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Abstract—Given a set of objects O, each with d numeric
attributes, a top-k preference scores these objects using a linear
combination of their attribute values, where the weight on each
attribute reflects the interest in this attribute. Given a query
preference q, a top-k query finds the k objects in O with highest
scores with respect to q. Given a query object o and a set of
preferences Q, a reverse top-k query finds all preferences q ∈ Q

for which o becomes one of the top k objects with respect
to q. Previous solutions to these problems are effective only
in low dimensions. In this paper, we develop a solution for
much higher dimensions (up to high tens), if many preferences
exhibit sparsity—i.e., each specifies non-zero weights for only
a handful (say 5–7) of attributes (though the subsets of such
attributes and their weights can vary greatly). Our idea is to
select carefully a set of low-dimensional core subspaces to “cover”
the sparse preferences in a workload. These subspaces allow
us to index them more effectively than the full-dimensional
space. Being multi-dimensional, each subspace covers many
possible preferences; furthermore, multiple subspaces can jointly
cover a preference, thereby expanding the coverage beyond each
subspace’s dimensionality. Experimental evaluation validates our
solution’s effectiveness and advantages over previous solutions.

I. INTRODUCTION

When examining a large number of objects with multiple at-

tributes, users often find it useful to rank the objects according

to personal preferences in order to focus on the top-ranking

ones. A natural way of specifying this ranking is with an

object scoring function whose parameters are set according to

a user’s preference. A simple but effective scoring function is

a linear combination of the attribute values, where the weight

associated with each attribute reflects the users’ interest in

this attribute. For example, consider an NBA player database

that maintains, for thousands of players, various performance

statistics such as points, rebounds, and assists per game. A

user interested in tracking offensive players may care most

about points and assists, and hence place larger weights on

these attributes. On the other hand, a user interested in tracking

defensive players may care about steals and blocks, and hence

place a small or zero weight on assists. There has been much

work on preference top-k queries [1], [2], [3], [4], [5], [6],

[7], [8], [9], which return the top k objects ranked according

to linear scoring functions.

Also of interest are reverse preference top-k queries [10],

[8], [11]. Here, we have a set of objects and a set of top-k
preferences. Given a new object, we want to know for which

preferences this new object will enter their result top k objects.

These queries have applications in publish/subscribe [8] (e.g.,

monitoring top players over time) and market research [10]

(e.g., what-if analysis of public interest in a new product).

Challenge: curse of dimensionality. Supporting linear pref-

erence top-k queries and the reverse top-k queries becomes

challenging even for moderate dimensions (say 20). The best

known data structures, with provable performance bounds,

answer a query in O(log n) time using roughly n⌊d/2⌋ space or

in roughly n1−1/⌊d/2⌋ time using linear space [12]. In terms of

practical data structures, the Threshold Algorithm (TA) [13]

is efficient if every top-k object is ranked high in at least

one dimension. However, as the dimensionality d grows, there

is a higher chance that an object has a low rank even if it

ranks high along one dimension. The layer-based approach,

represented by [1], indexes layers of convex hulls for the

objects in the full-dimensional space; computing a convex hull

takes O(n⌊d/2⌋+n log(n)) time, and the outer layers grow in

size quickly with d, even if points are uniformly distributed

in a ball. The view-based approach [14], [5] uses a set of

materialized top-k views to compute top-k queries, but in high

dimensions, a large number of materialized views are required

to provide adequate support for queries. Recently, Heo et

al. [7] combined the layer-based technique with TA-style

dimension-wise filtering for top-k queries involving arbitrary

subset of attributes. All work mentioned above tested their

algorithms on data in at most 7 dimensions.

For reverse top-k queries, the approach of [10] reduces a

reverse top-k query to m top-k queries, where m is the number

of preferences in the worst case. Recently, a branch-and-bound

algorithm is presented [11], but its R-tree index structure is

not scalable in d. Our previous work [8] reduces a reverse

top-k query to halfspace reporting. For d ≤ 3, the query time

is O(log n + t), using linear space, which is optimal; here

t is the output size. For d > 3, if the storage requirement

is near-linear, say O(npolylog(n)), then the query time of

best known algorithms is Ω(n1−1/⌊d/2⌋ + t) [12], where t
is the number of results, and the hidden constant of propor-

tionality is exponential in d; furthermore, these algorithms

are too complex to implement. For practical data structures

such as quad-trees and kd-trees, a halfspace query requires

Ω(n) time in the worst case and roughly O(n1−1/d + t) for

uniformly distributed points. Hence, existing approaches will

not outperform a simple linear scan.

Opportunity: sparse preferences. We observe that in prac-

tice, even if data have high dimensionality, users are usually

interested in only a small subset of attributes—we would

not expect many users to specify preferences with a large

number of attributes having non-zero weights. Thus, there is an

opportunity to develop techniques for handling such “sparse”



preferences differently from and more efficiently than the

general case. If many preferences are sparse, we can improve

overall performance by speeding up the common case.

One possible approach exploiting this observation is to

use the existing dimensionality reduction techniques, such as

principal component analysis (PCA), random projection, and

low-distortion embedding techniques [15], which are usually

applied to the object set. We argue that reducing object

dimensionality alone is neither perfect nor complete. While

these methods are effective in projecting data to moderate

dimensions, say 100’s to 10’s, using them to project objects

onto 5–7 dimensions creates significant error. Also, attributes

in the reduced space are harder for users to work with as

they may no longer have intuitive meanings. We can map

preferences in the original space to ones in the reduced space,

but they may become more difficult to handle as they may no

longer retain their sparsity.

Our approach and results. We present efficient algorithms

for top-k and reverse top-k queries in high dimensions. Our

approach is effective when most preferences are sparse—i.e.,

each of them specifies non-zero weights for only a small

number (say 2–6) of attributes (but they need not specify the

same subset of attributes or similar weights on attributes). For

top-k queries, in order to take advantage of sparsity in query

preferences, our approach needs to assume the distribution of

which attributes are specified by the preferences, but it still

works well without accurate knowledge of the distribution of

what weights are specified for these attributes.

Roughly, we follow a dimension-reduction framework, but

we do not project all objects and preferences on a single

low-dimensional subspace. Instead, we project them on many

subspaces and, for each subspace, we index a subset of them.

In more detail, we carefully choose a set H of low-

dimensional subspaces, called core subspaces, based on the

given distribution of preferences. For each core subspace

H ∈ H, we choose a small subset of objects that are “relevant”

for H and project them on H . Let OH denote the resulting

projections. Building on our techniques for handling low-

dimensional preferences in [8], we index OH for each H .

To answer a top-k query with respect to a sparse preference

q, we choose a small subset Γq ⊂ H of core subspaces, which

“cover” the query preference q. For each H ∈ Γq, we compute

the top-βk ranked objects of OH for a parameter β ≥ 1, with

respect to the preference q (or rather, w.r.t. the projection of

q on H). Finally, we return the top k among these objects.

To support reverse top-k queries for a set O of objects and

a set Q of preferences, we assign each preference q ∈ Q to a

small subset of Γq ⊂ H of core subspaces that cover q. For

each core subspace H ∈ H, let QH denote the projections on

H of preferences assigned to H . We index QH to support

reverse top-βk queries against OH and QH . To answer a

reverse top-k query for a query object o, we identify the core

subspaces that are “relevant” for o, perform a reverse top-βk
query with o in each of them, collect all result preferences,

and filter out any false positives.

Our experimental evaluation confirms the effectiveness of

our approach, which allows a desktop machine to handle

hundreds of thousands of objects or preferences in 20 to

200 dimensions with speed and accuracy. To the best of our

knowledge, our approach is the first to demonstrate this degree

of scalability in both problem size and dimensionality.

Technical challenges and contributions. There are several

technical challenges that we need to address to make our

approach viable. First, how do we choose the core subspaces?

A naive approach will be to make any subspace that contains

some preferences to be a core subspace. For example, if we

know that preferences specify non-zero weights for attribute

subsets {1, 2}, {1, 3}, and {2, 3, 4}, then we make them core

subspaces and build indexes for them: 2-dim indexes for

{1, 2} and {1, 3}, and 3-dim for {2, 3, 4}. This approach is

not practical, however, because there are too many possible

low-dimensional subspaces. For example, if objects have 20
attributes and each preference specifies at most three of them,

one might have to build
(

20
3

)

= 1,140 different indexes.

Another possibility is to cluster the preferences into a

small number of clusters and choose a representative pref-

erence, called a view, from each cluster. This view-based

approach [14], [5] works if preferences are tightly clustered,

objects are “well distributed,” and the weights of query pref-

erences for top-k queries follow the same distribution of Q.

As we will see later, this approach does not always work well,

because each view is very “specific” and many more views will

be needed as dimensionality grows. We show how to overcome

the limitations of this approach with higher dimensional core

subspaces, each of which effectively serves as a “super”-view

that subsumes an infinite number of preference-based views

lying in it. Section III describes our approach.

Second, it will be too expensive to build an index on the

entire set of objects for each core subspace, so we describe a

method (Section IV-A) for choosing a small set of objects to

index. Analogously, it is expensive to index all preferences in

each core subspace, so we introduce a method (Section IV-B)

for assigning each preference to a small number of core

subspaces where it will be indexed. Then, using the indexes

we describe in Section IV, we show how to answer top-k and

reverse top-k queries (Section V).

Finally, we cannot assume that all preferences are sparse or

all can be covered by the selected core subspaces. Therefore,

we also show in Section IV-C how to build full-dimensional

indexes for uncovered preferences. In particular, we describe

an approximation method similar to the one in [16], but with

an improvement: if input objects lie on a low-dimensional

surface, say of dimension τ , then we can choose a subset C of

objects whose size is exponential only on τ , but polynomial in

d, which provides top-k query answers that approximate those

obtained by querying the entire set of objects.

II. PROBLEM STATEMENT

An object has d real-valued attributes and is represented

as a point (v1, . . . , vd) ∈ R
d; the xi-axis represents the i-th



attribute. Let ei denote the unit vector in direction xi, i.e., the

i-th coordinate of ei is 1 and the rest are 0. A subset I ⊆ [1, d]
of attributes defines an axis-parallel subspace Sp(I) of Rd in

which only the attributes of I have non-zero values. Formally,

Sp(I) = {∑j∈I λjej | λj ∈ R}. For two axis-parallel

subspaces H1 = Sp(I1) and H2 = Sp(I2), span(H1, H2)
denotes the smallest axis-parallel subspace that contains both

H1 and H2; equivalently, span(H1, H2) = Sp(I1 ∪ I2) =
{λ1x1 + λ2x2 | x1 ∈ H1, x2 ∈ H2, λ1, λ2 ∈ R}.

A preference is represented as a unit vector in R
d, i.e.,

a point (w1, . . . , wd) on S
d−1, the (d − 1)-dimensional unit

sphere embedded in R
d centered at the origin. Each wi ∈

[−1, 1] is the weight for the i-th attribute (weights can be

negative). For a preference q, we define Sp(q) to be the

subspace spanned by the non-zero attributes of q. Note that

dim(Sp(q)) may be much smaller than d. For example, if

q = (1/
√
2, 1/
√
2, 0, . . . , 0), then Sp(q) is the 2-d x1x2-plane.

The score of an object o with respect to a preference q is

〈q, o〉 = ∑

1≤i≤d wivi. A hyperplane h normal to a preference

vector q is of the form 〈q, x〉 = t for some t ∈ R. All objects

lying on h have the same score with respect to q, namely

t. For a point x ∈ R
d and an axis-parallel subspace H , let

xH denote the projection of x on H . For example, if x =
(x1, . . . , xd) and H is spanned by attributes {1, 2, 4}, then

xH = (x1, x2, x4). For a preference q with H = Sp(q) and an

object o, 〈q, o〉 = 〈qH , oH〉; in other words, when computing

the score of o w.r.t. q, it suffices to do so for their projections

on the subspace Sp(q).
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Fig. 1. Illustration of top-k
queries in R2 (adapted from [8]).
π≤5(a,O) = 〈1, 2, 4, 3, 5〉;
π≤5(b,O) = 〈3, 2, 1, 5, 4〉.

Let O = {o1, o2, . . . , on} ⊂
R

d denote the set of n objects

of interest. For simplicity of ex-

position, we assume that no two

objects have the same score for

any preference we consider. Our

framework and algorithms extend

to handle ties in a straightforward

manner. For a preference q, let

πi(q,O) denote the i-th ranked

object in O with respect to q; i.e., there are exactly i−1 objects

o′ ∈ O with 〈q, o′〉 < 〈q, o〉. Let π≤i(q,O) = {πj(q,O) |
1 ≤ j ≤ i} denote the top i objects in O with respect to

q. Geometrically, if we project the objects of O onto a line

parallel to q, then πi(q,O) is the i-th farthest object on this

line in the direction of q; see Figure 1. We are interested in:

(Preference) top-kkk query Given a query preference q, return

π≤k(q,O).
Reverse (preference) top-kkk query Given a set of m prefer-

ences Q = {q1, q2, . . . , qm} and a query object o, find

the subset Qo = {q ∈ Q | o ∈ π≤k(q,O ∪ {o})}, i.e., all

preferences in Q for which o is one of the top-k objects.

We say that such preferences are affected by o.

III. IDENTIFYING CORE SUBSPACES

In this section, we describe how to find the set H of core

subspaces, which we use to build low-dimensional indexes. For

these indexes to be practically efficient, we cap the maximum

dimensionality of a core subspace at τ̂ = 5.

Let Q be a set of preferences. It can be a set of given

preferences for reverse top-k queries, or a past workload of

forward top-k queries that informs index construction.

Our algorithm works in three stages. The first stage identi-

fies the initial set K of candidate subspaces from the “sparse”

preferences of Q (the formal definition of “sparseness” will

follow shortly). If K is small, let H = K and we are done.

Otherwise, we proceed to the next stage, adding to K a few

additional subspaces that span multiple subspaces of K and

are “popular” (roughly speaking, a popular subspace can help

“cover” many sparse preferences—the notion of “coverage” is

intuitive but will be made more clear in Section IV-B). The

last stage chooses a subset of K to cover most of the sparse

preferences of Q. We now describe each stage in detail.

Weight of a subspace. To capture the notion of “popularity,”

we define the weight of a subspace H (with respect to the set

of sparse preferences Qs) as

w(H) =
∑

q∈Qs

‖qH‖2/(dim(H))µ, (1)

where qH denotes the projection of q on H , and µ is a

parameter (further explained below). Intuitively, the weight

function favors those subspaces that have low dimensionality

but preserve most information about preferences, in the sense

that ‖qH‖ is large.

We choose ‖qH‖2 instead of ‖qH‖ in this definition, because

we wish to reward subspaces that preserve most information

about a preference (i.e., ‖qH‖ is close to 1), and penalize

those that preserve little information about a preference (i.e.,

‖qH‖ is close to 0). For example, given two preferences,

consider i) two subspaces, where each contains one preference

(whose projection has norm of 1) but is orthogonal to the

other preference (whose projection has norm 0), versus ii) two

subspaces for which both preferences have projections of norm

0.5. Intuitively, the two subspaces in (i) are better because they

provide “full coverage” for each of the two preferences, while

the two subspaces in (ii) only provide “partial coverage” for

both preferences. Our weight definition captures this intuition

with the use of ‖qH‖2. Had we used ‖qH‖ instead, these

subspaces would have identical weights.

If all preferences in Qs lie within H , then w(H) =
|Qs|/(dim(H))µ, which is the maximum possible weight for

subspaces with the same dimensionality. The term (dim(H))µ

penalizes high-dimensional subspaces because constructing

indexes for them are more expensive than for low-dimensional

subspaces. The term also “normalizes” popularity, because a

high-dimensional subspace is expected to be able to cover

more preferences. By adjusting the parameter µ, we obtain a

trade-off between keeping the indexing costs low and covering

more preferences. Our experiments in Section VI use µ = 1
4 .

Initializing candidate subspaces. For the purpose of finding

core subspaces, we ignore insignificant attribute weights in

preferences. Consider each preference q ∈ Q. We round off



any attribute weight to 0 if no greater than 0.01, and rescale

the resulting preference so that it remains a unit vector.

Following this preprocessing, we say that a preference q is

τ -sparse if dim(Sp(q)) ≤ τ (i.e., q has non-zero weights for

at most τ attributes). Since we are practically limited to core

subspaces with dimensionality up to τ̂ = 5, we focus on the

subset Qs of sparse preferences, i.e., those that are (τ̂ +△τ)-
sparse. Here,△τ is a small slack (we set△τ = 2) that reflects

the ability of our approach to handle denser preferences using

multiple core subspaces.

We compute the set K of candidate core subspaces from

the set Qs of sparse preferences as follows. First, any τ̂ -

sparse preference gives us an axis-parallel candidate subspace:

K ← {Sp(q) | q ∈ Qs and q is τ̂ -sparse}. Second, for

each sparse preference q ∈ Qs that is not τ̂ -sparse (but still

(τ̂ +△τ)-sparse), we consider all τ̂ -dimensional axis-parallel

subspaces of Sp(q) as candidates: K← K∪{Sp(I) | Sp(I) ⊂
Sp(q) and |I| = τ̂}.

If the size of K is small, we set H to K and stop, otherwise,

we proceed to the next two stages. As mentioned in Section I,

however, K can be large. For example, for d = 20, τ̂ = 5, and

△τ = 2, |K| can be as large as 21,699.

Adding popular subspaces. Suppose K has two overlapping

subspaces of significant weights. It might be more efficient to

build a single index for span(H1, H2) rather than building

two separate indexes—one for H1 and another for H2. To

enable this possibility, given H1, H2 ∈ K, we add H =
span(H1, H2) to K if all of the following conditions hold:

• dim(H) < dim(H1)+ dim(H2); i.e., H1 and H2 overlap.

• w(H1), w(H2) ≥ median{w(K) | K ∈ K}, and w(H) ≥
0.8(w(H1) + w(H2)); i.e., H is sufficiently popular.

• dim(H) ≤ τ̂ , where τ̂ is maximum dimensionality of a

core subspace (introduced at the beginning of this section);

we do not consider adding subspaces with higher dimen-

sionality because indexing them would be too costly.

Selecting core subspaces. Continuing with the set K of

candidate subspaces, we now compute a smaller set H ⊆ K,

as core subspaces, to cover most of the sparse preferences in

Qs. Note that we cannot simply choose the subspaces with the

top weights because, together, they may overlap and end up

covering only a small fraction of the preferences.

Algorithm 1 gives the pseudo-code of our approach. In each

step, we select the subspace H with the highest weight out

from K. Importantly, every time we pick some H , we “update”

the set of preferences in a way to reduce their contributions to

subspace weights for those preferences covered by H . Thus,

subsequent selections will focus on covering preferences that

remain uncovered.

If a preference q is contained in H , q is fully covered by

H . Otherwise, q is only partially covered. In this case, qH , the

projection of q on H , provides information about some of the

attributes of q in the sense that the ranking of objects w.r.t. qH
gives some information about ranking of objects w.r.t. q—for

those attributes that are present in H . We reduce the weights

Algorithm 1: SelectCoreSubspaces(K; δ).

1 H← ∅ ;
2 ms ← |Qs|; remember the original value for each q ∈ Qs

(denoted q̃);

3 while 1
ms

∑
q∈Qs

‖q‖ ≥ δ do

4 foreach K ∈ K do compute w(K) using Eq. (1);
5 H ← argmaxK∈K

w(K);
6 H← H ∪ {H}; K← K\{H};
7 foreach q ∈ Qs do
8 q ← q − ‖q̃H‖ · qH ;
9 if ‖q‖ < δ then Qs ← Qs \ {q};

10 return H;

qH
a3

a2

o4

o5

o3

o2

o1

(a) Subspace (a2, a3).
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o3
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o1
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(b) Subspace (a1, a3).
Fig. 2. Illustration of coverage. Here, d = 3, k = 2, q = (0.2, 0.3, 0.5), and
O = {o1, . . . , o5}, where o1 = (0, 3, 6), o2 = (0, 10, 5), o3 = (9, 0, 1),
o4 = (8, 1, 1), and o5 = (5, 3, 5). Thus, π≤2〈q,O〉 = {o2, o5}. Suppose
H = (a2, a3) is selected. Then π≤2〈qH ,OH〉 = {o2, o1}, as shown in
Figure 2(a). If we simply clear any weights of attributes in H , q becomes
(0.2, 0, 0) and the top 2 projected objects w.r.t. attribute a1 are o3 and o4.
In this case, the correct second-ranked object o5 will not be reported.

of those attributes in q that are present in qH , so that subspaces

we select in the future will capture the information of q w.r.t.

the attributes of q not present in q. The simplest method will

be to let q ← q − qH ; i.e., we simply clear q of any weights

of attributes in H . However, this method is suboptimal; for a

concrete example, see Figure 2.

Intuitively, for a partially covered preference, we would

ideally like to cover each of its attributes with non-zero

weights by multiple core subspaces. To this end, we update

q using q ← q − ‖q̃H‖ · qH , where q̃ denotes the original

vector for the preference (while q denotes the current vector,

whose value changes over the course of the algorithm). The

multiplier ‖q̃H‖ ensures that if q̃ is partially covered by H (i.e.,

‖q̃H‖ < 1), we will leave some residual weights for attributes

in H to encourage additional coverage. On the other hand, if q̃
is contained in H , the vector will become zero after the update,

and there is no need to consider q further. Consider the same

example in Figure 2. After H has been selected, q will become

(0.2, 0.06, 0.1). Suppose H ′ = (a1, a3) is chosen. As shown

in Figure 2(b), π≤2〈q′H ,O′
H〉 = {o5, o1}. Hence, the union of

the top 2 objects in H and H ′, {o1, o2, o5}, contains the exact

top-2 objects, o2 and o5. In [17], we present experimental

results that validate the effectiveness of multiple coverage.

In general, we stop covering a preference when its norm has

dropped below a given significance threshold δ (e.g., 0.05).

We stop selecting additional core subspaces altogether once

the average norm of all preferences drops below δ; see [17]

for additional evaluation on the choice of δ.

Discussion. As mentioned in Section I, our approach can



be seen as a generalization of the view-based approach [5],

[14]. The indexes we build for each core subspace H can

be seen as a “super”-view that effectively provides the same

power as materializing an infinite number of vector views

whose vectors lie in H . On the other hand, unlike vector

views, our core subspaces are axis-parallel. This restriction not

only makes the problem more tractable, but also the attributes

retain their meaning and if Sp(q) is a k-dim, then it will be

k-dimensional even after the projection—number of non-zero

attributes does not increase. It does not pose any issue for

sparse preferences, because a multi-dimensional core subspace

subsumes all vector views therein, including those that are

not axis-parallel. Such degrees of freedom provided by multi-

dimensional subspaces also make our approach more robust—

while the choices of vector views are susceptible to errors

and changes in the distributions of attribute weight values

in preferences, our approach will still work well as long as

preferences continue to specify non-zero weights, which can

vary arbitrarily, for the same subsets of attributes.

IV. CONSTRUCTING INDEXES

We now describe the indexes we build. First, for each

core subspace in H, we build an object index for top-k
queries (Section IV-A) and a preference index for reverse top-k
queries (Section IV-B). The collection of these indexes for core

subspaces aims at handling most (if not all) sparse preferences.

Next, to handle all preferences not covered by these indexes,

we separately build data structures for the full-dimensional

space (Section IV-C).

For reverse top-k, in addition to these indexes, we also store

the score of the k-th ranked object for each preference.

A. Core Subspace Indexes for Top-k Queries

For each core subspace H ∈ H, a straightforward ap-

proach would to be project O onto H , and build an index

on the dim(H)-dimensional projected points that, given a

query preference q, return the top k points with respect to

q. This approach, however, has several issues. First, unless q
is contained in H , there is a good chance that the we will

miss some answers by looking only at the top k objects for q
in H , even when we look in multiple core subspaces partially

covering q. Second, indexing all points in O for every core

subspace results would require O(n|H|) space, which is too

much. Third, looking in multiple core subspaces per query

means that the index for each core subspace must be fast.

To address these issues, for each core subspace H , we

carefully choose a small subset of objects to build an index

that supports top-βk queries in H . The index is small and fast,

but approximate—a sensible trade-off because the top answers

in a subspace in any case only approximate those in the full-

dimensional space. Here, β ≥ 1 is a small constant to increase

the chance of catching a top-k object in the full-dimensional

space. We set β = 3 in our experiments in Section VI; see [17]

for additional evaluation on the choice of β.

Before going into more detail, we have to introduce the

notion of coreset. For a preference q ∈ S
d−1, let Ui and Li
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Fig. 3. a) Illustration of coreset for k = 2 (adapted from [8]). Points are
shown as black dots and members of the coreset are circled. b) A set of
objects generated for the document subscription workload (see Section VI).
c) A coreset for the set of objects in (b); k = 5.

be the objects corresponding to the i-th maximum and the

i-th minimum scores w.r.t. q. The difference between these

two scores defines the i-th extent of O in direction q, denoted

d̄i(q,O); i.e., d̄i(q,O) = 〈q, Ui〉 − 〈q, Li〉. Given an integer

k ≥ 1 and an error allowance parameter ε > 0, a subset C ⊆ O

is called a (k, ε)-coreset (or simply coreset for brevity) if for

all i ≤ k and q ∈ S
d−1,

〈q, πi(q,C)〉 ≥ 〈q, πi(q,O)〉 − εd̄i(q,O). (2)

In other words, the i-th ranked object obtained by querying C

in any direction is guaranteed to score closely as the actual i-th
ranked object by querying O in the same direction.1 Figure 3

illustrates the concept of coreset and shows an example for

an object workload considered in Section VI. An algorithm

for computing a (k, ε)-coreset of O of size O(k/ε(d−1)/2) in

O(n log n+ k/ε3d/2) time was given in [16] (see also [8]).

Let OH denote the projection of O, the set of input objects,

on H , and let ε > 0 be the error allowance. We construct an

(βk, ε)-coreset of CH ⊆ OH By definition, for any preference

q in H , and for any j ≤ βk, 〈q, πj(q,CH)〉 ≥ 〈q, πj(q,O)〉 −
εd̄j(q,O), i.e., the scores of top-βk objects of CH are roughly

the same as those of O.

Next, we build an index on CH such that for a query

preference q in H and κ ≥ 1, it returns π≤κ(CH , q). By the

definition of coreset, for κ ≤ βk, the score of π≤κ(CH , q) will

be roughly the same as those of π≤κ(OH , q). Many indexes

are known for forward top-k queries; some provide provable

bounds on their performance. Since this component is not

the main focus of our work, our implementation simply uses

dim(H) sorted lists on CH and TA [13] for top-κ queries.

In the worst case, the total size of the index, summed over

all core subspaces, is O(
∑

H∈H
βk/ε(dim(H)−1)/2). Since we

cap the dimensionality of core subspaces at τ̂ , the size is

O(βk|H|/ε(τ̂−1)/2).

B. Core Subspace Indexes for Reverse Top-k

Let Q be the set of preferences with respect to which we

wish to answer reverse top-k queries. On a high level, for

each q ∈ Q, we identify a small number of “covering core

subspaces.” Then, for each core subspace H ∈ H, we index

the subset of preferences that H covers. Before describing the

indexes, we first discuss how to cover a preference.

1Note that εd̄i(q,O) provides a better error guarantee than ε〈q, πi(q,O)〉,
because the former is independent of the choice of origin, preserved under
affine transformation (e.g. translation, rotation, scaling), and smaller than the
latter if all object attributes have non-negative values.



Algorithm 2: PreferenceCover(H, q; ν, θ)

1 Γ← ∅, q̃ ← q;
2 while ‖q‖ ≥ θ and |Γ| < ν do
3 H ← argmaxH∈H

‖qH‖;
4 if ‖qH‖ = 0 then break;
5 Γ← Γ ∪ {H}; H← H \ {H};
6 q ← q − ‖q̃H‖ · qH ;

7 if ‖q‖ ≥ θ then return ∅;
8 return Γ;

Covering a preference with core subspaces. A cover of

a preference q, denoted Γq , is a subset of H onto which the

projections of q are intended to preserve the information about

q, in the sense described in Section III. A cover Γq is β-

perfect with respect to O if for any query object o 6∈ O and

o ∈ π≤k(q,O ∪ {o}), there exists a subspace q ∈ Γq such

that oH ∈ π≤βk(qH ,OH ∪ {oH}). However, perfect covers

are difficult to find. If q lies within a core subspace, then that

subspace obviously is a 1-perfect cover of q. However, if none

of the core subspaces contains q by itself, the best we can hope

for is a small cover that preserves as much of q as possible.

A simple strategy would be to choose Γq to be those core

subspaces that “overlap” with q (or more precisely, those on

which q has a non-zero projection). However, there may be too

many such subspaces; picking them all increases index space

and slows down queries. We could pick the top subspaces

based on the norms of q’s projections on them, but doing so

does not guarantee coverage of all non-zero attribute weights

of q. Alternatively, we could pick the top subspaces according

to their weights defined in Section III; however, weights are

defined globally over Q and irrelevant for any particular q.

To avoid these problems, we set a limit ν on the maximum

number of core subspaces in any cover, and use a greedy

procedure (Algorithm 2) to cover q. The algorithm is similar

to Algorithm 1 in spirit (though we are now covering only

one q). In each step, we always pick the core subspace H
for which qH has the largest norm. More importantly, we

update q for each step in a way that let subsequent picks focus

on uncovered dimensions, while still encouraging multiple

coverages for each dimensions (as discussed in Section III).

This process is repeated until q is “mostly covered,” i.e., the

residual norm is less than a given threshold θ, or the cover size

exceeds the limit ν. The choices of ν and θ allow the trade-

off between coverage completeness and cost. We use ν = 3
and θ = 0.5 in our experiments in Section VI; see [17] for

additional evaluation on their choices.

Note that some preferences may not be covered. Algo-

rithm 2 returns ∅ if it cannot cover a preference. It is even

possible (though not very likely) that some sparse preference

cannot be covered. On the other hand, it is also possible

to cover a non-sparse preference. Preferences that cannot be

covered will be handled separately by data structures built in

the full space R
d (Section IV-C). Our hope is that in practice,

most preferences are sparse, can be covered, and will thus

benefit from our approach.

Building the preference index. For each core subspace

H , let Q(H) = {qH | H ∈ Γq} denote the subset of the

preferences with H in their covers (as chosen by Algorithm 2).

Our goal is to build an index that given o 6∈ O, finds all

preference q ∈ Q(H) for which oH ranks among the top βk
objects in OH ∪ {oH} for qH . Assuming “near” β-perfect

covers for all preferences, as discussed above, we know that

if o enters the top-k answer of any preference q, then q will

be returned by querying the preference index of some core

subspace in Γq .

To build this preference index for Q
(H), we consider, for

each preference q ∈ Q
(H), the score of the (βk)-th ranked

object in OH with respect to qH , i.e., 〈qH , πβk(qH ,OH)〉. We

call this score the cutoff score. Intuitively, we can determine

whether a query object oH enters the top-(βk) answer of

qH simply by comparing 〈qH , oH〉 with qH ’s cutoff score.

However, instead of working directly with OH , which is big,

we work with CH , the (βk, ε)-coreset of OH discussed in

Section IV-A, which is much smaller. By definition, the score

of the (βk)-th ranked object in OH with respect to qH is

roughly the same as that of the (βk)-th ranked object in CH .2

Let QH = {qH | q ∈ Q
(H)} denote the projection of Q

(H)

onto H . For a preference qH ∈ QH , let χq = πβk(qH ,CH)
be the cutoff score of qH with respect to CH . Let rq be the

hyperplane 〈x, qH〉 = χq in H . By definition, the score of all

objects OH ∈ rq is χq. Hence, for any object z ∈ H \ CH ,

z ∈ π≤βk(qH ,CH ∪ {z}) iff 〈z, qH〉 > χq, i.e. z lies in the

positive halfspace 〈x, qH〉 > χq bounded by rq . If we set

TH = {rq | q ∈ QH}, then for a query object z, we wish to

report all hyperplanes of TH such that z lies in their positive

halfspaces. This is an instance of inverse halfspace range

searching [18]. By using the so-called duality transform [19],

TH can be mapped to a set T ∗
H of points in R

dim(H) and the

query reduces to reporting all points of T ∗
H that lie in a query

halfspace; see [8] and our technical report [17] for details.

Several indexes for halfspace range searching are known. We

simply use a kd-tree based index, similar to the one used in [8].

C. Handling Uncovered Preferences

As discussed in Section IV-B, core subspaces may not cover

all preferences. To handle uncovered preferences, we build

data structures in the full space R
d.

For forward top-k queries by uncovered preferences, instead

of working with the entire set of objects O, we work with

a coreset (just like in Section IV-A, but now in the full d-

dimensional space). A (k, ε)-coreset of size O(k/ε(d−1)/2)
can be computed using the algorithm described in [16].

Because of the exponential dependence on d, the coreset can

be large even for moderate values of d. While it is known that

this size is required for the worst case [16], we show that if

2For a preference q ∈ Q(H), the closer ‖qH‖ is to ‖q‖, the more likely
it is for an object highly ranked w.r.t. qH to also rank high w.r.t. q. Thus,
instead of defining the cutoff point using always the (βk)-th ranked object
w.r.t. qH , we can define it using the (β′k)-th ranked object, where β′ ∈ [1, β]
is customized based on how close ‖qH‖ is to ‖q‖. This heuristic expedites
reverse top-k queries by tightening the cutoff condition; see our technical
report [17] for more detailed discussion and evaluation (our experiments in
Section VI does not employ this heuristic).



the input objects lie on a low-dimensional algebraic surface

of constant degree, then we can compute a smaller coreset.

Theorem 1: Let O be a set of points in R
d that lie on a

t-dimensional algebraic surface of constant degree, for t <
(d− 1)/2. Then, a (k, ε)-coreset of size O((d3/2/ε)t) can be

computed in time dO(1)n+O((d3/2/ε)t).
We omit the proof here due to space; it can be found in [17].

To answer a forward top-k query, we can simply scan the

coreset of objects as long as the size of the coreset is not too

large (which is the case for our workloads in Section VI); no

additional indexing is needed. Otherwise, we can apply the

TA-based approach at the end of Section IV-A.

For reverse top-k queries over uncovered preferences, we

maintain the list of such preferences together with their k-

th ranked object scores. We simply scan this list to answer

a reverse top-k query. Because of the high-dimensional full

space, more indexing is unlikely to bring significant benefits.

V. QUERY PROCEDURE

Top-kkk query. Given a query preference q ∈ S
d−1, we first

call PreferenceCover(H, q) (Algorithm 2) to compute Γq , a

cover of q by core subspaces. There are two cases.

First, if Γq = ∅ (i.e., we cannot find a cover of q by H), we

query the coreset C of objects in the full space as described in

Section IV-C with q and return π≤k(q,C). Since C is a coreset

of O, the objects returned approximate π≤k(q,O).
Otherwise, |Γq| > 0 and q is covered. For each H ∈ Γq , we

compute qH , the projection of q on H . We query the object

index for H described in Section IV-A to obtain the set of

objects SH ∈ O corresponding to π≤κH
(qH ,CH), where κH =

k if ‖qH‖ ≈ 1, or κH = βk otherwise. Then, we compute

π≤k(q,
⋃

H∈Γq
SH), i.e., the top k objects among all returned

objects, by calculating their actual scores w.r.t. q.

Reverse top-kkk query. Given a query object o ∈ R
d, we want

to report all affected preferences, i.e., any preference q ∈ Q

for which o is a top-k object in O∪{o} w.r.t. q. First, we find

affected preferences among the uncovered preferences Q̄ ⊆ Q

as described in Section IV-C.

Next, we find affected preferences among the covered

preferences, Q \ Q̄. For each subspace H ∈ H, we determine

whether o is “relevant” to H , in the sense whether there can

be some preference q in H for which oH is potentially one

of the top-βk objects of CH ∪ {oH} w.r.t. q. The procedure

for testing relevance is given in [8]; it takes O(k/ε(d−1)/2)

time in the worst case. If o is relevant to H , we query the

preference index with o for H described in Section IV-B to

find the affected preferences in H with their cutoff points. For

each such preference q found, we further calculate o’s actual

score w.r.t. q in the full space, and return q only if o’s score

is higher than q’s k-th score that we store (as discussed at the

beginning of Section IV).

VI. EXPERIMENTAL EVALUATION

Approaches compared. We compare our approach, hereafter

called CSI (Core-Subspace-based Indexing), with a number

of alternatives. All approaches are implemented in C++ and

compiled by g++ with options -march=native and -O3.

For top-k queries, we consider the following alternatives.

Scan is a brute-force method that examines all objects.3 BB

indexes all objects in a d-dim kd-tree and uses a branch-

and-bound algorithm to search for the top k objects. TA, the

Threshold Algorithm, keeps a list of objects sorted by each

attribute; to find the top k objects give a preference q, it uses

the lists for attributes with non-zero weights specified by q.

PCA+TA first applies PCA (principal component analysis) to

reduce the dimensionality of the objects, and then uses TA.

Views, the view-based approach, randomly selects as views a

set of unit vectors from a given preference distribution, and

materializes their top βk objects. Given a preference q, it

retrieves the top βk objects from ν views most similar to q
and computes the top k among these objects.

For reverse top-k queries, all approaches store the score of

the k-th ranked object for each preference. Scan examines

all preferences. HSR, for halfspace range search, answers the

query using a kd-tree as described in Section II. PCA+HSR

first applies PCA and then uses HSR in the reduced space.

Views selects views as described above, and assigns each

preference to ν views; given a query object o, it retrieves all

preferences assigned to views for which o enters their top-(βk)
list, and filters these preferences to find those affected.

Since CSI is approximate, we set ε = 0.08 to be the error

allowance, such that coresets are sized to provide answers

whose scores are within ε times the directional width of the

objects with respect to a preference (recall Eq. (2)). To ensure

fair comparison between CSI and Views, we use the same

settings of β = 3 and ν = 3, and we choose the number

of views such that the total space consumption of Views is the

same as that of CSI.

Performance metrics. For a given query workload, we report

the average wall-clock time per query over the workload, as

measured on a Dell OptiPlex 990 with 3.40GHz Intel Core

i7-2600 CPU, 8MB cache, and 8GB memory.

For approximate approaches to top-k queries (CSI,

PCA+TA, and Views), we measure the approximation error for

each query object o as follows. Let õi denote the i-th ranked

object returned by an algorithm. The error is computed as

maxi∈[1,k]
〈q,πi(q,O)〉−〈q,õi〉

εd̄i(q,O)
, where ε is the error allowance

as set above. Thus, an error of 1 or less is considered

“acceptable.” We report the RMS (root mean square) error

over the query workload. If RMS error is 1 or higher, it is

likely that a significant fraction of the errors are unacceptable.

3Scan computes the score for every object, while maintaining a buffer
for the top k objects seen so far. The objects are stored simply in arrays.
We note that additional performance improvements may be possible, e.g., by
storing the objects by attributes (i.e., in a columnar format) to improve cache
performance. However, these improvement will also benefit CSI, because it
uses Scan for uncovered preferences (Section IV-C). For example, in Figure 6,
where 90% of the queries are covered for 500 subspaces, the query time for
CSI is 0.9(CSI∗ time)+0.1(scan time) = 0.9×0.05+0.1×7.5 = 0.79ms.
If scan time improves to 1ms, CSI’s will improve to 0.145ms. Furthermore,
CSI is flexible in processing top-k queries in core subspaces: we can use Scan

instead of TA (Section IV-A) if a highly-tuned Scan can beat TA.



For approximate approaches to reverse top-k queries (CSI,

PCA+HSR, and Views), we measure their approximation qual-

ities using false negative rates defined as follows. Given a

query object o, a preference q is considered to be significantly

affected by o iff 〈q, o〉 > 〈q, πk(q,O)〉 + εd̄k(q,O); here, the

same ε we set earlier defines the amount of acceptable slack.

If a significantly affected q is missing from the query result,

we count it as a false negative. We divide the total number

of false negatives by the total actual number of significantly

affected preferences over the entire query workload, and report

this ratio as the false negative rate.

Synthetic object workloads. We generate objects using

a number of distributions. With box-uniform, objects are

distributed uniformly and randomly within the unit box in R
d.

With sphere-uniform, objects are distributed uniformly and

randomly on the surface of the unit sphere in R
d. With sector-

select, objects are drawn randomly from a spherical cap in R
d

with apex at the origin, and with radius 1 and cone angle 15◦;

furthermore, we only generate an object if it ranks high w.r.t.

some preference in the preference workload. With ttt-surface,

objects lie on a t-dimensional algebraic surface embedded in

the ambient space and represented in a parametric form.

Synthetic preference workloads. Our preference workload

generator uses a number of parameters to control workload

characteristics. Given a fraction of non-sparse preferences,

we generate this fraction of the preferences in the workload

by picking unit vectors in R
d uniformly at random; assuming

a sufficiently large d, such preferences are almost always

non-sparse. For the remaining (sparse) preferences, we gen-

erate them from a set G of “generating subspaces,” where

|G| = hgen, the number of generating subspaces, and for

each G ∈ G, dim(G) ≤ τgen, the maximum generating

density. We pick G in two ways: with uniform generating

subspaces, every subspace with dimensionality no more than

τgen has an equal probability of being picked; with skewed

generating subspaces, we assign each attribute a popularity,

such that popular attributes are more likely to be included in

a generating subspace. To generate a preference, we select a

generating subspace G ∈ G at random. Then, we generate

the preference in two ways: with uniform preferences within

subspaces, we draw a unit vector in G uniformly at random;

with clustered preferences within subspaces, we draw pref-

erences from a mixture distribution centered around a small

number of randomly chosen unit vectors in G.

NBA workload. This dataset contains 17 career stats for

3,861 NBA players. Preferences are generated synthetically.

Document subscription workload. This workload is in-

tended to approximate an application scenario where users

subscribe to documents of their interest. We obtain the set of

objects representing documents from the collection of approx-

imately 300,000 NY Times news articles [20]. We perform

a singular value decomposition (SVD) on the documents to

discover the underlying 20 most relevant topics. Hence, each

document is mapped to a point in the 20-dimensional space,

where each attribute represents a topic.

Next, we use the Yahoo! search query collection [21] to

extract the set of preferences for this workload. This collection

contains a random sample of 4,496 queries posted to Yahoo!’s

US search engine in January, 2009. We preprocess the queries

to discard stop words and words that are not present in the

document collection. Then, using the same SVD matrices, we

map each query to a unit vector in the 20-dimensional space;

if a component of the vector is below a threshold t, we set

it to 0. The table below shows, for two different t values,

the density (number of non-zero components) distribution of

resulting vectors (recall that d = 20):

density 0 1 2 3 4 5 6 7 8 9 10 11 12

# vectors (t = 0.05) 1558 0 0 3 32 113 342 749 864 567 209 51 8

# vectors (t = 0.1) 1592 338 1010 1084 390 80 2 0 0 0 0 0 0

We set t = 0.1. To get more preferences, we generate them

from the above set of “seed” vectors. We associate each word

with its 5 most “probable” topics (derived from the same

SVD). Two words are neighbors if they are associated with a

common topic. Starting from a seed vector, we generate new

preferences by iteratively replacing a word with a neighbor.

A. Top-k Query Performance

This section will show that 1) CSI is at least an order

of magnitude faster than the exact approaches and signifi-

cantly more accurate than PCA; 2) although CSI and Views

have comparable query times in most cases, CSI gives more

accurate answers and works better in higher dimensions,

across preference distributions, etc.; 3) CSI’s query times

for covered preferences are at least an order of magnitude

shorter than Views; and 4) CSI need not know the weight

distribution of preferences to exploit their sparsity, and hence

is less susceptible to changes in preference distribution than

Views. We will also briefly comment on CSI’s index size and

construction time.

Varying the fraction of non-sparse preferences. We begin

by studying the effect of the fraction of non-sparse preferences

on top-k queries for various approaches. Here, d = 80,

k = 5, and we use 100,000 objects from box-uniform. The

query workload consists of 10,000 preferences; the sparse ones

among them are uniform preferences drawn from 200 skewed

generating subspaces with maximum dimensionality τgen = 6.

CSI and Views are given 10,000 preferences generated from

the same distribution in constructing their indexes. In Figure 4,

we vary the fraction of non-sparse preferences from 0.02 to

0.64. For CSI, the RMS error is significantly below 1 at all

times, but the overall average query time rises with more

non-sparse preferences. The table below shows the fraction of

preferences covered by core subspaces, which has a roughly

linear relationship with the fraction of sparse preferences:

Fraction of non-sparse preferences 0.02 0.04 0.08 0.16 0.32 0.64

Fraction of covered queries 92.3% 90.6% 86.8% 79.1% 63.4% 30.8%

Recall that CSI uses indexes in core subspaces for covered

preferences, and the full-dimensional coreset for uncovered
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Fig. 4. Top-k queries when varying the fraction of non-sparse preferences;
d = 80, n = 100,000, k = 5.

preferences. To better see their performance difference, in this

and the following figures, we show the average query time and

RMS error for covered preferences using the notation CSI∗.

When most preferences are non-sparse, they are handled by the

full-dimensional coreset, so CSI becomes as slow as scan and

BB,4 which is expected in high dimensions. This observation

implies that using only the full-dimensional coreset (as well

as other full-dimensional approaches such as the layer-based

ones mentioned in Section I) will not work in high dimensions.

The error of Views is acceptable when all preference are

sparse. However, its error quickly deteriorates as the fraction of

non-sparse preference rises, because of the inherent difficulty

in capturing high-dimensional space with vector-based views.

Although the query-time plot shows an apparent advantage of

Views over CSI, this advantage is unattainable in practice—to

make its error acceptable, Views would have to use a lot more

views, driving the space and query time higher than CSI.

Figure 4 shows that PCA+TA does not produce acceptable

errors; thus, we do not plot its query time. Also, we do not plot

error for scan, BB, and TA because they are exact methods.

Now that the effect of non-sparse preferences is well under-

stood, we will focus on workloads where all preferences are

sparse—extrapolation to the general case is easy, and Views

will only be worse than CSI with more non-sparse preferences.

Varying preference workloads. We now examine several

different preference workloads. In Figure 5, d = 20, and

preferences (either for querying or for index construction) are

generated from uniform generating subspaces; in Figure 6,

d = 80, and generating subspaces are skewed. For both

figures, we vary the number of generating subspaces. Other

workload parameters remain the same as Figure 4. The main

observation is that the exact methods run much slower than

the approximate ones (note the logarithmic scale of the query

time axis). CSI and Views and have comparable query time, but

CSI has smaller errors than Views. PCA+TA again produces

much higher errors than CSI and Views. We observe similar

trends for increasing k; because of limited space, we report

experimental results on varying k in [17].

CSI object index size and construction time. Coresets for

core subspaces are small—a few hundred objects per core

subspace—because their size depends on error and dimen-

sionality, not the total number of objects. For example, for

Figure 5 (16MB data), CSI object index size ranges from

100KB to 130KB and the construction time ranges from 30s to

4TA is slower with more non-sparse preferences, because each such pref-
erence requires processing d lists and is thus more costly than a sparse one.
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Fig. 5. Top-k queries when varying the number of uniform generating
subspaces; d = 20, n = 100,000, k = 5.
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Fig. 6. Top-k queries when varying the number of skewed generating
subspaces; d = 80, n = 100,000, k = 5.
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Fig. 7. Top-k queries when varying d; n = 100,000, k = 5.

50s for all tested cases. For Figure 6 (64 MB data), CSI object

index size ranges from 160KB to 580KB and the construction

time ranges from 1 to 4 minutes. Such construction times are

acceptable because they are incurred once and amortized over

the entire query workload. Also, our implementation of index

construction is rather basic; improvement is possible with a

good kNN library.

Varying dimensionality. Going from Figure 5 to Figure 6,

queries generally become slower with a higher dimensionality,

but as indicated by CSI∗, query times for covered preferences

remain short, and become much shorter than Views. As major-

ity of the queries are covered, they will benefit from shorter-

than-average query times. On the other hand, the accuracy lead

of CSI over Views is consistent in both Figures 5 and 6.

We further show the impact of dimensionality in Figure 7.

In this setting, k = 5, and we use 100,000 objects from box-

uniform. Preferences are drawn as uniform preferences from

100 uniform generating subspaces with maximum dimension-

ality τgen = 6. We see that CSI consistently delivers higher

accuracy than Views across all dimensionalities, and its big

lead over PCA+TA widens as d increases. While Views starts

out to be slightly faster than CSI in low dimensions, the speed

gap between them quickly narrows in higher dimensions. The

exact methods are generally much slower CSI and Views.

Finally, looking at CSI∗, we see that covered queries remain

extremely fast despite the increase in d, meaning that core

subspaces do a good job of protecting sparse preference query

performance from the curse of dimensionality.

Objects from low-dimensional algebraic surfaces. In this

experiment, we draw a varying number of objects from t-
surface (a 3-dimensional bounded-degree algebraic surface to
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Fig. 8. Top-k queries for objects from t-surface; d = 100, k = 5.

be specific). Here, d = 100, and preference workloads are

generated by drawing 10,000 uniform preferences from 100
uniform generating subspaces with maximum dimensionality

τgen = 6. In Figure 8, we see that CSI’s query time (which

accounts for uncovered query preferences that will use the

full-dimensional coreset) increases at a very slow rate as the

number of objects increases. In fact, despite high dimension-

ality (d = 100), the size of CSI’s full-dimensional coreset is

only around 8,000 even when n = 1,000,000, confirming the

effectiveness of our improvement to the coreset construction

algorithm discussed in Section IV-C. In comparison, the exact

methods are much slower, and the gap widens as n increases.

Views is also slower than CSI, but its query time remains steady

thanks to CSI’s small coreset size (recall that we set the space

of Views to be the same as that of CSI).

Figure 8 also shows an approximate variant of TA called

ApproxTA, which simply runs TA on the full-dimensional

coreset used by CSI, for all query preferences. Between

ApproxTA and CSI, there is a clear tradeoff—ApproxTA has

better accuracy, while CSI has faster speed. This comparison

highlights the benefit of our improved coreset construction

algorithm, as well as the ability for core subspace to further

provide good accuracy/speed trade-offs.

Sensitivity to changes in preference distribution. In Sec-

tion IV-A, we argued that CSI is more robust than Views

with respect to errors and changes in the distributions of

attribute weight values. We now validate this claim using the

following experiment. Here, d = 80, k = 5, and we use

100,000 objects from sector-select. We define two preference

workload distributions W1 and W2. For both, we use uniform

generating subspaces with maximum dimensionality τgen = 3;

we also use these subspaces to generate the sectors for sector-

select objects. W1 and W2 both draw clustered preferences

from each generating subspace, but they have different set of

cluster centers. To construct their indexes, we give CSI and

Views 10,000 preferences from W1. Then, we compare the

performance of CSI and Views when given 10,000 preferences

from W1 (i.e., preference distribution is unchanged) and when

given query 10,000 preferences from W2 (i.e., preference

distribution is changed).

Figure 9 plots the results as we vary the number of gener-

ating subspaces; results for which the preference distribution

is unchanged are shown as “baseline.” We see that while

Views has a very accurate baseline (because the preferences

are highly clustered), its accuracy becomes unacceptable when

the preference distribution changes. In contrast, CSI remains

highly accurate despite the change.
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Fig. 9. Sensitivity of top-k query performance to changes in preference
distribution within generating subspaces; d = 80, n = 100,000, k = 5.
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Fig. 10. Top-k queries for document subscription workload; d = 20, k = 5.

Document subscription workload. Figures 10 shows the

results for the document subscription workload when varying

the number of documents. Once again, the results confirm

the effectiveness of CSI. Almost 100% of the preferences

can be handled by core subspaces, and the average query

time is much faster than the exact methods and comparable

with Views. In comparison, Views has bigger approximation

errors, and PCA+TA is worse. In fact, under CSI, at most

2% of the queries exceed the prescribed error allowance (i.e.,

approximation error is greater than 1). In contrast, up to 8%
and 84% of preferences have approximation errors greater than

1 under Views and PCA+TA, respectively.

B. Reverse Top-k Query Performance

This section will show that 1) CSI is significantly faster than

Scan and HSR, and 2) its false negative rate is much lower than

PCA and Views, and never exceeds 10% in all tested cases.

Varying dimensionality. We begin by studying the effect

of dimensionality on reverse top-k queries for various ap-

proaches. Here, k = 5. We draw 10,000 objects from box-

uniform, and 100,000 uniform preferences from 100 uniform

generating subspaces with maximum dimensionality τgen = 6.

Query objects are also drawn from box-uniform. Figure 11

shows the results. As with top-k queries, we see a similar

pattern in accuracy: CSI misses very few significantly affected

preferences (4% to 6%); Views misses 21% to 70% as d
increases; PCA+HSR misses over 98%. In terms of query

time, HSR is the slowest because in high dimensions, a query

halfspace intersects more nodes of the underlying kd-tree, and

the cost of determining whether a cutoff point lies above a

hyperplane grows proportionally. Thus, HSR turns out to be

even slower than Scan. Among the approximate methods, both

PCA+HSR and Views are faster than CSI, but as we have seen,

they have poor accuracy. CSI is able to maintain high accuracy

and offer a significant speedup over Scan even at d = 200.

Recall that for each query, CSI also checks the full-

dimensional index of uncovered preferences, basically using

Scan. This cost component is reflected in the query times

we report, and depends on the fraction of the uncovered

preferences. In the worst case, if all preferences are non-sparse,
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Fig. 11. Reverse top-k queries when varying d; n = 10,000, m = 10,000,
k = 5.
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Fig. 12. Reverse top-k queries when varying the number of generating
subspaces; d = 40, n = 10,000, m = 100,000, k = 5.

many of them will not be covered, and the query time of CSI

will be similar to that of Scan. Because it is easy to extrapolate

the effect of varying the fraction of non-sparse preferences,

we set this fraction to 0 and do not vary it for the synthetic

workloads in this section.

Varying the number of generating subspaces. We use

the same workload parameters as in Figure 11, but vary

the number of generating subspaces while fixing d = 40.

Figure 12 shows the results. We see a similar trade-off as in

Figure 11: Views and PCA+HSR run faster than CSI, but offer

much lower accuracy; the exact methods are much slower.

We see that the number of generating subspaces affects

CSI. More generating subspaces imply more diversity in

preferences, which leads to more core subspaces, as well as

a larger number of imperfectly covered preferences. Hence,

both false positive rate and query time increase, although the

effect is not strong enough to change any conclusion above.

Varying the number of preferences. Next, we study the

effect of the number of preferences. We use the same pref-

erence workload parameters as in Figure 11, but vary the

number of preferences up to 500,000. This time, the 10,000
objects are from sphere-uniform, and we draw query objects

also from sphere-uniform. From Figure 13, we see that the

same trade-off identified in previous figures continues: CSI is

slower than Views and PCA+HSR, but is more accurate. The

exact methods are much slower, while the fastest approximate

method, PCA+HSR, misses most of the answers.

Overall, CSI demonstrates good scalability in the number

of preferences. With half a million preferences, CSI’s false

negative rate is merely 2%, and average query time is under 5.2
milliseconds. A more detailed breakdown shows that it spends

1.34ms querying indexes for core subspaces (454,270 out of

500,000 preferences), and 1.96ms filtering false positives; it

also spends 1.9ms on checking the full-dimensional index

for the remaining uncovered preferences. In comparison, the

average query time of Views is about 3.24 milliseconds, 88%
of which is spent on filtering false positives.

NBA workload. Figures 14 compares various approaches for

the NBA workload as we increase the number of preferences.
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Fig. 13. Reverse top-k queries when increasing m; d = 40, n = 10,000,
k = 5.
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Fig. 14. Reverse top-k queries for NBA workload; d = 17, n = 3,861,
k = 5.

We draw uniform preferences from 100 uniform generating

subspaces with maximum dimensionality τgen = 6. To ensure

that the query objects are “interesting” (i.e., likely affecting

some preferences), we test the reverse top-k queries using

Hall-of-Fame players as query objects. In Figure 14, we see

that CSI and Views both achieve low false negative rate among

all approximate methods, while still delivering fast query time

with a large number of preferences.

Document subscription workload. For this workload, we

use 10,000 documents and vary the number of preferences up

to 500,000. Figure 15 shows the results. As with the NBA

workload, both Views and CSI perform well. CSI offers a nice

middle ground between HSR and Views: on one hand, CSI is

roughly 4 (10) times faster than faster than Scan (HSR); on

the other hand, it is slightly slower than Views, but its false

negative rate is 7 times fewer than that of Views at m =
500,000. For CSI, the false negatives rate is less than 0.004%
across all tested workloads.

VII. RELATED WORK

Preference top-kkk and reverse top-kkk queries. As already dis-

cussed in Section I, there has been a lot of work on preference

top-k queries [1], [2], [3], [4], [5], [6], [7], [9] and reverse

top-k queries [10], [8]. We build on and compare with our

previous work in [8], which applied the ideas of coreset and

duality transform to the full-dimensional space; this reference

also provides additional discussion of and comparison with

other previous approaches to top-k and reverse top-k queries.

Another recent work on reverse top-k [11] uses a branch-and-

bound algorithm on an R-tree, but as mentioned in Section I,

its scalablility is limited to low dimensions.

The layer-based approaches (e.g., [1]) are essentially the

exact counterpart of coresets, and are subsumed by coresets

because the latter provides more flexible accuracy/space trade-

offs. Thus, we do not compare directly with the layer-based

approach or the hybrid approach [7], [9] that builds on them;

their difficulty with high dimensions can be seen from the

performance gap between CSI and CSI∗ in Section VI-A.

Top-k queries can be seen as a special case of rank

aggregation [22], and the Threshold Algorithm [13] is a viable



1 2 5

x 10
5

0.008

0.064

0.512

# preferences

F
a
ls

e
 n

e
g
a
ti
v
e
 r

a
te

 

 

CSI

Views

PCA+HSR

1 2 5

x 10
5

10
0

10
1

# preferences

Q
u
e
ry

 t
im

e
 (

m
s
e
c
)

 

 

CSI
Views
PCA+HSR
HSR
Scan

Fig. 15. Reverse top-k queries for document subscription workload; d = 20,
n = 10,000, k = 5.

option for top-k queries. We compare with TA extensively in

Section VI-A.

Finding interesting subspaces. Our task of identifying core

subspace is related to the problems of subspace clustering

(finding all clusters in all subspaces) and projective clustering

(assigning points to clusters that exist in different subspaces).

There has been a lot of work on these problems (see [23]

for a survey). In particular, if the subspaces are axis-parallel,

the problem is also related to the so-called row/column-subset

selection problem [24], [25]: given a matrix where rows are

objects and columns are features, select a subset of features

that are dominant. However, the intended use of our core

subspaces warrants our specialized algorithm in Section III,

which accounts for the feature of multiple and partial coverage

for a preference.

While we choose to make our core subspaces axis-parallel

for reasons of simplicity and robustness against changes in

attribute weight distributions, there are some situations for

which it may be beneficial to consider subspaces that are

arbitrarily oriented. For example, the preference workload may

be known and stable. As another example, preferences may

not exhibit sparsity in the original space, but do so after

some affine transformation. In these situations, the problem

of finding arbitrarily oriented subspaces is related to subspace

segmentation, which seeks to model a set of data points

using a union of affine subspaces (see [26] for a survey).

PCA can be seen as a very restrictive special case where all

points come from a single affine subspace; as we have seen

in Section VI, it is less effective than multiple axis-parallel

subspaces. Considering multiple arbitrary core subspaces in

our solution remains an interesting problem for future work.

VIII. CONCLUSION

In this paper, we proposed a solution, based on the idea

of core subspaces, for top-k and reverse top-k queries in high

dimensions. Our solution exploits the sparsity in preferences to

identify core subspaces, and applies the techniques of coresets

and duality transform to index each core subspace as well

as the full-dimensional space effectively. As shown by our

experimental evaluation, in high dimensions, exact methods

are slow, while existing approximation methods suffer from

either poor speed (e.g., when using only a single coreset in the

full space) or poor accuracy (such as the PCA- and view-based

approaches). In contrast, for workloads where preferences

are often sparse—a case that we believe arises naturally in

practice—our solution offers a desirable trade-off between

speed and accuracy, which makes scalable processing of top-k
and reverse top-k queries in high dimensions a reality.
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bound algorithm for reverse top-k queries,” SIGMOD 2013, pp. 481–492.
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