write problem.
4.1. Design Concept and Data Structures

The basic idea of FlashLite is almost the same as log-
structured file system [8]. Log-structured file system was
originally proposed to avoid the small write problem in
UNIX development environments. Such small writes trans-
late to creating log records that are written sequentially to

Doubly linked list

1000, 80 2000, 120 3000, 100
—» >

SignatuW

Q O]
100 80 120

Physical File

Figure 5: Linked list after three writes: 100 bytes at offset 3000,
80 bytes at offset 1000, and 120 bytes at offset 2000

the same large log file. In a similar manner, FlashLite creates
a log file and the incoming (random) writes are written as
log records sequentially to the same physical log file. Each
log record in FlashLite consists of a fag and data; the tag
contains the information about the position of the data in the
file that is being downloaded. Figure 4 captures the concept
of FlashLite.

There are two important data structures in FlashLite. The
first data structure contains information about the fag which
describes the log record, and has three fields. The first field
indicates the type of log record, and the remaining two fields
are interpreted differently based on the type. For a file write
operation, these fields give the logical file offset and size for
the data being written. For SetFileLength () operation,
which is called for creating a new file, only one of these
two fields is meaningful and that field gives the size of the
new file being created.

The second data structure is used for RAM resident
mapping information. FlashLite writes data sequentially re-
gardless of the logical offset. Therefore, we need to maintain
a logical to physical mapping in memory for reading the
file that has just been written. This is a doubly-linked data
structure (see Figure 5) that contains three fields: logical
offset, physical offset, and length of data.

4.2. Operations

File Writing

For a write request, a fag structure is filled with proper
information (logical offset and size) and written with data
to the physical file sequentially. FlashLite maintains RAM
resident mapping information for logical to physical offset
translation, and it is updated for the data that is being written.
A new node structure is allocated, filled with logical offset,
data size, and the actual physical file offset, and inserted into
the doubly linked list. Currently, FlashLite uses a doubly
linked list for simplicity; it may be changed to a more
sophisticated data structure such as radix tree for better
performance in the future. Figure 5 shows an example of a
linked list generated after three consecutive write requests.

File Reading

To read data, we need to translate logical file offset to
physical offset because data is written sequentially regardless
of its logical offset in FlashLite. To minimize CPU overhead,
FlashLite remembers the last accessed node structure in the
mapping list, and searches the list from that point. If a node
having the required data is found, the data is read using
the physical offset in the node structure. The search may
fail because a user may attempt to read data that has not
been written yet. In that case, FlashLite fills the read buffer
with zero. One read request on FlashLite can cause multiple
discrete reads of the log file since there may be multiple log
records on the log file that contain all the requested data.

File Opening

FlashLite writes a signature at the beginning of a log
file to distinguish it from a normal file. When a log file
is re-opened, RAM resident mapping information has to be
reconstructed. All fags in a log file are read sequentially,
and the doubly linked list is rebuilt with the information
in tags. This process is time consuming because the whole
file should be read. Fortunately, FlashLite does this process
only for the certain downloading files of P2P file sharing
program while a log-structured file system has to do that
for the whole storage.

File Closing
When a file is closed, FlashLite destroys the RAM resi-
dent mapping information for the file.

File Rearranging

When we download a file with a P2P file sharing program
using FlashLite, the file is written as a log file as we just
described. Further, this file can be read only by using the file
read operation provided by FlashLite. However, FlashLite
provides a simple operation as an API call to convert this
log-structured file into a normal file so that normal file
operations can be used by other programs that simply want
to use the downloaded file. The API call, RearrangeTo ()
reads the log file with FlashLite and writes the destination
file as a normal file from beginning to end.

4.3. Implementation

FlashLite is implemented as a user level library providing
the standard file system calls. An application would link to
this library than the standard library for accessing the file
system. We have implemented FlashLite using VisualStu-
dio.NET2003. FlashLite is available as a file access class
called FLFile. Any program that needs our library will
use this class instead of the standard file accessing class of
MEFEC, namely, CFile. FlashLite is light-weight since the
source code is less than 800 lines.

O O = N W &

Logical Sector Number (x 1,000,000)

O = N W & 0 N 0

01 2 3 4 5 6 7 8 8 1011 12 13 14 15 16 17
Sector Write Sequence (x 1,000,000)

Figure 6: Write Traces of eMule with FlashLite

Using FlashLite is simple. We replace CFile class with
FLFile of FlashLite, and insert RearrangeTo () as
needed in the source code.

As a concrete example, we created a modified version
of eMule in this manner with FlashLite. The program is
compiled with VisualStudio.NET2003 using the FLFile.

Once the file has been downloaded, we insert a
RearrangeTo () call that is provided by the FlashLite
library to convert the log file created by FlashLite into a
standard file on SSD.

5. Evaluation of FlashLite

Our evaluation is set out to serve two purposes: 1. To
verify that FlashLite does result in changing the write pattern
of an application to sequential writes from random writes.
2. To verify that FlashLite does reduce the erase count
considerably compared to the original P2P downloading
program.

5.1. Write Pattern Study with FlashLite

We collected disk accesses while downloading a test file
with modified eMule to verify the write pattern, and Figure 6
shows the write traces. Compared to the write pattern of the
original eMule (Figure 3 (h)), it can be seen that the write
pattern is effectively changed to be sequential.

Figure 6 shows that the modified eMule has almost dou-
bled the number of sector accesses (Y-axis) compared to the
other write traces of P2P file sharing programs (Figure 3).
This is because we have to make a call to RearrangeTo ()
after the file download by the P2P program is complete.

Referring to Figure 6, the first half of the writes are
generated due to the log writes of FlashLite during the
file download. During this phase, the horizontal lines in
the graph are from the Microsoft FAT file system updates
and some other meta files that the application generates

on top of the temporal write sequences of the P2P file
downloading. For example, eMule updates some informa-
tion about downloading to a .met file, and also writes a
statistics file frequently. The second half of the sector writes
(starting roughly from sector write numbered 8 on the x-
axis) is perfectly sequential (no more horizontal lines) and
represents the work of the RearrangeTo () API call after
the download is complete.

Comparing the graphs in Figure 3 with Figure 6, we can
see that both the original P2P file downloading programs
and the modified eMule with FlashLite write roughly the
same number of sectors (determined by the maximum sector
write sequence number on the x-axis). Since FlashLite does
not create a dummy file with its final download size, the
total number of writes including the final rearranging step
for modified eMule is similar to that of P2P file sharing
programs, except for a small increase for tag writing.

This write pattern study confirms that FlashLite effec-
tively converts the random writes of eMule to sequential
writes.

5.2. Erase Count with FlashLite

The lifetime of SSD can be measured indirectly with erase
counts of physical blocks in SSD. However, there is no
known way to find out actual erase counts of physical blocks
from real SSD. As a solution, we have used a trace-driven
simulation method.

Firstly, we developed an emulator for our target SSD.
We had to guess the internal FTL algorithm of the SSD
for its emulation. Even though it was not possible to find
out the accurate FTL algorithm, we could get fair enough
model for our emulation by some heuristic write tests.
Secondly, we collected write traces on a real SSD while
downloading the same test file with various P2P file sharing
programs including the original eMule and modified eMule
with FlashLite. Finally, we ran the traces on our SSD
emulator and were able to get the erase counts from our
emulator.

The simulation results for erase counts are shown in
Figure 7. The Y-axis represents the total number of erase
operations done during replaying the collected write traces,
i.e., the sum of all erase counts for all the blocks as reported
by the SSD emulator.

Due to the nondeterministic nature of P2P network, we
repeated our test five times, and the figure shows the average
results with maximum and minimum. The simulated average
erase counts of eMule, 217,610, is significantly reduced to
13,254 by FlashLite. It is only 6.1% compared to the original
eMule.

From Figure 7 note that BitTorrent clients show much
smaller erase counts than ED2K clients, despite the random
write patterns shown by the traces earlier (see Figure 3). This
was a surprising result but can be explained due to a couple

217,610
€
3 159,670
3 I
[0}
8
S L
3
©
g [66,848
o 57,905
B 34,906 34,827 40836
1,728
(a) (b) (c) (d) (e) () (9 (h) (i)

Figure 7: Simulated Erase Counts: (a) ftp, (b) BitTorrent, (c) Vuze,
(d) pTorrent, (e) BitTornado, (f) NeoMule, (g) aMule, (h) eMule,
(i) eMule with FlashLite

of reasons. The first reason is that the downloading chunk
size in BitTorrent is 256Kbytes which is much larger than
that used by ED2K. The second reason is that BitTorrent
writes only a single downloading file. On the other hand,
eMule writes several files(both downloading file and meta
files) during the downloading process very frequently.

6. Conclusion

SSD technology is becoming a viable replacement for
hard disk at least in the end user market (laptops, tablet
PC, etc.). P2P file downloading is a popular application
for the community of users that use such devices. P2P
file downloading employs swarming to efficiently download
different parts of a large file from multiple peers. This in turn
results in generating random writes to the storage device on
the target platform, which is particularly detrimental to the
lifetime of SSD due to the inherent nature of this technology.

We have focused on this problem and made three research
contributions in this paper. First, we have analyzed the
downloading patterns of several popular P2P file sharing
programs to show the random write patterns they generate.
Second, we have proposed a simple yet powerful user-level
technique called FlashLite, for converting the random writes
to sequential writes. We have implemented this technique
as a user-level library for use in applications such as P2P
file sharing. We have modified a popular P2P file sharing
program called eMule to use our library and have shown
that such a modification is fairly trivial and straightforward.
To evaluate the power of FlashLite, through actual file
download using the modified eMule, we have shown how
our technique helps in converting the random writes to
sequential writes. Third, we have developed a technique
for assessing the lifetime of SSD. For this part, we have
faithfully emulated an SSD to account for the erasure counts.
Using this emulated SSD and the traces collected from
using the original and modified eMule, we have shown that
FlashLite results in reducing the erasure count to 8% of the
original unmodified eMule.

In our current work, FlashLite is a user-level library. Our
future work concerns integrating it into the file system so that
it is available for use in any application without requiring
source level modification to the application. There are also
some immediate problems that are worthy of investigation.
The first one is SSD-sensitive development of P2P file
downloading programs. This will obviate the need for a
user-level library such as FlashLite, if the application itself
downloads sequential blocks from peers as they typically do
for video streaming [25].

It will be interesting to find out the performance penalty
for such an SSD-friendly approach to downloading. A sec-
ond problem concerns addressing file downloading in the
presence of excessive fragmentation of the storage.

References

[1] B. Cohen, “Incentives build robustness in bittorrent,” in
P2PECON: st Workshop of Peer-to-Peer Systems, 2003.

[2] John, H. Breitkreuz, Monk, and Bjoern, “eMule,” http://
sourceforge.net/projects/emule.

[3] T. Karagiannis, A. Broido, N. Brownlee, and k. Claffy, “Is p2p
dying or just hiding?” in In Proceeding of IEEE Globecom
2004, Dallas,, 2004.

[4] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Man-
asse, and R. Panigrahy, “Design tradeoffs for ssd perfor-
mance,” in ATC’08: USENIX 2008 Annual Technical Confer-
ence on Annual Technical Conference. Berkeley, CA, USA:
USENIX Association, 2008, pp. 57-70.

[5] A. Birrell, M. Isard, C. Thacker, and T. Wobber, “A design
for high-performance flash disks,” SIGOPS Oper. Syst. Rev.,
vol. 41, no. 2, pp. 88-93, 2007.

[6] D. Dumitru, “Understanding Flash SSD Performance,” Draft,
http://www.storagesearch.com/easyco-flashperformance-art.
pdf, 2007.

[7] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim, “A
case for flash memory ssd in enterprise database applications,”
in SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data. New York,
NY, USA: ACM, 2008, pp. 1075-1086.

[8] M. Rosenblum and J. K. Ousterhout, “The design
and implementation of a log-structured file system,”
ACM Transactions on Computer Systems, vol. 10, no. 1,
pp. 26-52, 1992. [Online]. Available: citeseer.ist.psu.edu/
rosenblum91design.html

[9] Wikipedia, “Napster,” http://en.wikipedia.org/wiki/Napster.

[10] Wikipedia, “eDonkey2000,”
EDonkey2000.

http://en.wikipedia.org/wiki/

[11] D. Stutzbach, “ Swarming: Scalable Content Delivery for the

Masses ,” 2004.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

D. Arthur and R. Panigrahy, “Analyzing bittorrent and re-
lated peer-to-peer networks,” in SODA ’06: Proceedings of
the seventeenth annual ACM-SIAM symposium on Discrete
algorithm. New York, NY, USA: ACM, 2006, pp. 961-969.

A. Legout, N. Liogkas, E. Kohler, and L. Zhang, “Clustering
and sharing incentives in bittorrent systems,” in SIGMETRICS
’07: Proceedings of the 2007 ACM SIGMETRICS interna-
tional conference on Measurement and modeling of computer
systems. New York, NY, USA: ACM, 2007, pp. 301-312.

D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee,
“Bittorrent is an auction: analyzing and improving bittorrent’s
incentives,” in SIGCOMM ’08: Proceedings of the ACM
SIGCOMM 2008 conference on Data communication. New
York, NY, USA: ACM, 2008, pp. 243-254.

M-Systems, “Two Technologies Compared: NOR vs. NAND,”
White Paper, http://www.dataio.com/pdf/NAND/MSystems/
MSystems_NOR_vs_NAND.pdf, 2003.

L.-P. Chang, “On efficient wear leveling for large-scale flash-
memory storage systems,” in SAC ’07: Proceedings of the
2007 ACM symposium on Applied computing. New York,
NY, USA: ACM, 2007, pp. 1126-1130.

Intel Corporation, “Understanding the Flash Translation
Layer (FTL) Specification,” White Paper, http://www.
embeddedfreebsd.org/Documents/Intel-FTL.pdf, 1998.

J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho, “A space-
efficient flash translation layer for CompactFlash Systems,”
IEEE Transactions on Consumer Electronics, vol. 48, no. 2,
pp- 366-375, 2002.

H. Kim and S. Ahn, “BPLRU: a buffer management scheme
for improving random writes in flash storage,” in FAST 08:
Proceedings of the 6th USENIX Conference on File and
Storage Technologies. Berkeley, CA, USA: USENIX As-
sociation, 2008, pp. 1-14.

E. C. Company, “Managed Flash Technology,” http://www.
easyco.com/mft/index.htm.

W. de Jonge, M. F. Kaashoek, and W. C. Hsieh, “The logical
disk: a new approach to improving file systems,” SIGOPS
Oper. Syst. Rev., vol. 27, no. 5, pp. 15-28, 1993.

Redhat, “JFFS2: The Journalling Flash File System, version
2,” http://sources.redhat.com/jffs2.

A. O. Ltd, “Yaffs: A NAND-Flash Filesystem,” http://www.
yaffs.net.

M. Russinovich, “DiskMon for Windows v2.01,” http://www.
microsoft.com/technet/sysinternals/utilities/diskmon.mspx,
2006.

C. Liang, Y. Guo, and Y. Liu, “Is random scheduling sufficient
in p2p video streaming?” in ICDCS ’08: Proceedings of
the 2008 The 28th International Conference on Distributed
Computing Systems. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 53-60.

