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Abstract—Unsupervised domain adaptation (UDA) seeks to
bridge the domain gap between the target and the source using
unlabeled target data. Source-free UDA removes the requirement
for labeled source data at the target to preserve data privacy and
storage. However, work on source-free UDA assumes knowledge
of domain gap distribution, and hence is limited to either target-
aware or classification task. To overcome it, we propose TASFAR,
a novel target-agnostic source-free domain adaptation approach
for regression tasks. Using prediction confidence, TASFAR es-
timates a label density map as the target label distribution,
which is then used to calibrate the source model on the target
domain. We have conducted extensive experiments on four
regression tasks with various domain gaps, namely, pedestrian
dead reckoning for different users, image-based people counting
in different scenes, housing-price prediction at different districts,
and taxi-trip duration prediction from different departure points.
TASFAR is shown to substantially outperform the state-of-the-art
source-free UDA approaches by averagely reducing 22% errors
for the four tasks and achieve notably comparable accuracy as
source-based UDA without using source data.

Index Terms—Domain adaptation, unsupervised learning, re-
gression model, uncertainty estimation

I. INTRODUCTION

DEEP learning has been demonstrated with promising
results in many tasks, such as location sensing [1] [2],

people counting [3] [4], activity recognition [5] [6], etc.
Despite that, the performance of deep models often degrades
significantly when the target data shift from the input dis-
tribution of the training dataset (i.e. the source domain). To
tackle this, unsupervised domain adaptation (UDA) has been
proposed to learn a target model, i.e. aligning the model
features extracted from both source and target domains using
unlabelled target data.

In traditional UDA, the source dataset is made available
to the target for adaptation. As the database may be large
(several gigabytes or more), this is not storage-efficient and
not applicable for storage-constrained devices. Though some
works [7] [8] have tried to reduce such storage by compres-
sion, they still consume substantial storage with trade-off on
the adaptation quality. To remove dataset storage, source-free
UDA has been recently proposed, which is to adapt the source
model pre-trained by source data directly with unlabeled target
data. In this work, we consider one-shot source-free UDA;
readers interested in consecutive adaptations may refer to
studies on continual learning [9] [10] and references therein.

In source-free UDA, the absence of source data causes
complication in measuring the domain gap (the discrepancy
between the input distribution of the source and target).
Existing approaches bridge the gap based on either input data
or features. The approaches based on input data require prior
knowledge of domain gap and simulate such gap by means of
data augmentation to extract invariant features [11] [12] [13].
On the other hand, the feature-based approach is generally
applied to classification tasks by measuring and minimizing
domain gaps in feature space [14] [15] [16] [17].

While impressive, previous approaches assume the knowl-
edge of domain gap. As target domains are often agnostic
when designing adaptation algorithms, domain gaps can be
unknown, heterogeneous and complex to simulate [18]. For
example, a source model may be deployed in different target
scenarios in terms of user behaviors, device heterogeneity and
operating environments. Furthermore, many machine learning
tasks are regression in nature. In contrast to classification
tasks where target data of the same label can be correlated
in the feature space to shed light on domain gap [16], the vast
continuous label space of regression tasks without overlapping
labels poses great difficulty for the deep regressor to adapt and
converge.

We consider, for the first time, target-agnostic source-free
UDA for regression tasks. The key observation is that the target
label, like the input data that all conform to the target domain,
also originates from the same target scenario. As an example,
if a target user’s stride length mostly falls into a certain
range (say, 0.5 to 0.8m), his/her next stride length is likely
within the range as well. Therefore, in contrast to the previous
approaches that measure and bridge domain gaps in input data
or feature space of the source model, we directly estimate the
label distribution of the target scenario and use it to calibrate
source models. By considering only the label distribution, we
can achieve target-agnostic adaptation for regression tasks that
is orthogonal to target domain.

We propose TASFAR, a novel target-agnostic source-f ree
domain adaptation approach for regression tasks. We show its
overall system diagram in Figure 1. TASFAR first classifies
the target data into confident data and uncertain data based
on a confidence classifier depending on prediction confi-
dence [19] [20]. Based on the confident data, TASFAR uses
a label distribution estimator to generate a label density map.
Then, a pseudo-label generator leverages the label density map

ar
X

iv
:2

31
2.

00
54

0v
1 

 [
cs

.L
G

] 
 1

 D
ec

 2
02

3



Fig. 1. System diagram of TASFAR. First, TASFAR uses a confidence
classifier to classify the target data into confident and uncertain data. The
confident data are used by a label distribution estimator to generate a label
density map. The uncertain data are pseudo-labeled by a proposed pseudo-
label generator based on the label density map. Then, TASFAR uses the
pseudo-labeled uncertain data to train the source model to be the target model.

to pseudo-label the uncertain data. Finally, TASFAR uses the
pseudo-labeled uncertain data to fine-tune the source model by
supervised learning, after which the target model is delivered.

To the best of our knowledge, TASFAR is the first target-
agnostic source-free regressor adaptation approach based on
label distribution. Our contributions are the following:

• Label distribution estimator using prediction confidence:
We estimate the label distribution of confident data to
pseudo-label uncertain data. However, the target labels
are unavailable in the setting of UDA. We thus propose
a label distribution estimator to overcome it. To be
specific, the proposed estimator utilizes the prediction
confidence of the source model to estimate the target label
distribution, which is represented as a label density map.

• Pseudo-label generator based on label density map:
Generated from the same target scenarios, the label
distribution of confident data can be the prior knowledge
of the labels of uncertain data. Therefore, we propose
a pseudo-label generator that utilizes the label density
map to pseudo-label the uncertain data. Specifically, the
pseudo-label generator pseudo-labels uncertain data by
considering the joint distribution of label density map
and source model prediction. To avoid generating low-
quality pseudo-labels that cause accuracy degradation,
the generator also weighs the pseudo-labels by evaluating
their credibility based on the map densities.

We have conducted extensive experiments to validate TAS-
FAR on four regression tasks – location sensing (pedestrian
dead reckoning) [21], image-based people counting [22], and
two prediction tasks [23], [24] – and compared it with the
existing source-free UDA with pre-defined domain gap and
traditional source-based UDA approaches (expectedly the best
performance due to the availability of source dataset). Our
experimental results show that, as compared with the state-
of-the-art source-free UDA approaches, TASFAR achieves on
average a substantial 14% and 24% reduction in localization

error on different users and counting MSE on various crowd
scenes, respectively, and 22% and 28% reduction of prediction
errors on the two prediction tasks. Without access to source
datasets, TASFAR impressively achieves similar accuracy as
the source-based UDA approaches.

The remainder of this paper is organized as follows. We
review related works in Section II and present TASFAR in
Section III in terms of its confidence classifier, label dis-
tribution estimator, and pseudo-label generator. We discuss
in Section IV illustrative experimental results, followed by
conclusion in Section V. Finally, we discuss future works in
Section VI.

II. RELATED WORK

UDA for deep models has been extensively stud-
ied [25] [26] [27]. These works align the source and tar-
get domains either by input data or deep model features.
Some pioneering works on data alignment [28] [29] reduce
the domain gap by importance sampling on source data
to simulate target data distribution. Recent data alignment
approaches [30] [31] [32] study style transfer from target
to source data through deep generative models. Rather than
operating on input data, the feature alignment approach aligns
the extracted deep features from both domains to reduce the
feature discrepancy, which can be indicated by maximum
mean discrepancy (MMD) [33] [34], adversarial neural net-
works [35] [36], or reconstruction loss [37]. However, these
traditional UDA approaches require the coexistence of source
and target datasets. This may raise concerns on source-data
privacy and can be troublesome when deploying to resource-
constrained devices.

To overcome that, some research works study transforming
source data into lightweight forms. Works in [7] [38] [39]
compress the source data into generative models and deploy
the source model with the data generator to target scenar-
ios for UDA. However, the deep generator may not protect
data privacy [40] and still consumes the precious storage of
resource-constrained devices. Other works align target features
with the stored statistics of the source feature, such as feature
prototype [41], feature histogram [8], and batch normalization
parameters [42]. Even though, they only work for small
domain gaps with a trade-off in adaptation quality as compared
to the traditional source-based UDA, because the proposed
feature statistics inevitably suffer information loss from the
source datasets.

Source-free UDA further reduces the storage requirement
by adapting the source model with only a set of unlabeled
target data, which is more privacy-preserving and applicable
for resource-constrained devices. Existing studies focus on
either input data or feature alignment. The input data-based
approaches [11] [12] [13] learn to extract domain-invariant
features against data augmentation (e.g., image rotation) that
simulates the domain gap from target to source, whilst they
require target-specific knowledge that is usually unavailable
when designing adaptation algorithms. The feature-based ap-
proach studies to measure the similarity of the target feature to



the source. Works in [15] [14] use the information entropy of
classification score as an indicator of feature similarity, where
low information entropy indicates source-like features. Other
works [16] [17] optimize the compactness of the target features
because the source features are usually clustered or correlated
by classification categories. Nevertheless, the current source-
free approaches either rely on target-specific information or
the properties of classification, which cannot be extended
to regression tasks whose target domains are unknown. In
comparison, TASFAR explores the label distribution of tar-
get scenarios to calibrate source models, regardless of any
classification properties or information of target domains.

III. TASFAR DESIGN

In this section, we discuss the technical design of TASFAR.
First, we overview TASFAR in Section III-A and introduce its
confidence classifier in Section III-B. Then, we discuss the
label distribution estimator in Section III-C and pseudo-label
generator in Section III-D.

A. Overview

In the problem, we have a source regression model fθs and
a bunch of target data (xt, yt) ∈ Dt(⊂ D). The parameters
of the source model θs ⊂ Θ are learned from a source
dataset (xs, ys) ∈ Ds(⊂ D). The ground truth (or label) of
the target data yt exists but is unknown. Even though the
source model fθs is performing the same task in both source
and target scenarios, i.e., Pr(x|ys) = Pr(x|yt), the statistical
distribution of inputs (i.e. domain) of both datasets can be
different, i.e., Pr(xs) ̸= Pr(xt), which is termed domain
gap. Our objective is to adapt the parameters of the source
model θs to be θt ⊂ Θ, so the target model fθt minimizes the
prediction error on target domain

min
∑

(xt,yt)∈Dt

∥fθt(xt)− yt∥n . (1)

In the problem setting of source-free UDA, the labels of the
target data are unavailable. We need an alternative objective
that complies with Equation 1. For this, previous works try
to align accuracy on the target to the source, where they
either simulate or measure from classifiers the domain gap
and extract domain-invariant features against it. However, they
either only work for specific target domains or are designed
for classification tasks. In this paper, we aim to design an
adaptation approach for regression models and consider a
more practical setting where target domains are unknown in
advance, which calls for a new objective.

Instead of extracting domain-invariant features, we directly
aim for Equation 1 by replacing the target label yt with a
pseudo-label ŷt:

min
∑

(xt,yt)∈Dt

∥fθt(xt)− ŷt∥n , (2)

where the pseudo-label ŷt is supposed to be closer to the
ground truth yt compared with the source model prediction.
In other words, such an adaptation directly works on the label

space of target scenarios, rather than operating on the input
or feature space of source models as previous works do. Even
though, it is not intuitive to get the pseudo-label ŷt.

In most machine-learning paradigms, the labels that provide
supervised information are generally regarded as independent,
while their underlying meanings are essentially correlated
in the real world. Take, an image-based recognition task,
as an example, the categories of “dog” and “cat” naturally
resemble each other in front of the label “boat”, though such
a pattern is not presented by their one-hot labels. Conceptually,
the correlation among label classes is referred to as ‘dark
knowledge” in the field of knowledge distillation [43], [44],
[45]. By exploring such correlation among label classes,
works in model compression have successfully equipped small
models with the accuracy of large models, especially for deep
classifiers [46], [47]. Enlightened by knowledge distillation,
we extend the idea of dark knowledge to source-free UDA for
regression tasks, regarding regression as the classification task
with infinite categories of labels. Nevertheless, the challenging
issues remain: 1) how are the labels of target scenarios
correlated, and 2) how to leverage the correlation to get the
pseudo-label?

We observe that, in many tasks, target labels are inherently
correlated due to the target scenarios. Specifically, due to the
same target scenarios, the generation processes of the labels
usually share commonalities, such as the same person, site,
device, and so on. Therefore, just like the input data that
all conform to the target domain (say, cartoon or realistic
images), the target labels from the same scenario usually form
a label distribution that characterizes the scenario. To illustrate
this, we show one example in Figure 2 using the task of
stride length estimation, where the label distribution reflects
the walking pattern of the person.

From another perspective, the label distribution of a scenario
can be viewed as the prior knowledge of predicting single
labels, which is especially useful when a prediction is un-
certain. For example, if an elder’s stride length mostly falls
into a range (say, 0.5 to 0.8m), his/her next stride length is
highly likely to be within the range. Intuitively, when making
a random guess, a stride length within the range is expected
to be more accurate than the out-of-range one. Therefore, we
can leverage the label distribution to generate pseudo-labels
for those uncertain predictions, which are expected to be more
accurate than the original ones. In this paper, we capture the
density information of label distribution, which serves as the
prior knowledge to calculate pseudo-labels. More details will
be discussed in the following, where we will cover which
data need pseudo-labels, how to estimate the label distribution
of target scenarios, and how to leverage the distribution to
generate the pseudo-labels.

B. Confidence Classifier

In this section, we discuss two important considerations to
get our intuition down to earth, which leads to the design of
the confidence classifier.



Fig. 2. Stride length distribution
of different users: label distribution
often characterizes target scenarios.

Fig. 3. Example of pedestrian dead
reckoning: larger uncertainty tends
to indicate larger errors.

How to estimate the label distribution of target scenarios
without target labels? If the predictions from the source model
are accurate, we can use these predictions to estimate the label
distribution of the target. Unfortunately, due to the domain gap
between the target and source, we cannot guarantee all source
model predictions on target data are accurate. Thus, we need a
recognition module to differentiate those accurate predictions
from all source model predictions on the target data.

The accuracy of predictions is related to the prediction
confidence – since the source model usually produces accurate
predictions on familiar input data that lead to high prediction
confidence, source model usually shows high confidence in
its predictions with high accuracy. We thus use prediction
confidence from source models to recognize the accurate
predictions. Note that confidence (or uncertainty) estimation
for deep learning has been well-studied. For example, the
prediction variance caused by the Dropout layer [48] can be
interpreted as prediction confidence [19]. More uncertainty
estimation methods can be found in [20]. Since most of the
uncertainty estimation approaches are orthogonal to both tasks
and model performance, employing these approaches does not
influence the generality of our approach.

Which kind of target data needs pseudo-labels? We con-
sider the label distribution as the scenario’s prior knowledge
which is independent of the individual pieces of the target
data (or inputs). Thus, it fits for calibrating the source model
predictions when the predictions are uncertain. Specifically,
the source model shows low prediction confidence when it
has trouble analyzing a target input, indicating a failure to
utilize the information from input data. In this case, we use
the label distribution to calibrate the source model predictions
when the prediction confidence is low.

Considering the two factors, we build a confidence classifier
to differentiate the target data into confident data and uncertain
data based on the source model predictions. The predictions
on the confident data are utilized to estimate the label dis-
tribution of the target, which calibrates the predictions that
the source model makes on the uncertain data. The criterion
to differentiate the target data is actually related to how
well the source model learns from the source data. In other
words, the model’s performance on the source data determines
its level of confidence in making predictions. Therefore, we
differentiate uncertain and confident data based on a threshold

Algorithm 1 Pseudo code of confidence classifier
Input: Target dataset xt ∈ Dt, source model fθs
Parameter: Uncertainty threshold τ
Output: Confident and uncertain data set SETC , SETU

1: Initialize SETC , SETU

2: for xt in Dt do
3: Calculate prediction uncertainty ut using fθs
4: if ut > τ then
5: Save (fθs(xt), ut) to SETC

6: else
7: Save (fθs(xt), ut) to SETU

8: end if
9: end for

return SETC , SETU

of prediction uncertainty τ whose value is determined by the
model performance on source data.

Specifically, if a source model learns well from the source
dataset, it should be confident about most of the predictions.
Therefore, we regard it as a confident prediction if η (pro-
portion) of the source data show uncertainty lower than τ .
This threshold also applies to target data only if using the
same source model. It can be determined after the source-
model training. Finally, we present the confidence classifier
by pseudo-code in Algorithm 1.

C. Label Distribution Estimator

In this section, we introduce our design on the label distribu-
tion estimator, which delivers a label density map M of the tar-
get scenario using the source model predictions ỹt = fθs(xt)
with prediction uncertainty ut from the confident data. For a
concise expression, we focus on the single-dimensional label
and leave its extension to the multi-dimensional label at the
end of Section III.

We refer to label density as the number of labels that
appear in a unit region. Thus, we build a grid (or discrete)
representation of the label density, named label density map.
Formally, we denote the label density map as a set of label
densities:

di = M(i), (3)

where i ∈ N denotes the index for label density di. If target
label yt is available, the label density for index i is

di = 1/D

K∑
k=1

1

(
y
(k)
t − y0

g
∈ [i, i+ 1)

)
, (4)

where 1(·) denotes indicator function, y0 is the smallest label
value considered, g is the grid size of the label density
map, K is the number of the confident data, and 1/D is
a normalization term.

Unfortunately, the label of the target data is unavailable,
which requires estimating the label density map. Based on
confident data, we propose a label distribution estimator.
Specifically, the estimator leverages the correlation between
the prediction error and uncertainty – the errors tend to be



Fig. 4. Illustration on label distribution estimator. It first estimates the label
distribution of each piece of confident data and then accumulates the estimated
instance-label distributions into a label density map.

larger with higher uncertainty. This is a natural pattern of
deep models [19], of which we further show one supporting
example (from location sensing) in Figure 3.

As illustrated in Figure 4, the estimator first estimates the
label distribution of each piece of confident data. Then, it
accumulates the estimated label distributions as label density.
In detail, for each prediction ỹ

(k)
t , we model the error to be

Gaussian distribution so that the label conforms to

y
(k)
t ∼ N

(
y|ỹ(k)t , σ

(k)
t

)
. (5)

This is the instance-label distribution where ỹ
(k)
t =

fθs

(
x
(k)
t

)
. Note that Gaussian distribution is widely adopted

in the field of uncertainty estimation [20], [49], [48]. We use
Gaussian distribution because of its popularity and computa-
tional efficiency [50].

To reflect that the error tends to be larger with higher
uncertainty, the standard deviation should be related to model
uncertainty ut. Thus, we model their relationship by a function

σ
(k)
t = Qs

(
u
(k)
t

)
. (6)

As the source model correlates the prediction and uncertainty,
Qs can be modeled based on the source dataset before
delivering to the target scenario.

We regard the modeling of Qs as a curve-fitting problem.
In particular, the standard deviation of the error σt entails
that around 68% data whose errors should be less than σt.
Thus, we learn Qs so that, for each value of uncertainty ut,
around 68% predictions in the source datasets have errors
lower than Qs(ut). Nevertheless, σt is hard to directly de-
termine since ut is a continuous variable. To tackle this, we
divide source data into q segments according to their prediction
uncertainty (similar to Figure 3) and fit a parameterized curve
to those segments

min
∑
q′∈q

∥∥∥Qs

(
u(q′)
s

)
− e(q

′)
σ

∥∥∥
n
, (7)

Fig. 5. Illustration of the basic idea of pseudo-label generator.

where u(q′)
s is the mean uncertainty of the segment q′, and e

(q′)
σ

is the estimated standard deviation of errors in the segment.
For simplicity, we use a first-order linear regression model

Qs(ut) = a0 + a1ut, (8)

where a0 and a1 are optimized by least square method [51]a1 =
∑

q′∈q u(q′)
s e

(q′)
δ −|q|ūsēδ∑

q′∈q

(
u
(q′)
s

)2
−|q|ū2

s

,

a0 = ēδ − a1ūs.

(9)

Overall, we name it instance-label estimator, which uses
each piece of confident data to estimate the instance-label
distribution.

With the function Qs, we are able to model the label
distribution of each piece of confident data by Equation 5.
This enables us to assign the label to the density map by
probability, i.e. accumulation and discretization. In particular,
the probability of the kth label in M(i) is

d
(k)
i =

∫ i+1

i

Sk (y0 + gI) dI, (10)

where the Gaussian probability density

Sk(y) =
1

σ
(k)
t

√
2π

exp

−

(
y − ỹ

(k)
t

)2
2
(
σ
(k)
t

)2
, (11)

and the standard deviation σ
(n)
t = Qs

(
u
(k)
t

)
. Totally, the label

density map can be estimated by

di = 1/D

K∑
k=1

d
(k)
i , (12)

based on Equation 4 with probability calculated from Equa-
tion 10. Finally, we present the pseudo-code of label distribu-
tion estimator in Algorithm 2.

D. Pseudo-label Generator

In this section, we first introduce how to create the pseudo-
label using the label density map M . Then, we discuss
evaluating the credibility of each pseudo-label. Both parts
contribute to the loss function that supervises the adaptation
training for the source model.

How to generate pseudo-labels using label density map?
The basic idea of the pseudo-label generator is illustrated in



Algorithm 2 Pseudo code of label distribution estimator
Input: Confident data set SETC

Parameter: Grid size g, label value range y ∈ [y0, ym],
function Qs from Equation 6
Output: Label density map M

1: Calculate the number of grids J =
⌊
ym−y0

g

⌋
2: Initialize M(j) for j = 1, 2..J
3: for (fθs(xt), ut) ∈ SETC do
4: Calculate σt = Qs(ut)
5: for j = 1, 2..J do
6: S(y) = 1

σt

√
2π

exp
(
− (y−fθs (xt))

2

2(σt)
2

)
7: M(j) = M(j) +

∫ j+1

j
S (y0 + gI) dI

8: end for
9: end for

10: for j = 1, 2, ...J do ▷ Normalization
11: M(j) = M(j)/ |SETC |
12: end for

return M

Figure 5. We stick to the grid representation of label density
map and denote the grid range as

Yi = y0 + g[i, i+ 1). (13)

As mentioned, we regard the label distribution of confident
data as the prior knowledge of the label of uncertain data.
For an uncertainty data x

(j)
t , we estimate the posterior label

distribution as the joint distribution of prior knowledge and its
instance-label distribution

Pr
(
y
(j)
t ∈ Yi

)
= Pr

(
y ∈ Yi|ỹ(j)t , u

(j)
t

)
× Pr(Yi), (14)

where ỹ
(j)
t = fθs

(
x
(j)
t

)
. On the right-hand side, we model

the first probability as a Gaussian distribution similar to
Equation 5 and the second probability using label density map
Pr(Yi) = M(i).

Based on the posterior label distribution, we generate the
pseudo-label that should be close to the grids with high
probability. Instead of selecting the grid with the highest
probability, we calculate the pseudo-label by interpolating
grids according to their probability:

ŷ
(j)
t = 1/Y

∑
i

Pr
(
y
(j)
t ∈ Yi

)
Ȳi, (15)

where Ȳi denotes the center of the grid, and 1/Y is the
normalization term. Through such an interpolation, the gen-
erated pseudo-label is naturally close to the dense grids when
the label density map shows a clear local trend. Otherwise,
it will be close to the source model prediction. This avoids
causing accuracy degradation when the prior knowledge is not
informative.

To understand the relationship between the estimated la-
bel distribution of confident data Pr(ycon) and uncertain

data Pr(yunc), we present Pr(yunc) by the joint distribution
of N independent samplings

Pr(yunc) =

N∏
i=1

Pr
(
y(i)unc

)
. (16)

By considering Equation 12, their relationship can be repre-
sented as

logPr(yunc) = N logPr(ycon) +

N∑
i=1

logPr(y(i)unc). (17)

Intuitively, Pr(ycon) serves as the prior knowledge for esti-
mating Pr(yunc), while they do not have to be the same.

Should we equally trust all pseudo-labels? We regard the
label density map as a preference (or prior knowledge of
the scenario) when the source model is uncertain about its
predictions. Thus, we should trust more about the pseudo-label
when the source model prediction is not confident, and vice
versa. In order to evaluate the credibility of the pseudo-labels,
we normalize the confidence of the source model predictions.
In particular, we use the confidence threshold τ as a reference
to normalize the confidence of source model prediction

Id =
τ

u
(j)
t

. (18)

Also, we assign a higher credibility to pseudo-labels when a
clear trend is formed in the label density, On one hand, a clear
trend means that the local label densities of a prediction (in
label space) should not be evenly distributed. This can be
achieved by the interpolation method in Equation 15 because
the uniform distribution of the local density will render the
pseudo-label close to the prediction. On the other hand, the
location where the pseudo-labels are calculated should have a
high label density. We denote such a feature by local mean
density d̄l regarding the global mean density d̄i

Il =
d̄l
d̄i
. (19)

Here, we regard the locality as the grids whose centers are
within three standard deviations from the prediction, i.e.∥∥∥Ȳi − ỹ

(j)
t

∥∥∥
n
< 3σ

(j)
t , (20)

and the credibility of the pseudo-label is

βt =
Il
Id

. (21)

We use it as the weight of the pseudo-label in the adaptation
training.

Overall, the loss function for the adaptation training is

Lada =
∑

xt∈Dt,
ut>τ

βtL (fθs(xt), ŷt) , (22)

where the pseudo-label is calculated from Equation 15, the
loss weight βt is from Equation 21, and L is task-dependent.
Besides training on the uncertain data, we suggest as well
involving the confident data in the adaptation training using



Algorithm 3 Pseudo code of pseudo-label generator
Input: Label density map M , uncertain data set SETU , grid
size g, minimum label value y0, grid number J
Parameter: Uncertainty threshold τ , function Qs

Output: Pseudo-label set SETP

1: Initialize SETP

2: d̄i =
∑J

j=1 M(j)/J ▷ Calculate global mean density
3: for (fθs(xt), ut) ∈ SETC do
4: for j=1,2,...,J do
5: V ARW = 0, V ARY = 0, βt = 0
6: Initialize SETM

7: σt = Qs(ut)
8: ym = y0 + (j + 0.5)g ▷ Calculate grid center
9: if |ym − fθs(xt)| < 3σt then

10: S(y) = 1
σt

√
2π

exp
(
− (y−fθs (xt))

2

2(σt)
2

)
11: V ARW+ = M(j)×

∫ j+1

j
S (y0 + gI) dI

12: V ARY = V ARY + ym × V ARW

13: Save M(j) to SETM

14: end if
15: end for
16: ŷt = V ARY /V ARW ▷ Calculate pseudo-label
17: βt =

d̄i×ut

τ ×
∑

m∈SETM
m

|SETM | ▷ Calculate credibility
18: Save (ŷt, βt) to SETP

19: end for
return SETP

the pseudo-label ŷt = ỹt. Because the confident data also
belongs to the target data, involving them in the training data
facilitates the model adapting to the target scenario and avoids
the catastrophic forgetting issue [10] where deep models may
forget previous knowledge when learning new ones. The
pseudo-code of the pseudo-label generator is presented in
Algorithm 3.

Finally, we discuss extending the approach to tasks with
multi-dimensional labels. It mainly distinguishes from the case
of single-dimensional labels by requiring a label density map
with a multi-dimensional index i ∈ Nm where m is the label
dimension. This leads to a multivariate Gaussian distribution
in Equation 5, which requires estimating the covariance matrix
for Equation 7. For simplicity, we suggest treating label
dimensions as independent if they are not coupled by the loss
function during the training process.

IV. ILLUSTRATIVE EXPERIMENTAL RESULTS

In this section, we demonstrate illustrative experimental
results to verify TASFAR, where we introduce the experimen-
tal setting in Section IV-A and present illustrative results in
Section IV-B.

A. Experimental Setting

To verify TASFAR, we first experiment it with two regres-
sion tasks – pedestrian dead reckoning [21] and image-based
people counting [22] – because their target domains are usually
heterogeneously different, and the applications often require a

source-free adaptation due to storage and privacy concerns.
Then, we additionally verify TASFAR on two prediction tasks
– California housing price prediction [23] and New York City
taxi trip duration prediction [24]. The two tasks further validate
TASFAR’s generality to different tasks.

Pedestrian dead reckoning (PDR) [21] is a task of location
sensing. It aims to estimate the user’s walking trajectory
using the phone-mounted IMU sensors, specifically, the ac-
celerometer and gyroscope. We employ RoNIN [21] as a
baseline model to adapt, which is a state-of-the-art PDR model
based on temporal-convolutional neural network (TCN). The
model focuses on 2D trajectories, where we model the two
dimensions independently. In the experiment, we adapt the
baseline model to 25 users separately, wherein 15 users have
contributed to the source datasets but perform differently in the
tests (small domain gap), and the other 10 users are completely
unseen by the baseline model (large domain gap).

Different users have different walking behaviors with ran-
dom carriage states of the phone, causing heterogeneous
domain gaps. Each user may contribute one or multiple
trajectories – user in the seen group provide, on average, 250m
trajectories, and that of the unseen group is 500m. To verify
that TASFAR is applicable to not only the target data that have
been adapted but all data from the target scenario, for each
user, we use 80% trajectories for adaptation and the rest for
testing. Note that the labels are unavailable in both adaptation
and testing.

The evaluation for PDR focuses on how well the model
recovers the trajectory. In this paper, we evaluate the PDR
model by two metrics:

• Step error (STE): The model outputs a displacement
vector using IMU signals every two seconds (one step).
We measure the Euclidean distance between model output
and ground truth in each step and average them over a
trajectory by

STE = 1/J
∑
j∈J

∥yj − ỹj∥2 , (23)

where the trajectory has J steps;
• Relative trajectory error (RTE) [21]: RTE measures the

localization error in terms of trajectory

RTE =

∥∥∥∥∥∥
∑
j∈J

yj −
∑
j∈J

ỹj

∥∥∥∥∥∥
2

(24)

with an aligned starting point between the estimated
trajectory and the ground-truth trajectory.

We also experiment TASFAR on image-based people count-
ing [3] which counts the number of people from single images.
We use MCNN [22] as our baseline model, which is a clas-
sic and well-recognized people-counting approach based on
convolutional neural network. In our experiment, the baseline
model is trained on Part-A (482 images) of the Shanghaitech
dataset [22] and are adapted to Part-B (716 images) of it,
where the two parts are differentiated by scenes and people
densities. The resolution of each image is 768×1024. Similar



to the PDR experiment, we use 80% data for adaptation and
the rest for testing. We follow the original paper to evaluate
the experimental results by mean squared error (MSE) and
mean absolute error (MAE).

To verify the generality of TASFAR to different tasks, we
additionally apply it to predict California housing price [23]
and New York City taxi trip duration [24]. Generally, the
two tasks are using the provided features (such as house age
and pickup date) to predict house prices in California and
taxi trip duration in New York. To form domain gaps, we
separate the two datasets spatially since both the house price
and taxi trip duration are related to (house or take-off) location.
Specifically, we separate California as coastal (target) and
non-coastal (source) areas according to [52] and New York
as Manhattan (target) and non-Manhattan (source) areas. We
employ a MLP-based model [53] as baseline and evaluate the
two tasks by mean squared error (MSE) and rooted mean
squared logarithmic error (RMSLE), as provided by their
datasets.

We compare TASFAR with the following state-of-the-art
schemes:

• MMD-based UDA (MMD): Work in [34] proposes a tra-
ditional source-based UDA approach using source data.
It measures the domain gap by MMD and aligns them in
the feature space;

• ADV-based UDA (ADV): Work in [35] proposes a tra-
ditional source-based UDA approach using source data.
It leverages a pre-trained adversarial neural network to
bridge the domain gap in feature space;

• UDA without source data (Datafree): Work in [8] con-
ducts UDA without using source data. Instead, it stores
source feature distribution via a soft histogram and re-
gards the feature distribution as a domain gap.

• Augmentation-based source-free UDA (AUGfree): Work
in [12] is a source-free UDA approach based on data
alignment. It requires a known domain gap and simulates
the gap by data augmentation, where the domain-invariant
features are extracted. In the experiment, we follow the
original paper and employ the variance perturbation as
the augmentation method.

In the experiment, we use the Dropout mechanism to
calculate model uncertainty. Uncertainty is presented by the
standard deviation of predictions from twenty samplings with
a dropout rate of 0.2. To reduce randomness, we repeat each
experiment five times and report the average result. Unless
particularly specified, we show the results on the adaptation
set.

B. Illustrative Results

In this part, we experiment on the system parameters using
PDR in Section IV-B1 and show performance of TASFAR with
the comparison schemes in Section IV-B2. Then, we extend the
experiments and analysis to people counting in Section IV-B3.
Evaluations of the two prediction tasks are in Section IV-B4.
A failure case is analyzed in Section IV-B5.

Fig. 6. Visualization of the estimated (left) and true (right) label density map
based on two PDR users.

1) Study on System Parameters: We study how TASFAR
performance varies with its system parameters. Unless speci-
fied, the experiments are on the seen group of PDR using the
identical grid size on the two label dimensions of PDR label.

We first visualize the estimated label density maps and
compare with their ground truth, using two sample users from
PDR. In Figure 6, from the ground truths of the label density
maps, both label density maps display ring-shaped patterns
in the high-density grids, which indicates the users’ regular
walking speeds. Also, the clusters on rings indicate the users’
walking patterns. From the figure, the estimated label density
maps accurately capture the ring-shaped pattern and clustering
information of the high-density grids. The larger ring of the
upper figure shows that the walking speed of the user tends
to be larger than the other user. And, the clustered regions
of the high-density grids indicate that the upper user is more
likely to make sharp turns than the other one. This confirms
the effectiveness of the label distribution estimator and justifies
the use of the estimated label density map to calibrate source
models.

To verify the label distribution estimator (Equation 12),
we present the mean absolute error (MAE) of the estimated
label density map in Figure 7. As shown in the figure, the
MAE converges to MAE=2/0 with extremely small/large grid
sizes. This is because larger grids ease the estimation task,
and vice versa. For instance, an extremely large grid would
involve all target data in both the estimated and ground truth
maps, leading to the same label density. Nevertheless, we will
provide an explanation as to why using a large grid is not
recommended in the subsequent analyses.

In Figure 8, we show how pseudo-label accuracy varies
with grid size based on different distribution forms of error
models. First, there is no significant difference among different
error models, which verifies that TASFAR is compatible with
different distribution forms, as long as it shows larger errors for
high prediction uncertainty. In terms of pseudo-label accuracy,
the figure suggests a small grid size, while it may lead
to low accuracy as in Figure 7. This is because the grid
interpolation of TASFAR (in Equation 15) makes it robust to
the estimation error, while the performance will only degrade
with an extremely large grid. Overall, the system performance



Fig. 7. Error of label distribution es-
timator varies with grid size: a larger
grid size leads to a lower estimation
error.

Fig. 8. Pseudo-label error varies
with grid size: a large grid size is
not preferred.

Fig. 9. Pseudo-label error varies
with segment quantity q: a too
small q is not preferred.

Fig. 10. Pseudo-label error varies
with the ratio η.

Fig. 11. Distribution of the corre-
lation coefficient between credi-
bility βt and prediction error over
different users.

Fig. 12. Ablation study on the credibil-
ity βt.

Fig. 13. Learning curves of adap-
tation training: early stop when the
rate of error reduction slows down.

Fig. 14. Comparison on STE
reduction rate.

is not sensitive to the choice of the grid size. Even though,
an extremely small grid size is not preferred. Specifically, the
computation complexity of constructing a label density map
is O(n/g) based on n pieces of confident data with grid size
g, indicating that it consumes more computing resources to
construct a label density map with smaller grid size. Since the
accuracy flattens off when the grid size reduces, there is no
need for a small grid size.

In figure 9, we set the grid size to be 10cm and investigate
how pseudo-label accuracy varies with segment quantity q
in Equation 7. The figure shows that the pseudo-label ac-
curacy quickly converges with a small q. Therefore, only
a few segments can capture the relationship between model
uncertainty and prediction error. The convergence also shows
that TASFAR works with a wide range of q. We empirically
set q = 40 for the following experiments.

In Figure 10, we study how to select the confidence ratio η
for the confidence classifier as discussed in Section III-B. The
figure shows how pseudo-label error varies with η, where
the pseudo-label error decreases when η is less than 0.9.
As explained in Section III-B, a small η leads to a small
confidence threshold τ so that the accurate predictions may
be considered as the uncertain ones. Also, a too large η may
decrease the numbers of uncertain data such that no data are
available for adaptation. Even though, the figure shows a wide
range of η to use. In this paper, we set η to be 0.9.

We validate the pseudo-label credibility βt (from Equa-
tion 22) in Figure 11. For trajectory data (with multiple steps)
of each person, we calculate the Pearson correlation coefficient
of βt and the pseudo-label accuracy and summarize them

as a probability distribution function (PDF) over different
users. As shown in the figure, the coefficients of all users
exhibit a positive correlation, where most users’ correlations
are larger than 0.5. Therefore, TASFAR will assign large
weights to the accurate pseudo-labels (in Equation 22), which
avoid generating low-quality pseudo-labels that cause accuracy
degradation.

We further conduct an ablation study of βt in Figure 12.
With or without using the weight βt, the figure compares
the STE varies with epochs in the adaptation training. Both
curves show lower STEs with βt, while the gaps are reduced
with more training epochs. This is because the pseudo-labels
with larger βt tend to be more accurate than those with small
weights. The model would stress more on the pseudo-labels
with large βt in the beginning because of the large weights.
This explains the gap shown in the two curves. As the number
of epochs increases, the gaps are reduced because the training
losses of these pseudo-labels (with large βt) are reduced when
the model starts to focus on the ones with less accurate pseudo-
labels. Thus, we should employ an early stop to improve
adaptation performance.

As the adaptation training process is automatic and unsu-
pervised, we study the early stop issue in Figure 13 We show
the learning curve of the same users as in Figure 12. In the
figure, both curves show the regular patterns of deep model
training: the speed of the training loss drops gradually reduces
as the epoch increases. The significant training loss drops, at
small epochs, shows that the adaptation training is bridging
the gaps between source model predictions and pseudo-labels
with large weights βt (from Equation 22). Therefore, the



Fig. 15. Comparison on STE reduc-
tion between adaptation and test sets.

Fig. 16. The ratio of uncertain data
and errors in the seen and unseen
group.

Fig. 17. How many users’ RTE
from the seen group are reduced?

Fig. 18. How many users’ RTE
from the unseen group are re-
duced?

change in the loss-dropping speed indicates a changing focus
from the large βt to the smaller one. So, we can early
stop the adaptation training when the loss-dropping speed is
significantly reduced, i.e. epoch 250 of user 1 and epoch 100 of
user 2. This also agrees with the satisfactory stopping epochs
from Figure 12.

2) Performance Analysis in PDR: In this part, we analyze
the experimental results on PDR and compare TASFAR with
the comparison schemes. Unless particularly specified, we
demonstrate results on adaptation data.

We first evaluate the STE reduction in the seen group and
show the reduction distribution over the individual user in
Figure 14. The figure shows TASFAR achieves similar error
reduction compared with source-based UDA approaches, i.e.,
MMD and ADV, while the improvement from other source-
free approaches is insignificant. Datafree can only achieve
small improvements because it merely aligns domains in terms
of feature statistics. The adaptation performance of AUGfree
varies across different users because its augmentation only
fits a few users. In comparison, the STE of each person is
significantly reduced by applying TASFAR because it directly
calibrates the source model using label distribution of the
target scenarios. Considering that different users have different
signal distributions, this experiment has verified that TASFAR
is practical and general to heterogeneous target domains.

We verify the performance consistency in adaptation and
test sets in Figure 15. TASFAR achieves an averaged STE
reduction of 13.6% in the adaptation set and 13.4% in the test
set, and all schemes show similar error reductions between
the two sets. Firstly, the schemes are not accessible to labels
of both adaptation and test sets. Secondly data from both
sets are generated from the same domain, where the test data
distribution is similar to that of the adaptation. This explains
the consistent performance of TASFAR in both adaptation and
test sets and validates that the adaptation can be achieved by
using a group of data from target domains.

Figure 16 shows the ratio of uncertain data and their
prediction errors regarding the whole dataset. Due to the
domain gaps between the target and source, the uncertain data
ratios of both seen and unseen groups are larger than η = 0.9.
The ratio of the unseen group 18.6% is larger than that of
the seen group 16.2% due to its larger domain gap. From the
figure, the error ratios are much larger than the data ratios
in both groups because the errors are mainly incurred by

uncertain data. Therefore, TASFAR only pseudo-labels the
uncertain data, though, it can achieve commendable adaptation
performance because the uncertain data group is the main
source of the inaccuracy.

Besides using STE to show model accuracy on the uncertain
data, we show the RTE of both confident and uncertain data
in the test set. Specifically, we show how many localization
errors are reduced over the test trajectories in Figure 17. The
figure shows the numbers (in ratio) of trajectories whose error
reduction is more than a threshold (x-axis), where TASFAR
achieves 0.92m (or 7%) average error reduction for trajectories
with an average length of 50m. This is comparable with
the source-based UDA, outperforming other source/data-free
approaches. Also, the result conforms to the conclusion drawn
from the STE experiments. Note that the localization error
of PDR is temporally dependent, where the location of the
next step depends on the last one. So, the errors sometimes
cancel each other’s bias over the trajectories. Therefore, it is
possible that Datafree can outperform AUGfree in RTE while
performing worse in STE.

We study the performance of TASFAR to both small (seen)
and large (unseen) domain gaps in Figure 18. As users from
the unseen group are not exposed to the source model in model
training, the domain gaps of the unseen group are larger than
those of the seen group. As the errors of PDR are cumulative,
the error reduction is more significant in longer trajectories.
From the figure, TASFAR still shows comparable RTE re-
duction with the source-based UDA approaches. It reduces
around 3.13m of RTE for trajectories with an average length of
100m. This validates that TASFAR is capable of handling both
small and large domain gaps in terms of the input distribution
because it explores label space that is decoupled from the input
space.

3) Performance Analysis in People Counting: To show that
TASFAR can work with multiple signal forms, we conduct
experiments of image-based people counting. To capture the
properties of target scenarios, we apply TASFAR to images
belonging to the same sites (streets) separately from the test
dataset. The sample images from the three sites are shown in
Figure 23, where scene 3 tends to be more crowded than the
others from our observation.

In Table I, we compare the experimental results on the
adaptation and test set. The source model (baseline) performs
worse on the uncertain set than on the whole adaptation



Fig. 19. Comparison of the differ-
ent scenes of people counting on
the test set.

Fig. 20. TASFAR’s performance
with or without partitioning the test
data.

Fig. 21. TASFAR’s performance on the
two prediction tasks.

Fig. 22. Label distribution with
two users in PDR.

TABLE I
COMPARISON ON CROWD COUNTING. TASFAR PERFORMS COMPARABLY WITH THE TRADITIONAL SOURCE-BASED UDA APPROACHES ON THE

ADAPTATION SET, UNCERTAIN DATA FROM THE ADAPTATION SET, AND TEST SET.

Adaptation (whole) Error Reduction (%) Adaptation (uncertain) Error Reduction (%) Test Error Reduction (%)
Scheme MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
Baseline 56.4 86.8 - - 114.4 143.8 - - 71.7 141.5 - -
MMD* 51.5 82.2 8.7 5.3 80.1 96.7 29.9 32.7 59.6 110.9 16.8 21.5
ADV* 52.1 81.9 7.6 5.6 76.4 97.2 33.2 32.4 59.7 111.0 16.7 21.6

AUGfree 56.3 86.9 0.2 0 113.6 142.5 0.7 0.9 71.5 141.0 0.2 0.3
Datafree 56.2 86.1 0.4 0.8 108.1 134.5 5.5 6.5 69.5 134.1 3.0 5.2
TASFAR 52.4 80.3 7.0 7.5 74.0 97.5 35.3 32.2 59.9 107.4 16.5 24.1
* Source-based UDA approach

Fig. 23. Sample images of sites from the people-counting dataset [22].

set because of the high prediction uncertainty. Although all
schemes reduce more errors on the uncertain set than the whole
adaptation set due to the large error, TASFAR significantly
outperforms the other source-free approaches in both MSE and
MAE and achieves comparable results with the source-based
UDA approaches. After adaptation, the experimental results
of the test set also come to a consistent conclusion: Datafree
only reduces errors slightly and AUGfree does not perform
well on people counting because its augmentation approach
misfits the task, while TASFAR achieves 16.5% and 24.1%
error reduction in terms of MAE and MSE that are comparable
with the source-based UDA approaches.

We further compare TASFAR with the other approaches on
different scenes in Figure 19. We only show MMD because it
performs similarly to ADV. Similarly to the results in Table I,
TASFAR achieves comparable performance with the source-
based UDA on all three scenes, outperforming AUGfree
and Datafree. Interestingly, TASFAR outperforms the existing
source-free approaches in scene 2 and 3, and surpass them by
a large margin in scene 1. This is because the crowded scene 3
maintains a stable pedestrian stream, forming a prominent
feature in label distribution. In all, the accuracy improvement
in all three scenes has verified that TASFAR can work with

different crowd scenes.
In Figure 20, we discuss TASFAR’s performance without

partitioning the test dataset by scene. From the figure, TAS-
FAR shows better performance in all three scenes when their
adaptation sets are partitioned. This is because data from the
same scenes are correlated by the target scenarios, providing
prominent features in the label distribution that are leveraged
by TASFAR. On the contrary, fusing data with multiple scenes
may corrupt the features of each target, degrading the adap-
tation performance of TASFAR. Even though, TASFAR can
still achieve good performance without partitioning because
the crowd density of the Part B dataset is inherently correlated.

4) Performance Analysis in Prediction Tasks: To verify the
generality of TASFAR in different tasks, we further show in
Figure 21 its performance on two prediction tasks. On the tar-
get regions, TASFAR has reduced 22% MSE and 28% RMSLE
separately in predicting housing price and trip duration. Since
(house and take-off) location is a key factor of housing price
and trip duration, the baseline models that are learned from one
district cannot perform well in another district. Even though,
the housing prices and trip duration in the target district are
naturally correlated. TASFAR captures such correlation and
improves the accuracy for the target district.

5) Failure Case Analysis: Finally, we show a failure case in
the PDR task where the target model, calibrated by TASFAR,
is only marginally better than the source model. Specifically,
we manually balance the target data by using two users’ data
as the target, upon which TASFAR only reduces around 1%
STE. The performance is similar to those of other source-free
approaches. To analyze it, we visualize target label distribution
in Figure 22. As shown, the two users have different step
lengths and walking patterns, so the label distribution displays



a double-ring shape that differentiates the single-person case
in Figure 6. However, the label distribution of one user usually
cannot serve as the prior knowledge of the other, resulting in a
failure of adaptation. To avoid causing accuracy degradation,
the TASFAR would generate pseudo-labels that are close to
the source-model predictions (due to the double-ring shape)
and assign small weights to adaptation loss since the label
densities are spread out over the map. Ideas to tackle such
cases are further discussed in Section VI.

V. CONCLUSION

The traditional source-based unsupervised domain adapta-
tion (UDA) uses both unlabeled target data and the training
dataset (on the source domain) to overcome the domain
gap between the target and source. To protect source data
confidentiality and reduce storage requirements, source-free
UDA replaces source data with a source model and adapts
it to the target domain. Previous source-free UDA approaches
measure and bridge domain gaps in input-data or feature space
of the source model, which only works for specific domain
gaps or classification tasks.

In this paper, we propose, for the first time, a target-agnostic
source-f ree domain adaptation approach termed TASFAR for
regression tasks. TASFAR is based on the observation that the
target label, like target data that all conform to the target do-
main, also originates from the same target scenario. Therefore,
in contrast to previous source-free UDA approaches, TASFAR
directly estimates the label distribution of the target scenario
and uses it to calibrate source models. Specifically, TASFAR
classifies the target data into confident and uncertain data and
proposes a label distribution estimator, based on the confident
data, to estimate the target label distribution, represented as a
label density map. Then, a pseudo-label generator utilizes the
label density map to pseudo-label the uncertain data, which
is used to fine-tune the source model based on supervised
learning.

To validate TASFAR, we have conducted extensive ex-
periments on four regression tasks, namely, pedestrian dead
reckoning (using the inertial measurement unit), image-based
people counting from single images, and two prediction tasks.
We compare TASFAR with state-of-the-art source-free UDA
and source-based UDA approaches. The experimental results
show that TASFAR significantly outperforms the existing
source-free UDA with around 14% and 24% reduction in
localization error and mean absolute error (MSE) in the pedes-
trian dead reckoning of different users and people counting
with various crowd scenes, respectively. In the two prediction
tasks, TASFAR reduces 26% of the prediction errors. Without
the need for any source data, its performance outperforms
the previous source-free UDA approaches and is notably
comparable with the source-based UDA approaches.

VI. FUTURE WORK

To achieve source-free domain adaptation for regression
tasks on agnostic target domains, TASFAR explores the label
properties that originate from target scenarios themselves, such

as environmental features, behavioral patterns of users, cyclic
events of the scenes, and so on. This observation makes TAS-
FAR well-suited for adaptation in real-world scenarios, where
the label distributions are naturally imbalanced because of the
heterogeneous target scenarios. Consequently, its performance
gain is not so marked in tasks where the target data comes from
multiple sources or where labels are manually balanced, such
as those datasets for data competitions. TASFAR may achieve
only minimal accuracy improvement on such tasks since their
scenario properties may be corrupted or intentionally reduced.

One direction of future works can focus on how to partition
test data so as to better utilize the characteristics of the
target scenario. This partition may depend on task-specific
knowledge. When applying TASFAR to a specific task, we
can partition the target data, according to the task-specific
knowledge, into several parts, in which we pseudo-label the
uncertain data independently. For example, in a surveillance-
based people counting, TASFAR may perform better if we
treat the morning and evening as two target scenarios. From
this perspective, TASFAR may serve as a general framework
to incorporate more task-specific knowledge to achieve better
adaptation performance on real-world applications.

Finally, we discuss our outlooks of applying TASFAR
to classification tasks, though it is specifically designed for
regression models. Technically, TASFAR may be straight-
forwardly applied to classification tasks. Without leverag-
ing classification properties, however, TASFAR by itself is
not expected to show advantages over those approaches in
classification tasks. Despite so, it is possible to combine
TASFAR with other classification-based approaches as a plug-
in module. Specifically, TASFAR may be used to explore the
correlation among label classes of a classification task and
generate soft pseudo-labels for uncertain data. Such kind of
information (namely dark knowledge) has been successfully
verified in the field of knowledge distillation. We thus believe
it may be useful in source-free domain adaptation, which can
be an interesting future work to study.
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