P2PTester: atool for measuring P2P platform performance

Florin Dragan®
Radu Pop?3

Bogdan Butnaru'®
Benjamin Nguyen!

1 PRiSM Laboratory, Université de Versailles Saint-Quentin en Yvelines, France

loana Manolescu?

Laurent Yeh!
2 INRIA Futurs, Gemo group, France

Georges Gardarin®
Nicoleta Preda?

3 Mandriva, France

1 Introduction

Recent years have seen significant development of peer-
to-peer (P2P) file and data sharing systems. Distributed data
structures specifically adapted to this setting have been pro-
posed, some of which build on previous research in the field
of distributed shared memory. Distributed data structures
underlying peer networks are typically called overlay net-
works [3, 6, 9, 14, 16]. The purpose of overlay networks
is to provide efficient support for for the crucial locate op-
eration: locate a data item satisfying certain criteria, in a
potentially large set of peers.

Distributed Hash Tables (DHTS) [4] are a particular class
of overlay networks, relying on the abstraction of a single,
large hash tables where some data item can be inserted by
any peer, associated with some search key.

On top of overlay networks, numerous P2P content man-
agement platforms have been developed [1, 8]. The ba-
sic functionalities of a P2P content management platform
are not fundamentally different from the goals of traditional
distributed databases [12]: give to the user the illusion of a
centralized system while executing complex data manage-
ment operations in a distributed setting. Thus, what really
makes the difference between such systems (and presum-
ably, what will determine their success or failure) is their
performance. Performance measures are typically based on
benchmarks and/or systematic testing suites.

Benchmarks for P2P data management have only started
to appear recently [11]. This benchmark is oriented to-
wards information retrieval tasks, not towards database-
style queries. Producing a good benchmark of database-
oriented processing in P2P is a difficult task, due to the di-
verse data models (relational [8], XML [1] or RDF [17]) and
query languages supported by various systems. Moreover,
for the time being, no single data management application
has emerged as the most representative in a P2P setting.

A separate technical challenge in assessing P2P system
performance is building a performance measurement tool.
One reason is the inherent complexity of testing distributed
systems; however, this complexity has been tamed in the

past, even since the very first day of TPC [2] transaction
performance benchmarking. Another reason lies in the ap-
parent diversity of P2P platforms:

e The underlying communication layer ranges from
sockets, to Java, through XML message-based inter-
action.

e The network structure can vary widely, from structured
networks (which include DHTSs) to unstructured net-
works [3, 17], hybrid systems [10] etc.

We propose to demonstrate P2PTester, the first platform
to systematically measure the performance of P2P content
management systems. P2PTester is a Java-based application
which wraps around, and interfaces with, any arbitrary P2P
system (see assumptions on the underlying system in the
next section). P2PTester allows the user to:

e launch, in a supervised manner, the construction of a
peer network of controlled size and complexity

e measure the space and time costs of the process of in-
dexing the data from this set of peers, within the P2P
network

e measure the space and time costs associated to pro-
cessing specific queries in each system

e trace the communications spawned from the process-
ing of each specific query or search issued by a peer.
This information is useful as a hint on the communi-
cation complexity of the system, but may also prove
valuable for the system implementor, by helping him
trace (and perhaps debug) his platform.

Existing P2P deployment and testing projects [13, 15]
provide a standalone implementation (or simulation) of an
overlay networks, on top of which users can specify P2P
data management applications and gather simple statistics
on their behavior, such as e.g. the number of exchanged
messages. P2PTester departs from this approach in two
major ways. First, P2PTester is meant to be used in con-
junction with (and on top of) existing complete P2P data

management systems, giving it better chances to measure
the real performance of a real, complete deployed platform.
Second, P2PTester allows gathering much more (and more
detailed) statistics, such as the size of exchanged messages,
size of partial results shipped by each peer involved in an-
swering a distributed query etc.

We plan to demonstrate how P2PTester can be used to
measure a target application (see Section 3) issued from the
context of the eDOS R&D European project [18].

2 P2PTester outline

The goals of P2PTester can be summarized as follows.

Genericity: our first and primary goal is that our system
be usable to measure a wide range of P2P platforms.

Scalability: the tester application must be ready-to-
deploy at a large scale, since we want to test the perfor-
mance of distributed systems with a large number of “real”
peers. The tester’s own overhead should be low, to avoid in-
fluencing the overall performance of the system measured.

Modularity: P2PTester must allow performing fine-
grained measures of various components of a P2P data man-
agement application. Thus, it may be interesting to grasp
the performance of a P2P system’s locating function only,
or of its indexing component only, of its distributed query
processing operations only etc. This essential feature also
enables the testing of complex, hybrid systems, for instance
XML or RDF data management layers deployed alterna-
tively on a DHT and on an unstructured network etc.

2.1 P2PTester’'sinteraction with a P2P system

P2PTester is structured in four independent layers,
schematically presented in Figure 1.

Communication. The first layer offers a trusted com-
munication infrastructure to exchange messages between
peers. For generality, we provide a common interface that
must be implemented by any module that provides basic
communication functionalities. In the first tester release,
we offer a basic socket-based communication module.

Application. Application-specific modules belong to
this layer, which includes the peer entity, mainly composed
of the indexing, routing and query processing modules. The
indexing module is responsible for propagating the (system-
specific) information used to locate data items and to pro-
cess queries. The routing module exploits such information
to locate in the P2P network peers which may contribute
to answering a query. Finally, the query processing module
(if it exists) performs query processing operations, and ini-
tiates communications whose aim is to ship data between
peers (which may or may not use the routing modules).
Test. The test layer is interspersed with and between the
other layers, in order to attain our genericity and modular-
ity goals. Given the variety of platforms and implemen-
tation details, we devote particular attention to ensure that

Master Tester

[Test GUI
[

Testing Interface ’ ‘

JT
Peer
Manager

Peer Interface

J [Result Visualizer J

Tester

Protocol Peer

Query Processing
Module
I T
= xing

Module

Routing
Module
I]
Communication Interface
Network

Communication
Module

Figure 1. P2PTester Architecture

once defined, a test is general enough to be run on several
similar, yet different architectures. The test layer includes a
peer manager, responsible for launching and stopping peers
of the system tested, and a test control interface, which re-
ceives and processes tests to be run. To gather and inter-
pret (distributed) test results, a distributed logger is present
in this layer, which records the details of each event in the
evolution of the network. Finally, a test monitor coordinates
the modules in this layer, and automates the production of
test results.

Test Generation. To help the user devise and run tests, we
provide a (graphical) interface where users can define tests
by specifying several basic parameters: the number of peers
in the test, the type of peer overlay that must be used, the
data sets to be indexed, the queries to be executed, the dura-
tion of the test, how the measure results are to be gathered
and structured etc. The test results are presented with the
help of an interactive visualization tool.

As a supplementary testing help, geared more specifi-
cally towards the P2P platform developers, P2PTester pro-
vides a set of basic P2P application modules, which can
be plugged together with specific, user-provided data man-
agement layers. For instance, P2PTester provides its own
DHT implementation. The purpose is not to compete with
existing DHTSs, but to enable fast prototyping of a running
system, and to allow testing the extent to which a system’s
performance depends on a specific DHT (by trying it alter-
natively with the one provided by P2PTester).

2.2 P2PTester Interaction with a P2P System

The tester offers a common API for writing P2P test
scenarios for a large spectrum of P2P system architectures.

Each method in this API corresponds to (wraps) one of the
methods provided by the P2P system under test. Thus, a call
to the join method, which normally allows a peer to join
a P2P system, is intercepted by P2PTester, which logs it,
then redirects it to its rightful destination peer, all the while
measuring its response time, the communications engen-
dered by the join implementation provided by the system
etc. Other frequent calls such as leave (disconnecting a peer
from the network), publish (publishing indexing/catalog in-
formation in the network), remove (withdrawing published
data), leave (disconnecting a peer from the network), and
finally query (processing locate or more complex query re-
quests) are intercepted and logged by P2PTester similarly.

P2PTester is deployed as a distributed Java application,
as follows. Assume the intended P2P deployment archi-
tecture (in the absence of testing) consists of N logical
peers running a given P2P data management software, de-
ployed on Ny physical peers (or machines), where N >
Ny. Deploying the same architecture while testing it with
P2PTester involves deploying IV, P2PTester instances, one
on each physical machine, and using each instance to start
the corresponding logical peers and measure them.

The parameters measured by P2PTester during a test run
include the following:

e Number, and size, of messages required for: () join-
ing/leaving, (i7) publishing and (z¢%) querying.

e Size of index/routing data stored at a given peer
e Size of the data currently published in the network
e Query result sizes

e Query processing time, broken down (whenever the
underlying system allows it) into:

— Locate time, or the time it takes to identify the
peers in the network holding useful data;

— Pre-processing time, such as the time to filter out
some of the located peer and/or to chose the ones
to contact;

— Processing time, spent in the data transfer and
processing operations specific to query process-
ing in the system under test;

— Post-processing time, such as the time to rank re-
sults, aggregate them etc. (in short, all operations
that the query peer may perform before present-
ing results to the user).

3 Demonstration Scenario

In this section, we outline the application scenario, and
the P2P systems we plan to demonstrate P2PTester on.

3.1 Target Application

We plan to demonstrate P2PTester on a distributed ap-
plication dedicated to the collaborative production, testing,
integration and distribution of free software, inspired from
the eDOS R&D project currently ongoing [18].

Many kinds of users participate in such a system. Most
users are writers: they contribute successive versions of
specific software packages and/or their documentation.
Other users are testers/integrators: they need to have up-to-
date versions of software packages on their sites (possibly
automatically pushed by the system as part of a subscrip-
tion), in order to test and integrate these packages among
them. A few sites have a publisher profile: periodically,
they publish large-scale integrated software suits, together
with their documentation etc. Other sites serve as mirrors:
they only replicate published suits, with the purpose of mak-
ing them available faster to downloading users scattered all
over the world. Finally, a large majority of participants
only download software, either integrated suites or individ-
ual packages under test.

We have chosen this application as representative mainly
due to its distributed nature, and to the dynamicity of all
peers involved: an arbitrary peer can get involved in such a
free software development and exploitation effort, and sim-
ilarly, any peer can leave at any time. A further interesting
aspect of the application is the variety of read/write profiles
of the participating peers, which should allow to test the
suitability of a P2P system for a large spectrum of real-life
applications.

3.2 P2P SystemsUnder Test

KadoP [1, 19] is a P2P system built on the support of-
fered by a DHT. The system can be used for publishing
and querying XML documents. Published documents are
indexed using an extension of the DHT API. The KadoP
query language is based on tree pattern queries. For testing
KadoP we use the tester DHT and we integrate the specific
query processing modules in the architecture of the tester.
PIER [8] is a relational query processor adapted to a mas-
sively P2P architecture. As KadoP, PIER is based on a DHT
structure that is used for indexing and querying data. In
PIER queries are expressed in a relational language (e.g.
SQL) and transformed in optimized execution plans evalu-
ated over the DHT.

Distributed NIAGARA We plan to offer a P2P evalua-
tion of the NIAGARA system [5] as presented in [7]. The
system is built over a Chord implementation of a DHT ta-
ble. XML documents are indexed in the DHT based on data
summaries. The system can handle XPath queries of the
form g = /p1[pi])/p2[pbl/ - - /pnlp,] op const, includ-
ing wildcards, and the // navigation operator. Queries are
answered by locating XML documents satisfying the struc-
tural conditions based on the DHT XML index, and value

e

2 PeerTester 1.0.3 DEx

Exit Help

Hetwork | Test

Listening on;: | 3178-3804193.51.25.28
Connected teste

Peer193.51.26.35:2328
Data

icastRef [lv
| hicastRef [liv [l

hicastRef [liveRef: [endpoint:[193.51,25, 28: 1852](remote), objlD:[S]]T]] |
hicastRef [liveRef: [endpoine:[193.51,25,28: 1852](remote), objlD:[3]]1]]

Key=2306 | Yalue=author
hicastref [liveRef: [endpoint:[193.51,25,28:1552](remote], objio:[4]]T]) = I

< >

Use the "Test" tab ko select the best you want bo run,

Figure 2. P2PTester screen shots

predicates are matched based on value summaries.

XPEER [8] is a self-administrating P2P XML database
system built around a hierarchical overlay of peers with in-
dexing capabilities named super-peers. Each peer makes
data available to other peers by publishing XML views of
local data, indexed by the super-peer network. XPeer sup-
ports the FLWR core of XQuery without respecting the doc-
ument order in the query results. Queries are executed in
two phases: first, using the hierarchical indexing network
the relevant sources are discovered; then query execution
plans are optimized and executed by directly contacting
peers containing relevant data.

The tested systems offer varied, yet comparable, storing
and querying functionalities. Our demo will offer a compar-
ative evaluation by testing the sample application deployed
over the three systems. For each query/update of the appli-
cation scenario, and system, we will show: (7) the graph of
communications between the peer where the query/update
is received, and the other network peers; (i7) the number of
overlay network messages involved in processing the query;
(7i7) the number and total size of data transfers resulting
from query processing; (iv) the overall, and individual, pro-
cessing times incurred at every step during the evaluation.

3.3 Application Deployment

The EDQS application will be deployed on about a hun-
dred logical peers running in our three laboratories, and on
laptops at the conference site. All P2PTester instances of-
fer a Web interface, which we will use to show the mea-
sured results. Figure 2 shows two sample screen shots of
P2PTester: the list of logical peers connected to a P2PTester
instance (left), and the distribution of index data in a Chord-
like DHT network (right).

4 Conclusion

The current abundance and complexity of P2P archi-
tectures makes it extremely difficult to assess their perfor-
mance. P2PTester is the first tool devised to interface with,
and measure the performance of, existing P2P data man-
agement platforms. We isolate basic components present in

current P2P platforms, and to insert "hooks” for P2PTester
to capture, analyze and trace the interactions taking place
in the underlying distributed system. P2PTester allows de-
velopers to gather useful feedback on their system, and P2P
research and development to profit in general from a thor-
ough, across-the-board comparative analysis.

References

[1] S. Abiteboul, I. Manolescu, and N. Preda. Constructing
and querying peer-to-peer warehouses of XML resources
(demo). In ICDE, 2005.

[2] Transaction Processing
http://www.tpc.org.

[3] A. Crespo and H. Garcia-Molina. Routing indices for peer-
to-peer systems. In Proc. Int’l. Conf. on Distributed Com-
puting Solutions (ICDCS 02), 2002.

[4] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Sto-
ica. Towards a common API for structured P2P overlays. In
Proceedings of IPTPS, 2003.

[5] D. DeWitt, D. Maier, and J.
http://www.cs.wisc.edu/niagara/.

[6] P. Druschel and A. Rowstron. Past: Persistent and anony-
mous storage in a peer-to-peer networking environment. In
Proc. 8th |[EEE Workshop on Hot Topics in Operating Sys-
tems, 2001.

[7] L. Galanis, Y. Wang, S. R. Jeffery, and D. J. DeWitt. Lo-
cating data sources in large distributed systems. In VLDB,
2003.

[8] R. Huebsch, J. Hellerstein, N. Lanham, B. T. Loo,
S. Shenker, and I. Stoica. Querying the internet with pier.
In VLDB, 2003.

[9] H. V.Jagadish, B. C. Ooi, and Q. H. Vu. BATON: A balanced
tree structure for peer-to-peer networks. In VLDB, 2005.

[10] B. T. Loo, R. Huebsch, I. Stoica, and J. M. Hellerstein. The
case for a hybrid P2P search infrastructure. In Proc. 3rd Int’l.
Workshop on Peer-to-Peer Systems (IPTPS), 2004.

[11] T. Neumann, M. Bender, S. Michel, and G. Weikum. A re-
producible benchmark for P2P retrieval. In Proc. 1st Int'l.
Wbrkshop on Performance and Evaluation of Data Manage-
ment Systems (EXPDB), 2006.

[12] M. T. Ozsu and P. Valduriez. Principles of Distributed
Database Systems. Prentice-Hall, 1991.

[13] J. Pujol, R. Mondejar, H. Tejedor, M. Sanchez, P. Garcia, and
C. Pairot. http://planet.urv.es/planetsim.

[14] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Application-level multicast using content-addressable net-
works. In Proc. 2nd Int’l. Workshop of Network Group Com-
munication (NGC), 2001.

[15] K. Shudo. The Overlayweaver
http://overlayweaver.sourceforge.net/.

[16] 1. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. Conf on Applications, Technolo-
gies, Architectures, and Protocols for Comp. Communica-
tions, 2001.

[17] 1. Tatarinov, Z. lves, J. Madhavan, A. Halevy, D. Suciu,
N. Dalvi, X. Dong, Y. Kadiyaska, G. Miklau, and P. Mork.
The Piazza peer data management project. ACM SGMOD
Record, 2003.

[18] The EDOS project web site.
project.org/xwiki/.

[19] The KadoP project web site.
http://gemo.futurs.inria.fr/projects/KadoP/.

Performance Council.

Naughton.

project.

http://www.edos-

