
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained 
for all other uses, in any current or future media, including reprinting/republishing this material 

for advertising or promotional purposes, creating new collective works, for resale or 

redistribution to servers or lists, or reuse of any copyrighted component of this work in other 

works. 



Interactive Probabilistic Post-mining of

User-preferred Spatial Co-location Patterns 

Lizhen Wang
#
, Xuguang Bao

#
, Longbing Cao

*
 

#
School of Information Science and Engineering, Yunnan University, Kunming, P. R. China 

*
Advanced Analytics Institute, University of Technology Sydney, Sydney, Australia 

Abstract—Spatial co-location pattern mining is an important 

task in spatial data mining. However, traditional mining 

frameworks often produce too many prevalent patterns of which 

only a small proportion may be truly interesting to end users. To 

satisfy user preferences, this work proposes an interactive 

probabilistic post-mining method to discover user-preferred co-

location patterns from the early-round of mined results by 

iteratively involving user’s feedback and probabilistically 

refining preferred patterns. We first introduce a framework of 

interactively post-mining preferred co-location patterns, which 

enables a user to effectively discover the co-location patterns 

tailored to his/her specific preference. A probabilistic model is 

further introduced to measure the user feedback-based 

subjective preferences on resultant co-location patterns. This 

measure is used to not only select sample co-location patterns in 

the iterative user feedback process but also rank the results. The 

experimental results on real and synthetic data sets demonstrate 

the effectiveness of our approach. 

I. INTRODUCTION 

The extraction of spatial co-location patterns is a rising and 

promising field in spatial data mining. A spatial co-location 

pattern is composed of a set of spatial features frequently 

observed together within geographical neighborhoods [1], [2]. 

Spatial co-location pattern mining yields important insights 

for various applications such as Earth science [3], public 

transportation [4], and air pollution [5]. 

Typically, spatial co-location pattern mining methods use 

the frequencies of a set of spatial features participating in a 

co-location pattern to measure a pattern’s prevalence (known 

as participation index, PI for short) and require a user-

specified minimum prevalence threshold min_prev to filter 

prevalent co-location patterns [1], [2], [6]. However, User’s 

preferences are often subjective, a pattern preferred by one 

user may not be favoured by another, thus cannot be measured 

by existing objective-oriented PI measures. Therefore, it is 

necessary and advantageous to involve user’s preferences [7], 

[8], [9], [10], [11]. 

This work proposes a framework to discover user-preferred 

co-location patterns by iteratively involving user's interactive 

feedback and probabilistically quantifying user-preferences on 

co-location patterns. As shown in Fig. 1, our system takes a 

set PC of mined prevalent co-locations as input. First, the top-

k (e.g., k=5, in prevalence value order) co-locations in PC are 

presented to the user as sample co-locations, and the system 

then asks the user for his/her preferences. The user chooses a 

set of preferred co-locations and so the first set PCfeedback of 

selected co-locations is collected. Based on PCfeedback, the 

prevalent co-locations in PC are estimated for their subjective 

preference by a probabilistic model, and ranked by their 

estimated subjective preferences. Then, as the sample co-

locations, the top-k co-locations are fed to the user again. 

After several rounds of the interactive process, the system 

refines the output that is closest to the user’s preference on co-

location patterns.  
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Fig. 1. A framework for interactively post-mining preferred co-locations 

The rest of the paper is organized as follows. First, we 

review concepts related to traditional co-location mining, and 

formally defines our problem. Next, the probabilistic model 

method is proposed, and then presents our evaluation strategy 

and results. 

II. PROBLEM STATEMENT

A. Co-location Patterns 

In a spatial database, let F be a set of n features F ={f1, 

f2, …, fn}, D be a set of instances of F, where each instance is 

a tuple <feature type, instance ID, location>, and R be a 

neighbour relationship over locations of instances, where R is 

symmetric and reflexive. 

A co-location pattern c is a subset of the feature set F. The 

number of features in c is called the size of c. A row instance I 

of a co-location c is a set of instances in D, which includes the 

instances of all features in c and forms a clique under the 

neighbour relationship R. The set of all row instances of c is 

called table instance of c, denoted as TI(c). 

The participation ratio of feature fi in a co-location c, 

denoted as PR(fi, c), is the fraction of the instances of fi that 

participates in table instance TI(c) of c. The participation 

index of a co-location c, denoted as PI(c), is the minimum 

participation ratio PR(fi, c) among all features fi in c. A co-

location pattern c is a prevalent co-location pattern, if its 



participation index PI is no less than a given prevalence 

threshold min_prev, that is, PI(c) ≥ min prev. 

The PI and PR measures satisfy the anti-monotonicity 

property (downward closure property) [6]. The introduction 

of closed co-location patterns creates a lossless condensed 

representation. A prevalent co-location c is closed if there is 

no co-location c′ such that c ⊂ c′ and PI(c) = PI(c′) [12]. 

A. Subjective Preference Measure 

We assume that a set PC of prevalent or closed co-location 

patterns has been mined which forms the input to our system. 

In PC, we suppose that there is a set PCI of ideal co-location 

patterns of interest to the user, and then PCI is the preferred 

co-location set and PCII = PC - PCI is the non-preferred co-

location set. 

We know that the value PI(c) (c∈PC) is an objective 

interest measure in the prevalent co-location pattern mining. 

In reality, it is not possible that the objective interest can be 

substituted for subjective preference. PC might contain a large 

number of mined prevalent co-location patterns, which may 

not be actionable and useful for users, since they may just be 

general knowledge, their prevalence may have been enhanced 

by the instances’ autocorrelation, or they are just not preferred 

by the user. 

In order to learn the prior knowledge of the user, we 

interactively ask for user’s feedback concerning preferred co-

locations. User’s feedback is combined into a set of preferred 

co-location patterns which is denoted PCfeedback. The set 

PCfeedback is updated every time the system obtains user’s 

feedback. Therefore, in the interactive process, we use a 

similarity measure SIM(c, PCfeedback) between a co-location 

pattern c in PC and the selected co-location patterns PCfeedback 

to evaluate the degree of subjective preference of any co-

location pattern c which has not yet been judged. 

B. Problem Statement 

The problem of post-mining preferred spatial co-location 

patterns through interactive feedback can be stated as follows. 

Given a set of prevalent or closed co-location patterns, can the 

system return the ideal co-location patterns of user’s 

preference, according to user’s feedback about preferred co-

locations, and at the same time minimize the user's efforts in 

providing feedback? 

Considering the uncertainties of the user’s ideal preference, 

in this paper we use a classic probabilistic model to model the 

prior knowledge of the user. The basic idea of this method is: 

given a set PC of prevalent or closed co-location patterns, 

there exists a set PCI of ideal preference co-location patterns 

in PC for a user. However, the system does not know the 

characteristics of the set PCI at the beginning of the interactive 

process. It needs to make a guess. According to this guess, the 

system will identify a result set PCI as an initial hit. Then the 

user or system judges the initial result PCI. Based on the 

feedback, the system can optimize and improve the initial 

result PCI incrementally in an interactive process so that, after 

repeated interactions, the resultant PCI should be close to the 

user’s ideal preference result set. 

The essence of the above probabilistic model is to estimate 

the probability of the similarity SIM(c, PCfeedback) between the 

selected co-locations PCfeedback per user’s feedback and a co-

location pattern c in the set of prevalent or closed co-locations 

PC whose preference level has not yet been judged. 

III. PROBABILISTIC MODEL 

Assume, for a user, there is a preferred co-location set PCI 

and also a non-preferred co-location set PCII in the prevalent 

or closed co-location set PC. After obtaining a set PCfeedback of 

user’s feedback, the similarity SIM(c, PCfeedback) between a co-

location pattern c in PC and the set PCfeedback per user’s 

feedback is defined as the ratio of the probability of c being of 

preference to the user compared to the probability of c not 

being of preference to the user. i.e., 
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where P(PCI | c) represents the probability of c being of 

preference to the user, and P(PCII | c) represents the 

probability of c not being of preference to the user. 

Since the values of P(PCI | c) and P(PCII | c) cannot be 

computed directly, they need to be estimated with known 

values. Assume there is an initial guess about the user's ideal 

preference set PCI, so Eqn. (1) can be converted per the 

Bayes’ rule: 
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where P(c | PCI) represents the probability that c belongs to 

PCI; P(c | PCII) represents the probability that c belongs to 

PCII, and P(PCI) and P(PCII) represent the prior probabilities 

that any co-location in PC belongs to PCI or PCII respectively. 

 For a given prevalent or closed co-location set PC, the two 

values P(PCI) and P(PCII) are related only to the user but not 

to c. Additionally, we are just concerned about the relative 

values in computing SIM. So Eqn. (2) can be simplified to: 
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The probability of randomly selecting c from PCI or PCII 

(i.e., the probability that c belongs to PCI or PCII) can be 

calculated by the distribution of each 2-size co-location ci in 

PCI and PCII: 
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where m=
2

)1( nn
, where n is the number of features in F. 

wi(c)∈{0, 1}: wi(c)= 1 when the i-th 2-size co-location ci of F 

is in PCfeedback and c at the same time; otherwise wi(c)= 0, and 

ic  represents “not containing 2-size co-location ci.” 

Eqns. (4) and (5) can be interpreted as follows: when the 2-

size co-location ci is in PCfeedback and c at the same time, i.e., 

wi(c)=1, the probability that ci appears randomly in a co-

location pattern of PCI is regarded as a contribution to the 

process of determining whether c and PCI are related. In the 

contrary situation, when the 2-size co-location ci is not the 



same as in PCfeedback and c, the probability that ci does not 

appear randomly in a co-location pattern of PCI is also 

regarded as a contribution. 

Based on Eqns. (4) and (5), Eqn. (3) can be converted to: 
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Considering the meanings of )|( Ii PCcP  and )|( Ii PCcP , 

we have 1)|()|(  IiIi PCcPPCcP . Accordingly, 

1)|()|(  IIiIIi PCcPPCcP  holds. We take these relations 

into Eqn. (6) and by taking logarithms, it is converted to: 
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As in Eqn. (7), the expression   
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not related to c, so Eqn. (7) can be further simplified as: 
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That is to say, we can compute the similarity of co-

locations c with PCfeedback by Eqn. (8), and rank them with the 

values SIM(c, PCfeedback). However, as mentioned before, the 

user's preference set PCI is not known initially. We need a 

method to calculate the probabilistic values p(ci | PCI) and p(ci 

| PCII). 

A simple method for calculating the probabilistic values 

p(ci | PCI) and p(ci | PCII) is that: 
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where ni and N represent the number of co-locations 

containing 2-size ci and the number of total co-locations in PC 

respectively. We can then calculate the SIM(c, PCfeedback) for 

each c in PC by Eqn. (8). 

However, Eqn. (9) is too arbitrary. After obtaining user’s 

feedback information, based on the feedback principle we 

propose two improved methods (Eqn. (10) and Eqn. (11)) for 

calculating p(ci | PCI) and p(ci | PCII) which improve the 

computation of SIM(c, PCfeedback) and help minimize the user's 

efforts in providing feedback.  
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Or, by adding less arbitrary adjusting factors, we have Eqn. 

(11). 
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where r is an adjusting factor (it can be pre-specified by the 

user) used to get a collection V of the top-r co-location 

patterns under the values SIM(c, PCfeedback), and ri is the 

number of co-location patterns containing 2-size co-location ci 

in V. 

Note that Eqn. (9) needs to be used at the beginning of the 

interactive process when using Eqn. (10) or Eqn. (11). 

IV. EXPERIMENTAL RESULTS 

We conduct comprehensive experiments to evaluate the 

proposed approach from multiple perspectives on both real 

and synthetic data sets. Due to space limitations, we present 

only a subset of our full results here. 

A. Experimental Setting 

We set up an experimental environment, called Simulator, 

to simulate user’s feedback. Since our goal is to discover 

preferred co-location patterns interactively and rank the 

results, our accuracy measure favours high-rank co-location 

patterns in the results. Let top-l(learned_set) be the top-l 

results reported by the ranking learned from the interactive 

feedback and target_set be the results in the target co-

locations constructed by our Simulator, the accuracy measure 

is defined as follows. 
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where l is given m/5, 2m/5, 3m/5, 4m/5 or m (m=|target_set|) 

in the experiments. It is obvious that the accuracy values in 

Eqn. (12) are the percentages of the top-l ranked co-locations 

in the target_set. 

B. Accuracy Evaluation on Real Data Sets 

Using the Simulator discussed above, our first task is to 

examine the accuracy of the results learned from the 

interactive feedback. We use three real data sets with different 

distributions in the experiments. Real-1 is from the rare plant 

data of the Three Parallel Rivers of Yunnan Protected Areas 

whose instances form a zonal distribution, which has a small 

quantity of instances. Real-2 is a spatial distribution data set 

of urban elements whose instances’ distribution is both even 

and dense, and which has a large quantity of features as well 

as instances. Real-3 is a vegetation distribution data set of the 

Three Parallel Rivers of Yunnan Protected Areas, which has 

the fewest features but the most instances, and instance 

distribution presents various clusters. 

We summarize the main lessons from the experiments. 

First, over the three real data sets, we observed that F-10 

and F-11 have better accuracy than F-9 (F-9, F-10  or F-11 

means using Eqns. (9), (10) or (11) respectively to calculate 

the probabilistic values p(ci | PCI) and p(ci | PCII) in 

calculating by Eqn. (8)) because F-10 and F-11 add some 

adjusting factors for computing p(ci | PCI) and p(ci | PCII). The 

accuracy with F-11 is a little better than F-10 also because of 

the more reasonable probabilistic values. The accuracy 

estimated in closed co-locations is better than that in prevalent 

co-locations because closed co-locations are a form of 

compression of prevalent co-locations which can help 

effectively discover the interesting co-locations. We also find 

that: (1) as iter (number of iterations of feedback) increases, 

the accuracy increases, and this is because each iteration 



supplies new samples to the user, and the new feedback from 

the user updates the SIM values of co-locations in PC, 

bringing them closer and closer to the user’s real preference; 

(2) a larger k (number of sample co-locations for feeding to 

user) causes a higher accuracy because more samples can be 

fed to the user; (3) a smaller l (number to get top-l(learned_set) 

for accuracy measure in experiments) can reach higher 

accuracy because the co-locations in the front of target_set 

have been already chosen by the user.  

Second, the main observations on Real-2 are similar to 

Real-1, although the accuracy estimated for Real-2 is higher 

than that for Real-1 with the same parameter values, but the 

accuracy gap between prevalent co-locations and closed co-

locations is not as obvious as Real-1, because the compression 

of closed co-locations on Real-2 is much lower than that of 

Real-1, which makes a smaller gap between them.  

Third, the accuracy on Real-3 can reach 100% within a few 

rounds. The reason for the high accuracy in Real-3 is that 

there are only 15 features, and the smaller number of features 

makes it easier to find the combinations preferred by a user.  

C. Accuracy Evaluation on Synthetic Data Sets 

Synthetic data sets are generated to test the accuracy and 

efficiency of our algorithm when data size changes. Figs. 2 

and 3 show the accuracy and efficiency w.r.t. different number 

of features. We observe the following results.  

First, the accuracy in a dense data set is higher than that in 

a sparse data set. The reason is that dense data sets can 

generate longer co-location patterns which have more chance 

of containing the preferred combination of features (rules), 

which means that preferred co-locations can be selected more 

easily in each round, further improving the accuracy of our 

algorithm.  

Second, as the number of features increases, F-10 and F-11 

show much better accuracy than F-9 in Fig. 2, and the gap of 

accuracy between F-10/F-11 and F-9 also increases. This is 

because the adjusted factors added in F-10 and F-11 play a 

bigger role as the data set gets bigger and bigger. Note that in 

this experiment there are about 1000000 spatial instances with 

100 features.  

Third, Fig. 3 shows the average running time of F-9, F-10 

and F-11 per round and the number of closed co-locations 

(PC_count). It can be seen that F-9 has a much higher 

efficiency than either F-10 or F-11. When the number of 

closed co-locations reaches almost 700000, F-9 only costs no 

more than 20 seconds, and this is because F-9 only needs to 

calculate ni, and ni can be updated based on the last round 

value. While F-10 and F-11 need to calculate not only ni but 

also ri, and ri cannot be updated as ni because in each round 

the top-r co-locations based on the SIM values may change 

greatly, thus increasing the running time. But even with 100 

features, the running time per round is only around 70 seconds. 
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Fig. 2. Accuracy evaluation on synthetic data sets with different 

number of features 

 

Fig. 3. Running time per round and the number of closed co-

locations with different number of features 
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