
MultiEM: Efficient and Effective Unsupervised
Multi-Table Entity Matching

Xiaocan Zeng, Pengfei Wang, Yuren Mao, Lu Chen, Xiaoze Liu, Yunjun Gao
Zhejiang University

{zengxc, wangpf, yuren.mao, luchen, xiaoze, gaoyj}@zju.edu.cn

Abstract—Entity Matching (EM), which aims to identify all
entity pairs referring to the same real-world entity from relational
tables, is one of the most important tasks in real-world data
management systems. Due to the labeling process of EM being ex-
tremely labor-intensive, unsupervised EM is more applicable than
supervised EM in practical scenarios. Traditional unsupervised
EM assumes that all entities come from two tables; however, it is
more common to match entities from multiple tables in practical
applications, that is, multi-table entity matching (multi-table
EM). Unfortunately, effective and efficient unsupervised multi-
table EM remains under-explored. To fill this gap, this paper
formally studies the problem of unsupervised multi-table entity
matching and proposes an effective and efficient solution, termed
as MultiEM. MultiEM is a parallelable pipeline of enhanced
entity representation, table-wise hierarchical merging, and density-
based pruning. Extensive experimental results on six real-world
benchmark datasets demonstrate the superiority of MultiEM in
terms of effectiveness and efficiency.

Index Terms—Entity Matching, Data Integration

I. INTRODUCTION

Entity Matching (EM), one of the most fundamental and
significant tasks in data management and data preparation,
aims to identify all pairs of entity records that refer to the
same real-world entity from relational tables. Most existing
studies [1]–[4] assume that all entities come from two tables,
namely two-table entity matching. This assumption limits the
application of these methods in practical scenarios involving
multiple tables. For example, some online price comparison
services (e.g., Pricerunner [5] and Skroutz [6]) compare the
prices of the same product on multiple e-commerce platforms
so that shoppers can search for the best deals. Because there
are different titles or descriptions on different e-commerce
platforms for identical products, one of the most important
steps is to effectively identify the same product from multiple
sources. As shown in Figure 1, four entities from different
sources refer to the same real-world entity (i.e., Apple iPhone
8 plus 64GB silver) with similar but different titles and
colors. Furthermore, multiple sources lead to an increase in
the number of entities, which imposes a higher requirement
on the efficiency of entity matching.

Most existing EM methods are typically performed in a
supervised [1], [4], [7] or semi-supervised [2], [8] learning
way, which rely on large amounts of labeled data, and thus is
extremely labor-intensive [3], [9]. Therefore, performing entity
matching in an unsupervised manner has become an urgent
need recently. Existing unsupervised methods for multi-table
EM (i.e., MSCD-HAC [10] and MSCD-AP [11]) run in a

title

apple iphone 8 plus 64gb

color

silver

… …

title
apple iphone 8 plus 5.5
64gb 4g unlocked sim free

… …

SV.

color

title
apple iphone 8 plus 14 cm
5.5 64 gb 12 mp ios 11

… …

silver
SR.

color

title
apple iphone 8 plus 5.5

single sim 4g 64gb
… …

SR.

color

Apple iPhone 8 plus
64gb silver

Source A

Source B

Source C

Source D

Fig. 1. An example of Multi-Table Entity Matching.

clustering way and perform poorly in terms of effectiveness
and efficiency: (1) They are influenced by the complexity of
clustering algorithms (i.e., hierarchical agglomerative cluster-
ing and affinity propagation) and have problematic scalability.
(2) Their absence of effective entity representations poses a
significant predicament, as the accuracy of clustering relies
on the quality of the representations. Sophisticated analyses
on the ineffectiveness and inefficiency of the existing multi-
table EM methods can be found in Section IV.

Motivated by the above considerations, we study the prob-
lem of unsupervised multi-table entity matching. Our goal is to
develop an efficient and effective solution for multi-table entity
matching without the need for human-labeled data, which is
a challenging endeavor. The challenges are mainly two-fold:
Challenge I: How can multiple tables be matched efficiently?
Recently, there has been an urgent need to efficiently match
entities in large-scale data scenarios [12], [13]. Furthermore,
in multi-table EM, multiple data sources bring a surge in
the number of entities, putting forward a higher need for
the matching efficiency. Existing unsupervised multi-table EM
methods can be divided into three categories: clustering-based
methods [10], [11] and two extended methods from two-
table EM [3] using pairwise matching and chain matching,
respectively. All of these approaches suffer from inefficiency
issues.

Firstly, clustering-based methods involve clustering oper-
ations that are not inefficient. Secondly, pairwise matching-
based methods (illustrated in Figure 2(a)) are directly ex-
tended from the two-table EM methods by means of pairwise
comparison between any two tables, which suffer quadratic

1

ar
X

iv
:2

30
8.

01
92

7v
1

 [
cs

.D
B

]
 2

 A
ug

 2
02

3

(a) Pairwise matching (b) Hierarchical matching

(c) Chain matching

…

A

…

B

…

C

…

D
…

Integrated

…

A

…

B

…

C

…

D

…

Integrated

…

D

…

C

…

B

…

A

…

Integrated

…

A+B

…

C+D

Fig. 2. Different solutions for Multi-Table Entity Matching.

time complexity. Besides, chain matching-based methods (il-
lustrated in Figure 2(c)) extend two-table EM by matching
tables one by one, which is not parallelizable. Moreover, as
the size of the base table increases, the two-table matching
efficiency gradually declines. Overall, efficient multi-table EM
methods remain less explored.
Challenge II: How can multiple tables be matched effectively?
As one of the most significant tasks in data management, the
effectiveness of entity matching is crucial. However, existing
methods for unsupervised multi-table entity matching face
two major obstacles in effectiveness. The first is the limited
capability of entity representation, and the second is the
existence of transitive conflicts for entity matching.

Data representation is the core for improving the effective-
ness of most unsupervised data integration tasks [14], [15].
However, existing unsupervised entity matching methods have
limitations in terms of the effectiveness of entity representa-
tion. EMBDI [14] learns local embeddings of entities through
random walks on the heterogeneous graph, which relies more
on co-occurrence relationships on a graph and neglects high-
level semantic information. AutoFJ [3], MSCD-HAC [10],
and MSCD-AP [11] use only n-gram tokenization and string-
based similarity functions, which may lack some useful con-
textual information. Furthermore, these methods treat each
attribute of the record equally without considering that each
attribute may contribute differently to the representation.

Transitive conflicts is another important factor that signifi-
cantly influences the performance of the effectiveness of multi-
table entity matching. In multi-table EM, we need to find
matched tuples (i.e., a group of equivalent entities) rather
than matched pairs. Thus, it requires aggregating matched
pairs into tuples, which involves transitivity. Transitivity is
a key property of entity matching, that is, if A matches B
and B matches C, then A can be inferred to match C as
well. However, existing EM methods inevitably make incorrect
predictions, which are propagated and result in transitive
conflicts. These conflicts pose a significant obstacle to the
effectiveness of matching. Moreover, as the number of tables
increases, such conflicts become more complex.

To address the above two challenges, we propose an un-

TABLE I
SYMBOLS AND DESCRIPTION.

Symbol Description

D A set of tables D = {E1, E2, · · · , ES}
E A relational table E = {e1, e2, · · · , em}
S The number of tables
ei An entity ei = {(attrj , valj)|1 ≤ j ≤ p}

attrj An attribute name of the entity
valj A value of the entity
M The Sentence-BERT encoder
x The text sequence of the entity
w The encoded result of the entity
h The embedding of the entity
n The number of entities in one table

supervised multi-table entity matching method, dubbed Mul-
tiEM, which can achieve efficient and effective multi-table en-
tity matching. In MultiEM, we firstly formulate multi-table EM
as a two-step process (i.e., merging and pruning). To overcome
the efficiency challenge, we present a parallelizable table-
wise hierarchical merging algorithm to accelerate the matching
of multiple tables. Furthermore, to address the effectiveness
challenge, in MultiEM, we enhance the entity representation
quality by a novel automated attribute selection strategy and
handle transitive conflicts by hierarchical merging, which
explicitly avoids the disjointed process of generating matched
pair and converting pairs to tuples. Moreover, we develop a
density-based pruning strategy to erase outliers and further
improve the matching effectiveness. Our contributions are
summarized as follows.
• Unsupervised Multi-Table EM. To the best of our knowl-

edge, this is the first work to formally define unsupervised
multi-table entity matching problem and formulate it as a
two-step (i.e., merging and pruning) process.

• Efficient and Effective Pipeline. We propose a novel unsu-
pervised multi-table entity matching method, dubbed Mul-
tiEM, which can achieve state-of-the-art performance on
efficiency and effectiveness.

• Extensive Experiments. We conduct a comprehensive exper-
imental evaluation on six real-world datasets with various
domains, sizes, and numbers of sources. Extensive experi-
mental results demonstrate the superiority of our proposed
MultiEM in terms of effectiveness and efficiency.

II. PRELIMINARIES

In this section, we illustrate the definition of typical two-
table entity matching and then formally define the multi-
table entity matching. Additionally, we provide an overview
of the relevant background materials and techniques utilized
in subsequent sections. Table I summarizes the symbols that
are frequently used throughout this paper.

A. Problem Formulation

Definition 1. (two-table entity matching). Given two relational
tables EA and EB , two-table entity matching (two-table EM)
aims to identify all pairs of records P = {(eAi , eBj)}u, where
eAi ∈ EA, eBj ∈ EB , that refer to the same real-world entity.

2

Two-table entity matching consists of two steps in sequence:
blocking and matching [1]. Blocking is a coarse-grained step
to filter out mismatched entity pairs, reducing the number of
candidate pairs for matching. Matching is a subsequent fine-
grained step to determine whether each candidate pair matches
exactly.

Definition 2. (multi-table entity matching). Given a set of
relational tables E = {E1, ..., ES}, multi-table entity match-
ing (multi-table EM) seeks to identify all tuples of records
T = {(e1, e2, ..., el)}u, where each record is from one of the
S tables, that refer to the same real-world entity. Specifically,
the size of each tuple l ≥ 2.

Inspired by two-table EM (blocking and matching), we
formally define the pipeline for multi-table EM, dividing it
into two key steps: merging and pruning. Merging focuses
on identifying potentially matched tuples across tables, while
pruning aims to determine the most accurate matches among
the candidates.

Note that there is a significant difference between two-
table and multi-table EM. Two-table EM aims to find all
matched entity pairs. However, multi-table EM intends to
identify matched tuples, which refer to a group of equivalent
entities found across multiple tables. As analyzed in Section I,
multi-table EM is more practical in the real world, with huge
challenges in terms of efficiency and effectiveness.

B. Sentence-BERT

Sentence-BERT [16] is a variant of BERT model based
on Siamese and triplet network structures. Sentence-BERT is
appropriate for sentence representations and can be used for
anything serialized into sentences [17], [18]. As a result, struc-
tural entities can be serialized into sentences based on specific
rules and then converted into embeddings using Sentence-
BERT.
Serialization. Since pre-trained language models (e.g.,
Sentence-BERT [16]) take sentences as input, we adapt them
to the EM task by serializing each entity into a text sequence.
We omit attribute names of the entity and concatenate all
attribute values to get a text sequence. Specifically, for each
entity e = {(attrj , valj)|1 ≤ j ≤ p}, it can be serialized as
follows:

serialize(e) ::= val1 val2 · · · valp-1 valp
As an example in Figure 1, the entity A1 can be serialized

as ”apple iphone 8 plus 64gb silver”.
Representation. Formally, given a Sentence-BERT modelM
and an input text sequence x = {t1, t2, · · · , tu}. First, apply
a tokenizer to encode x and feed the encoded result w =
{v1, v2, · · · , vu} to the model M. Then a pooling method is
applied for the embeddings of each token to obtain a fixed
length embedding h = pooling(M(w)) of the entity.

C. Approximate Nearest Neighbor Search (ANNS)

Nearest Neighbor Search, which aims at finding the top-
k nearest objects to the query object in a reference set, is a

crucial operation in various applications such as databases,
computer vision, multimedia, and recommendation systems
[19]. However, finding the exact nearest neighbor in high-
dimensional space is generally computationally expensive.
As a result, many researchers have focused on developing
Approximate Nearest Neighbor Search (ANNS), which only
returns sufficiently nearby objects. That is useful and efficient
for several practical problems.

There are many different types of competitive methods
for ANNS, such as LSH-based methods (e.g., QALSH [20]),
encoding-based methods (e.g., SGH [21]), tree-based methods
(e.g., FLANN [22]), and neighborhood-based methods (e.g.,
HNSW [23]). These methods are implemented in different
ways with advantages and suitable for different scenarios.

III. METHOD

In this section, we present a highly efficient and effective
approach for multi-table entity matching, dubbed MultiEM.
We first introduce the overall framework, followed by details
of three modules: Enhanced Entity Representation, Table-wise
Hierarchical Merging, and Outlier-based Pruning. Finally, we
emphasize the high parallelizability of MultiEM and present
its parallelized version, namely MultiEM(parallel).

A. Overview of MultiEM

As illustrated in Figure 3, we sequentially solve multi-table
EM in three phases, i.e., representation, merging, and pruning.
In the first (representation) step, all entities are serialized and
converted into high-quality embeddings based on automated
attribute selection. And then, in the second (merging) step,
we propose a table-wise hierarchical merging algorithm to
generate candidate tuples efficiently. In the last (pruning) step,
we design a pruning strategy for each candidate tuple to
further improve matching performance. Furthermore, MultiEM
has a highly parallelizable design. In the merging phase, the
algorithm can merge all table pairs independently. Similarly,
each tuple can be pruned independently in the pruning phase
without sacrificing matching performance.

B. Enhanced Entity Representation

The quality of representations significantly impacts the
effectiveness of downstream tasks, as supported by multiple
studies [24]–[26]. It is especially true in unsupervised entity
matching scenarios since no matched/mismatched labels exist.
As mentioned before, Sentence-BERT [16] has demonstrated
its power in sentence semantic representation, which can sup-
port many downstream tasks effectively without fine-tuning,
such as retrieval and query [27]–[29]. Therefore, we use a
pre-trained Sentence-BERT [16] model to represent all entities
without additional training costs to keep the lightweight and
high efficiency of MultiEM, which will be analyzed in Section
IV-C. However, this way may not be good enough as it
considers all attributes of entities, regardless of their relevance
to entity matching. Intuitively, some attributes may have no or
even negative impacts on the Sentence-BERT representations.

3

(I) Enhanced Entity Representation

…

(II) Hierarchical Merging (III) Outlier-based Pruning

… …

tables embeddings
matched pairs

mismatched
items

…

…

outliers…

…

…

…

selected columns
…

…

…

…

S-BERT
Model

Execute in parallel

…

Fig. 3. The proposed MultiEM framework.

TABLE II
ENTITY ea , eb AND ec .

id title artist album

ea WoM14513028 Megna’s Tim O’Brien Chameleon

eb WoM94369364 Megna’s Tim O’Brien Chameleon

ec WoM14513028 Megna’s Tim O’Brien The Hitmen

Example 1. As illustrated in Table II, given one structural
entity ea and replace its attribute id and album respectively
to get two entities eb and ec. And then, they are represented
by the pre-trained Sentence-BERT model. It is observed that
the cosine similarity of ea and eb is 0.91, and that of ea
and ec is 0.79. In other words, changes made to the id do
not significantly impact the entity’s embedding. This finding
suggests that some attributes may not be understood well by
Sentence-BERT and could potentially have a negative effect.

Based on this intuition, we design a general module based
on automated attribute selection to enhance the entity repre-
sentation. Some studies [30], [31] use information entropy
or TF-IDF scores to measure the importance of attributes.
Nevertheless, these metrics do not apply to our method, as they
are based on word/phrase frequency, which differs from our
objective of enhancing SentenceBERT-based representation.
Example 1 demonstrates that replacing the value of a signifi-
cant attribute results in a larger change in the embedding than
replacing an insignificant attribute. Leveraging this insight,
we propose an algorithm to select significant and valuable
attributes, including the following key steps:

1) Select an attribute and shuffle the values of all entities;
2) Generate the new embeddings with new values;
3) Compute the distance of the new and old embeddings for

each entity;
4) Average all entities’ distance as the significance score;
5) Repeat steps 1-4 to compute significance scores for all

attributes;
6) Select more significant attributes based on a threshold γ.

The pseudo code is shown in Algorithm 1. We optimize the
raw algorithm based on random sampling (Line 2) to reduce
the time overhead, as a subset of entities (with ratio r) is
sufficient to calculate the significance scores for large-scale
datasets.

C. Table-wise Hierarchical Merging

As mentioned in Section I, existing two-table EM methods
[1]–[4] need to be extended to match multiple tables by
pairwise matching (i.e., Figure 2(a)) or chain matching (i.e.,
Figure 2(c)). However, both approaches suffer from ineffi-
ciencies with high computational complexity (i.e., Tp(S, n) ≥
O(S22kn log n) and Tc(S, n) ≥ O(S2kn log n)). In addition,
they need to generate all matched pairs first and then com-
bine pairs to tuples, which is disjointed and hampered by
transitive conflicts, thus affecting effectiveness. To address
these issues, we propose a table-wise hierarchical merging
algorithm (i.e., Figure 2(b)) with lower time complexity (i.e.,
T (S, n) = O(Skn logS log n)) and can explicitly avoid the
disjointed process described above. Specifically, as described
in Algorithm 2, every two tables are merged into a single table
(Line 4) hierarchically and iteratively until one table remains
(Line 7) as the final result. However, how to deal with the
merging of given two tables to ensure the effectiveness of
matching is not trivial.

To this end, we elaborately design an ANNS-based two-
table merging strategy to find some candidate tuples with its
pseudo-code in Algorithm 3. The core of this strategy is to

4

Algorithm 1: Automated Attribute Selection
Input: a set of tables D = {E1, E2, · · · , ES} with the

same schema, a Sentence-BERT model M ,
hyperparameters r, γ

Output: a set of selected attributes selectedAttrs
// Concatenate all tables into one table.

1 E ← concat(E1, E2, · · · , ES)
// Sample some rows of the table.

2 E ← sample(E)
// Generate the initial embeddings.

3 H ←M(E)
4 selectedAttrs← []
// Calculate the significance score of each

attribute.

5 for attr ∈ attributes(E) do
6 E′ ← E

// Shuffle the values of this attribute.

7 E′[attr]← shuffle(E′[attr])
// Generate the new embeddings.

8 H ′ ←M(E′)
// Calculate the mean similarity.

9 sim← distance(H,H ′)
10 if sim ≥ γ then
11 selectedAttrs← append(selectedAttrs, attr)

12 return selectedAttrs

merge the matched entities and keep the mismatched ones in
the next hierarchy. It contains two steps as follows.

In the first step, we leverage HNSW [23], an ANN index
based on the navigable small world graphs, to balance the
accuracy and efficiency. We build the indexes on every two
tables and employ them to find all mutual top-K items with a
distance less than m as matched entity pairs Pm (Lines 3-5).

Pm = {(e, e′)|e ∈ topK(e′)∧e′ ∈ topK(e)∧dist(e, e′) ≤ m}
(1)

Here, e comes from Ei, e′ is from Ej , and dist represents the
distance function.

In the second step, we merge all the matched entity pairs
based on the transitivity and retain the mismatched ones into
a new table Emer (Lines 6-10).

We analyzed the time complexity to demonstrate the theoret-
ical superiority of the proposed hierarchical merging approach
over pairwise matching and chain matching in efficiency.

Given S tables with average size n. The complexities of
pairwise matching, chain matching, and our proposed hierar-
chical merging are as follows:

Lemma 1. Denote the time complexity of pairwise matching
as Tp(S, n), we have

Tp(S, n) ≥ O(S22kn log n). (2)

Proof. For pairwise matching of S tables,
(
S
2

)
times of two-

table EM methods are applied. Therefore, its complexity de-

Algorithm 2: Table-wise Hierarchical Merging
Input: a set of tables D = {E1, E2, · · · , ES}
Output: an integrated table Einte

// Iterative merging until one table remains.

1 while len(D) > 1 do
2 Dtemp ← empty list

// Randomly sample two tables repeatedly.

3 while Ei, Ej ← randomSample(D) do
// Apply the two-table merging strategy.

4 Eij ← merging(Ei, Ej)
5 Dtemp ← append(Dtemp, Eij)

6 D ← Dtemp

7 Einte ← D[0]
8 return Einte

Algorithm 3: Two-table Merging Strategy
Input: two tables Ei and Ej ; the query

hyperparameters k, m
Output: one merged table Emer

// Generate embeddings of each item.

1 Hi ← Representation(Ei)
2 Hj ← Representation(Ej)
// Find mutual top-K pairs by ANNS.

3 Pij ← ANNS(Hi, Hj , k,m)
4 Pji ← ANNS(Hj , Hi, k,m)
5 Pm ← Pij ∩ Pji

// Get matched pairs of each single table.

6 Pi ← MatchedPairs(Ei)
7 Pj ← MatchedPairs(Ej)
// Merge based on the transitivity.

8 Pmatched ← Merge(Pm,Pi,Pj)
// Generate a new table.

9 Emismatched ← {x|x ∈ Ei ∪ Ej ∧ x /∈ Pmatched}
10 Emer ← Pmatched ∪ Emismatched

11 return Emer

pends on the complexity of the applied two-table EM method,
denoted as:

Tp(S, n) = O(S2f(n)) (3)

Here, f(n) is the complexity for matching two tables.
Suppose that the mutual top-K search (i.e., with complexity

O(2kn log n)) is applied to match two tables. Therefore, the
overall complexity of pairwise matching is computed as:

Tp(S, n) = O(S22kn log n) (4)

For other more complex EM methods [1]–[4], f(n) is much
higher than O(2kn log n), so the overall complexity:

Tp(S, n) ≥ O(S22kn log n) (5)

5

Lemma 2. Denote the time complexity of chain matching as
Tc(S, n), we have

Tc(S, n) ≥ O(S2kn log n). (6)

Proof. For chain matching of S tables, first, the base table is
selected, and then the other S − 1 tables are matched one by
one. We refer the above f(n) as the matching complexity of
two tables. Here, f(n) = O(kn log n′ + kn′ log n) because
the sizes of the two tables are different. As matching, the
unmatched entities are retained, leading to an increase in the
size of the base table. Therefore, the overall complexity:

Tc(S, n) =

S−1∑
i=1

O(kin log n+ kn log in)

=

S−1∑
i=1

O(kin log n) +

S−1∑
i=1

O(kn log in)

= O(kn(

S−1∑
i=1

i log n+

S−1∑
i=1

log n+

S−1∑
i=1

log i))

= O(S2kn log n+ Skn log n+ kn

S−1∑
i=1

log i)

≥ O(S2kn log n)

(7)

Lemma 3. Denote the time complexity of hierarchical merging
as Tc(S, n), we have

T (S, n) = O(Skn logS log n). (8)

Proof. For each hierarchy i from 1 to logS with S
2i−1 tables,

we apply the two-table merging function (i.e., Algorithm 3)
to every two tables. Therefore, the time complexity can be
expressed as:

T (S, n) =

logS∑
i=1

S

2i
t(i) (9)

Here, t(i) denotes the complexity of merging two tables at
hierarchy i, that is, t(i) = O(2kn′ log n′), where n′ is the
size of the tables at this hierarchy.

To be more specific, for two tables of size n, the size of
the merged table n′ <= 2n. In conclusion, the final time
complexity can be calculated as follows:

T (S, n) ≤
logS∑
i=1

S

2i
O(2k2i−1n log(2i−1n))

≤ O(Skn

logS∑
i=1

log(2i−1n))

≤ O(Skn(

logS∑
i=1

log 2i−1 +

logS∑
i=1

log n))

≤ O(Skn(logS
logS − 1

2
+ logS log n))

≤ O(Skn logS(
logS − 1

2
+ log n))

(10)

outlier

e1 e2 e3

e4

(I)

(II) (III)

e1 e2 e3

e4
merge

Fig. 4. An intuitive example of pruning.

Since S ≪ n in almost all cases, the complexity can be
expressed as O(Skn logS log n)

Overall, we demonstrate the efficiency and effectiveness of
this hierarchical merging algorithm in two aspects. On the
one hand, the theoretical time complexity of the hierarchical
merging algorithm is O(Skn logS log n), which is better than
pairwise matching and chain matching. On the other hand, it
is both effective and efficient in experiments, which is to be
evaluated in Section IV.

D. Density-based Pruning

The hierarchical merging phase produces some prediction
tuples in the final merged table. Nevertheless, these results are
still noisy due to the locality limitations of merging. In other
words, it is caused by only considering the two tables currently
being merged. As shown in Figure 4, first, the entities e1 and
e2, e3 and e4 are merged, respectively (i.e., (I) and (II)). Then
these two pairs continue to be merged (i.e., (III)). However,
at this point, e4 becomes an outlier entity in the data item
(e1, e2, e3, e4).

As mentioned above, we define the pruning phase as the
problem of outlier detection and removal of each merging
tuple. We adopt the idea of density-based [32], [33] and
design a density-based pruning strategy by identifying entities
with different densities to improve the matching performance.
Specifically, for each data item x = {e1, e2, · · · , eu} that con-
tains multiple entities, we first define three types of entity (i.e.,
core entity, reachable entity, and outlier entity) as follows.

Definition 3. (Core Entity). Given a data item x =
{e1, e2, · · · , eu}, an entity in it is a core entity when the in-
dicated function fc(e) is true. Specifically, fc(e) is calculated
as follows.

fc(e) = |Nϵ(e, x)| ≥MinPts (11)

Nϵ(e, x) = {e′|e′ ∈ x ∧ distance(e, e′) ≤ ϵ} (12)

Here, Nϵ(e, x) represents the ϵ-neighbor entities of e in data
item x, and MinPts denotes the number of neighbors required
for e to become a core entity.

Definition 4. (Reachable Entity). A reachable entity is a non-
core entity that can be reached through the core entities within

6

Algorithm 4: Entity Classification for Pruning
Input: a data item x = {e1, e2, · · · , eu}; density

parameters ϵ and MinPts
Output: core entities Ec; reachable entities Er; outlier

entities Eo

1 for e ∈ x do
2 Nϵ ← Neighbors(x, e, ϵ)
3 if |Nϵ| ≥MinPts then
4 Ec ← Append(Ec, e)

5 for e ∈ x do
6 Nϵ ← Neighbors(x, e, ϵ)
7 if |Nϵ| ≥MinPts then
8 continue
9 else if Nϵ ∩ Ec then

10 Er ← Append(Er, e)

11 else
12 Eo ← Append(Eo, e)

13 return Ec, Er and Eo

its ϵ-neighborhood. The formal definition of its indicator
function fr(e) is as follows.

fr(e) = |Nc,ϵ(e, x)| ≥ 1 (13)

Nc,ϵ(e, x) = {e′|e′ ∈ x ∧ distance(e, e′) ≤ ϵ ∧ fc(e
′)} (14)

Here, Nc,ϵ(e, x) denotes the core entities within the ϵ-
neighborhood of e in data item x.

Definition 5. (Outlier Entity). An outlier entity is an entity
that is neither a core entity nor a reachable entity.

Next, we prune each item according to the above definitions.
First, we find out the core entities (Lines 3-4), reachable
entities (Lines 9-10), and outlier entities (Lines 11-12) of each
item, which is described with its pseudo-code in Algorithm 4.
After detecting these three kinds of entities, we remove the
outlier entities in each data item and merge the other two
kinds of entities (i.e., core entities and reachable entities) into
a new data item. Therefore, this pruning phase can remove
some errors in the merging predictions and make the results
of hierarchical merging more effective, which will be evaluated
in Section IV-D.

Note that the pruning of each data item is independent and
can be easily performed in parallel to improve efficiency. We
will introduce it in detail in Section III-E.

E. MultiEM in Parallel

The design of MultiEM enables it to be extended to the par-
allel mode to further boost efficiency without compromising
the matching performance. Specifically, in the merging phase,
each pair of tables in every hierarchy is independent and can

TABLE III
STATISTICS OF THE DATASETS USED IN OUR EXPERIMENTS.

Name Domain Srcs Attrs Entities Tuples Pairs
Geo geography 4 3 3,054 820 4,391

Music-20 music 5 5 19,375 5,000 16,250
Music-200 music 5 5 193,750 50,000 162,500

Music-2000 music 5 5 1,937,500 500,000 1,625,000
Person person 5 4 5,000,000 500,000 3,331,384
Shopee product 20 1 32,563 10,962 54,488

1 “Tuples” denotes the number of matched tuples; “Pairs” represents the
number of matched pairs.

2 “Srcs” means the number of sources, that is, the number of tables S
described in Section 2. For example, “4” denotes that there are four tables
in the Geo dataset.

be merged in parallel. Moreover, we apply a parallel extension
in the pruning phase by partitioning tuples.
Merging in parallel. To perform merging in parallel, all table
pairs are divided into multiple groups and assigned to different
computing cores. Once the calculation of the current hierarchy
is completed, the merged tables are aggregated and prepared
for the subsequent merging.
Pruning in parallel. Similarly, in the pruning phase, each data
item’s pruning is independent and can be executed in parallel
for greater efficiency. To achieve this, the merging predictions
can be divided into multiple parts and assigned to different
computational cores.

IV. EXPERIMENTS

In this section, we present an experimental evaluation of
MultiEM, using six real-world datasets. Our evaluation aims
to answer the following research questions:
• RQ1: How does MultiEM compare to state-of-the-art meth-

ods in matching effectiveness?
• RQ2: How efficient is MultiEM in terms of time and

memory usage?
• RQ3: What is the influence of each key module on the

effectiveness and efficiency of MultiEM?
• RQ4: How do different hyperparameters affect the perfor-

mance of MultiEM?

A. Experimental Setup

Datasets. We use six public real-world datasets with various
domains, sizes, and numbers of sources. The statistics of the
datasets are summarized in Table III. The dataset Shopee
comes from [34], and the other five datasets are from [10].
Baselines. We compare MultiEM with five baselines, including
supervised and semi-supervised methods for two-table entity
matching (i.e., Ditto and PromptEM), a SOTA unsupervised
approach for two-table entity matching (i.e., AutoFuzzyJoin),
and methods designed for multi-table entity matching (i.e.,
ALMSER-GB and MSCD-HAC). Note that for two-table EM
methods, we apply both pairwise matching and chain matching
for them. And then evaluate them in the multi-table EM
settings following Algorithm 5.

7

• PromptEM [2] is a prompt-tuning based approach for low-
resource generalized entity matching.

• Ditto [1] is a supervised EM approach that fine-tunes a pre-
trained language model with labeled data.

• AutoFuzzyJoin [3] is an unsupervised fuzzy join frame-
work that can be used for two-table entity matching.

• ALMSER-GB [8] is a graph-boosted active learning method
for multi-source entity resolution.

• MSCD-HAC [10] is an extended hierarchical agglomerative
clustering algorithm for clustering entities from multiple
sources.

Implementation details. We implement MultiEM in Python,
the Sentence-Transformers1 library, the hnswlib2 library, and
the scikit-learn3 library. We use all-MiniLM-L12-v24 with
mean-pooling as the backbone structure of Sentence-BERT
in all our experiments. It is trained using more than 1 billion
sentence pairs from multiple datasets and maps a sentence
to a 384-dim dense vector. We use HNSW algorithm [23] in
the merging phase. We follow the efficient implementation of
DBSCAN [32] in scikit-learn library5 for the pruning phase.
For the parallel extension, we use the Joblib6 as the underlying
parallel framework. In all our experiments, the maximum
sequence length is set to 64; k is set to 1; MinPts is set to 2;
r is set to 0.05 for the large dataset with more than 5 million
entities (i.e., Person) and set to 0.2 for other datasets. We tune
other hyper-parameters by doing a grid search and selecting
the one with the best performance. Specifically, ϵ is selected
from {0.8, 1.0}, and m is selected from {0.05, 0.2, 0.35, 0.5},
γ is selected from {0.8, 0.9}. We use the cosine distance as
the metric in the merging phase and use the euclidean distance
in the pruning phase. All the experiments are conducted on a
machine with an Intel Xeon Silver 4216 CPU, an NVIDIA
A100 GPU, and 500GB memory. The code and all datasets
are available at https://github.com/ZJU-DAILY/MultiEM. We
implement each baseline as follows.

• PromptEM [2]: We implement this approach according to
the original paper and public code7.

• Ditto [1]: We implement this method according to the
original paper and public code8.

• AutoFJ [3]: We implement this method following the origin
paper and public code9.

• ALMSER-GB [8]: We implement this method according to
the origin paper and public code10.

• MSCD-HAC [10]: We implement this method described in
the original paper.

1https://www.sbert.net
2https://github.com/nmslib/hnswlib
3https://github.com/scikit-learn/scikit-learn
4https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
5https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.

html
6https://github.com/joblib/joblib
7https://github.com/ZJU-DAILY/PromptEM
8https://github.com/megagonlabs/ditto
9https://github.com/chu-data-lab/AutomaticFuzzyJoin
10https://github.com/wbsg-uni-mannheim/ALMSER-GB

Algorithm 5: Extension for Pairs to Tuples
Input: pairs P , entity set E
Output: tuples T in the multi-table EM setting

1 T ← empty set
2 for e ∈ E do

// Find all entities in P that match e.

3 E′ ← find matched entities(P, e)
// Construct to a tuple.

4 tuple← e ∪ E′

5 T ← Add(T , tuple)
6 return T

Evaluation metrics. Following most related studies [1], [2],
[4], we use precision (P), recall (R), and F1-score (F1) as
the primary metrics. Note that in our evaluation, a prediction
tuple is considered correct only if it matches the truth tuple
exactly. Since most baseline methods use entity pair as the
evaluation unit, for a fair comparison, we use the F1-score for
pairwise matching (pair-F1) as an auxiliary metric to evaluate
the matching performance for another aspect.

Example 2. Given a truth tuple t = (1, 2, 3), while a
prediction tuple p = (1, 2, 4). When evaluated with F1, it is
a wrong prediction. Nevertheless, when evaluated with pair-
F1, tuples t and p are parsed into pairs {(1, 2), (1, 3), (2, 3)}
and {(1, 2), (1, 4), (2, 4)} respectively. Since the (1, 2) is a
truth pair, the precision and recall are both 1

3 , and the pair-
F1 score is calculated as 1

3 . In general, F1-score is a strict
metric, while pair-F1 is looser.

For supervised/semi-supervised methods (i.e., PromptEM,
Ditto, and ALMSER-GB) that require training samples, we
randomly sample 5% of the ground truth as the train set and
5% as the valid set. For the test set, we use the entire ground
truth and randomly sample P mismatched pairs for each pair
for comprehensive evaluation. P is set to 100 for small datasets
(i.e., Geo, Music-20, Shopee) and 500 for large datasets (i.e.,
Music-200, Music-2000, Person).

Since the prediction pairs from two-table EM approaches
can not be directly used for evaluation in the multi-table EM
setting, we devised an extension algorithm for converting pairs
into tuples with its pseudo code presented in Algorithm 5.

B. Experiments on Effectiveness (RQ1)

We first evaluate the matching performance of MultiEM
compared to the baselines. The results of all methods across
the six datasets are reported in Table IV.
MultiEM vs. two-table EM methods. As observed, Mul-
tiEM significantly outperforms all two-table baselines on most
datasets. On datasets Geo, Music-20, and Shopee, the aver-
age F1 score of MultiEM is +21.7 over the respective best
two-table EM competitor (i.e., AutoFJ (p), Ditto (c), and
PromptEM (c)). PromptEM and Ditto perform relatively well
on some datasets (e.g., 63.3 of F1 score on Music-20 and
85.3 of pair-F1 on Geo) because they utilize the pre-trained

8

https://github.com/ZJU-DAILY/MultiEM
https://www.sbert.net
https://github.com/nmslib/hnswlib
https://github.com/scikit-learn/scikit-learn
https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://github.com/joblib/joblib
https://github.com/ZJU-DAILY/PromptEM
https://github.com/megagonlabs/ditto
https://github.com/chu-data-lab/AutomaticFuzzyJoin
https://github.com/wbsg-uni-mannheim/ALMSER-GB

TABLE IV
MATCHING PERFORMANCE OF ALL THE METHODS.

Methods Geo Music-20 Music-200 Music-2000 Person Shopee

P R F1 p-F1 P R F1 p-F1 P R F1 p-F1 P R F1 p-F1 P R F1 p-F1 P R F1 p-F1

PromptEM (pw) 13.0 48.2 20.4 55.2 31.7 83.0 45.9 70.7 21.9 68.6 33.2 55.3 \ \ \ \ \ \ \ \ 0.2 0.5 0.2 9.6
Ditto (pw) 11.2 41.5 17.6 30.4 39.4 85.5 53.9 70.9 28.7 75.6 41.6 56.1 \ \ \ \ \ \ \ \ 0.0 0.0 0.0 2.0

AutoFJ (pw) 95.1 42.4 58.6 89.4 70.7 4.5 8.4 56.6 - - - - - - - - - - - - 71.1 10.8 18.7 45.0

PromptEM (c) 33.7 88.0 48.7 85.3 41.1 92.3 56.9 78.9 29.4 80.4 43.0 64.3 \ \ \ \ \ \ \ \ 2.2 6.6 3.3 22.0
Ditto (c) 24.0 76.6 36.5 65.7 48.4 91.5 63.3 76.8 40.9 87.8 55.8 72.6 \ \ \ \ \ \ \ \ 3.4 10.0 5.1 19.6

AutoFJ (c) 52.3 50.0 51.1 56.8 30.3 23.4 26.4 50.4 - - - - - - - - - - - - 45.9 24.2 31.6 31.1

ALMSER-GB 34.0 85.4 48.6 83.8 48.6 91.5 63.5 87.0 \ \ \ \ \ \ \ \ \ \ \ \ 7.9 22.3 11.7 36.4
MSCD-HAC 39.0 91.0 54.6 90.9 \

MultiEM 90.5 91.4 90.9 97.3 91.1 86.2 88.6 95.3 83.7 80.8 82.2 92.3 69.4 68.1 68.7 85.2 33.6 39.9 36.5 73.6 34.5 21.1 26.2 43.5
w/o EER 65.1 64.3 64.7 89.5 88.3 85.3 86.8 94.2 79.4 76.6 78.0 89.9 65.1 60.6 62.8 81.3 33.6 39.9 36.5 73.6 34.5 21.1 26.2 43.5
w/o DP 90.5 91.4 90.9 97.3 82.0 82.8 82.4 92.7 75.5 77.2 76.4 89.8 65.6 66.4 66.0 84.1 33.6 39.9 36.5 73.6 32.9 21.1 25.7 42.9

1 Due to the space limitation, we use “p-F1” to represent “pair-F1” described in Section IV-A. And we use the suffix “(pw)” to indicate the pairwise matching
and the suffix “(c)” to indicate the chain matching for two-table EM methods.

2 The best “F1” and “pair-F1” are in bold.
3 The symbol “-” means that the method is NOT able to perform due to the memory limitation in our experimental settings.
4 The symbol “\” denotes that the method can NOT produce any result after 7 days in our experimental settings.

language models, which capture better entity representation
than other baselines. AutoFJ also achieves promising results
on some datasets (e.g., Geo and Shopee) while poorly on some
other datasets, and even cannot produce any results on large
datasets due to memory constraints. However, these two-table
EM methods need to be extended by pairwise matching or
chain matching, which explicitly encounter transitive conflicts
(described in Challenge II), hindering the effectiveness of these
methods. By comparison, the extensions of chain matching
perform better than pairwise matching in most cases. Specifi-
cally, the F1 score of the former is +11.2 over the latter, and
the pair-F1 is +7.5. The main reason is that the chain matching
may output fewer matched pairs, and thus fewer transitive
conflicts. Furthermore, we observe that for PromptEM and
Ditto, the recall substantially exceeds the precision on all
datasets. That is because we simplify the evaluation by taking
all ground truth pairs as a part of the candidate entity pairs of
these two methods.
MultiEM vs. multi-table EM methods. Although those
baselines (i.e., ALMSER-GB and MSCD-HAC) make some
designs for multi-table EM and achieve relatively considerable
results on some datasets (e.g., MSCD-HAC scores pair-F1 of
90.9 on Geo, ALMSER-GB scores pair-F1 of 36.4 on Shopee),
they perform poorly in terms of efficiency. MSCD-HAC can-
not produce valid results on most datasets, and ALMSER-GB
cannot either on large-scale datasets. In addition, ALMSER-
GB and MSCD-HAC regard multi-table EM as a pairwise
matching task, so they could perform better on the pair-F1
score than the F1 score.

Overall, the proposed MultiEM outperforms baselines in
matching effectiveness across six benchmark datasets. Specifi-
cally, on four comparable datasets (i.e., Geo, Music-20, Music-
200, Shopee), MultiEM scores an average F1 of 72.0, which
is +37.0 relatively over competitive baselines, and scores an

average pair-F1 of 82.1, which is +25.2 over baselines. For the
two large datasets Music-2000 and Person, MultiEM scores
an average F1 of 52.6 and pair-F1 of 79.4. However, no
baselines can generate valid results due to time or memory
constraints. The excellent matching performance demonstrates
the effectiveness of our proposed MultiEM.

For dataset Shopee, we observe that all baselines and our
proposed MultiEM have low F1 and pair-F1 scores (i.e., the
maximum is 31.6 and 45.0, respectively). The main reason is
that this dataset includes many similar and confusing product
descriptions, so it is difficult. For example, given two different
products with descriptions “Paket Senter mini XPE+COB led
Q5 zoom usb charger” and “Senter Mini XPE+Led COB Cas
USB Zoom Police U3”. Their cosine similarity is 0.77 based
on Sentence-BERT and 0.71 based on Glove [35] embeddings.
In other words, most representation models confuse them
without supervised guidance. More specifically, whether it is
a supervised or unsupervised method, whether it is a two-
table or a multi-table EM method, one of the most critical
steps is representing the entities. High-quality representations
will affect the effectiveness of the downstream task [24]–
[26]. Currently, the approaches for entity representation are
mainly based on word embedding [7], pre-trained language
models [1], or integrated with additional information [17] (e.g.,
graph, external knowledge). These methods are still flawed and
perform poorly in the face of indistinguishable entity text.

C. Experiments on Efficiency (RQ2)
We further explore the efficiency of our proposed MultiEM

in terms of running time and memory usage, and the results
are presented in Table V, Table VI.
Comparison of running time. As observed, MultiEM and
its parallelized variant MultiEM (parallel) show substantial
advantages in terms of running time. MultiEM achieves state-
of-the-art matching results with nearly 170x speed-up on

9

TABLE V
RUNNING TIME COMPARISON.

Methods Geo Music-
20

Music-
200

Music-
2000 Person Shopee

PromptEM (pw) 12.7m 50.5m 38.4h \ \ 3.0h
Ditto (pw) 3.5m 31.4m 14.4h \ \ 1.6h

AutoFJ (pw) 8.9m 3.8h - - - 3.1h

PromptEM (c) 12.1m 49.8m 39.4h \ \ 2.6h
Ditto (c) 3.4m 31.2m 14.5h \ \ 1.5h

AutoFJ (c) 9.9m 1.4h - - - 1.2h

ALMSER-GB 5.1m 21.0m \ \ \ 26.8m
MSCD-HAC 1.5h \ \ \ \ \

MultiEM 6.1s 34.6s 6.3m 1.3h 1.8h 42.9s
MultiEM (parallel) 10.7s 31.0s 4.2m 49.1m 52.9m 31.8s

1 “s” denotes seconds, “m” means minutes, “h” denotes hours.
2 The minimum running time is in bold.
3 Due to the space limitation, we use the suffix “(pw)” to indicate the

pairwise matching and the suffix “(c)” to indicate the chain matching for
two-table EM methods.

4 The symbol “-” means that the method is NOT able to perform due to
the memory limitation in our experimental settings.

5 The symbol “\” denotes that the method can NOT produce any result
after 7 days in our experimental settings.

average compared to competitors and over 190x speed-up for
MultiEM (parallel). On datasets Geo Music-20, and Shopee,
the running time of MultiEM is at the second level, while
other baselines are at the minute or even hour level. On large-
scale datasets such as Music-2000 and Person, most baselines
cannot produce any results due to the time limitation, which
highlights the high efficiency of MultiEM. Generally, two-
table EM methods (i.e., PromptEM, Ditto, and AutoFJ) run
long as they are not explicitly designed for multi-table EM,
requiring pairwise or chain matching extensions. Among them,
Ditto runs long because it needs to fine-tune the pre-trained
language model. And PromptEM also takes longer to run as
it needs to handle the prompt-tuning template, which is more
complex than vanilla fine-tuning (i.e., Ditto). In addition, it is
observed that the running time of chain matching is near to
pairwise matching, thereby also inefficient. As said before, this
is because the size of the base table increases with the chain
matching, which significantly affects the matching efficiency.
MSCD-HAC is based on agglomerative hierarchical cluster-
ing, and its time complexity is too high, i.e., O(|E|3), where E
represents all entities. Therefore, MSCD-HAC cannot support
large-scale datasets. ALMSER-GB applies active learning and
boosted graph learning, which is ahead of other baselines in
the running time, but still cannot handle some large datasets.
Comparison of memory usage. In terms of memory usage,
MultiEM is relatively low on most datasets, including some
large-scale datasets. The reason is that MultiEM is based
on the approximate k-nearest neighbor (ANN) and does not
depend on any large or complex models, which usually occur
in lots of memory. For methods such as PromptEM and
Ditto that rely on pre-trained language models, their memory
usage is the highest and generally stable regardless of dataset

TABLE VI
MEMORY USAGE COMPARISON.

Methods Geo Music-
20

Music-
200

Music-
2000 Person Shopee

PromptEM (pw) 43.9G 43.9G 65.5G \ \ 39.2G
Ditto (pw) 30.1G 41.6G 44.1G \ \ 68.6G

AutoFJ (pw) 5.1G 6.7G - - - 3.0G

PromptEM (c) 43.4G 44.4G 65.5G \ \ 39.5G
Ditto (c) 30.4G 40.7G 44.3G \ \ 68.5G

AutoFJ (c) 5.3G 7.0G - - - 3.0G

ALMSER-GB 3.8G 15.7G \ \ \ 9.9G
MSCD-HAC 2.1G \ \ \ \ \

MultiEM 16.3G 17.5G 17.8G 17.5G 18.2G 17.5G
MultiEM (parallel) 21.5G 22.1G 23.3G 22.0G 24.7G 22.7G

1 “G” denotes gigabytes.
2 The minimum memory usage is in bold.
3 Due to the space limitation, we use the suffix “(pw)” to indicate the

pairwise matching and the suffix “(c)” to indicate the chain matching
for two-table EM methods.

4 For PromptEM and Ditto, we report the sum of memory and GPU
memory.

5 The symbol “-” means that the method is NOT able to perform due to
the memory limitation in our experimental settings.

6 The symbol “\” denotes that the method can NOT produce any result
after 7 days in our experimental settings.

size. AutoFJ also has low memory usage on small datasets.
However, the blocking phase on large datasets causes a surge
in memory usage, so it cannot produce valid results due to
memory limitations. ALMSER-GB needs to store and process
the entity similarity graphs, so the memory usage of it varies
due to the number of entities.

D. Ablation Study (RQ3)

Next, we study the effectiveness and efficiency of each key
module of MultiEM. Specifically, we analyze the effectiveness
of the enhanced entity representation (EER) and density-based
pruning (DP) modules by comparing MultiEM with its variants
(i.e., MultiEM w/o EER and MultiEM w/o DP). The results
are listed in Table IV. Furthermore, we also analyze the
impact of parallel extension on overall efficiency by comparing
running time and memory usage. The results are listed in Table
V and Table VI. Finally, we evaluate the contribution of each
module of MultiEM in terms of the running time. The results
are shown in Figure 5.
MultiEM vs. MultiEM w/o EER. MultiEM w/o EER means
that we only use the pre-trained Sentence-BERT embeddings
as the final representation of entities. As demonstrated by the
experimental results, the absence of the enhanced entity rep-
resentation significantly decreases the matching performance,
resulting in an average F1 score decrease of 6.4% and an
average pair-F1 decrease of 2.5%. These findings suggest that
the proposed enhanced entity representation module improves
the entity representation quality and thus boosts the matching
performance. Moreover, these results also indicate the impor-
tance of entity representation in the EM task. In addition, the
selected attributes by the EER module, which are consistent

10

TABLE VII
AUTOMATED SELECTED ATTRIBUTES.

Dataset All attributes Selected attributes
Geo name, longtitude, latitude name

Music-20
id, number, title, length,
artist, album, year, language

title, artist, album

Music-200
id, number, title, length,
artist, album, year, language

title, artist, album

Music-2000
id, number, title, length,
artist, album, year, language

title, artist, album

Person
givenname,surname,
suburb,postcode

givenname,surname,
suburb,postcode

Shopee title title

with the judgments obtained by domain experts after analyzing
the data, are shown in Table VII.
MultiEM vs. MultiEM w/o DP. MultiEM w/o DP denotes
that we only use the predictions of the merging phase as the
final results. It is observed that the pruning phase contributes
to performance gain in most cases. The F1 score drops by
2.4%, and the pair-F1 drops by 1.1% on average without the
pruning module. This confirms that the proposed density-based
pruning module can help further refine the predictions of the
merging phase to produce more precise matching results.
MultiEM vs. MultiEM (parallel). We extended MultiEM
with parallelization to further improve its efficiency. Our
observations show that the parallel strategy significantly re-
duces the running time without compromising the matching
performance. This is attributed to the design of MultiEM,
where the merging of each table pair and the pruning of each
tuple are independent processes. Moreover, memory usage also
increases as parallel processes require additional resources for
maintenance. As shown in Table V, and Table VI, the average
running time is reduced by 32.2%, and the average memory
usage is increased by 29.7% for all datasets except Geo. As
described above, the dataset Geo’s size is relatively small, so it
is fast enough for the non-parallel MultiEM, while the parallel
strategy will bring additional overhead.
Efficiency of each module. As shown in Figure 5, merging
is the most time-consuming step in most cases, which takes
about 37.3% on average of the overall pipeline, while 29.0%,
13.5%, and 20.2% for the other three modules, respectively.
In addition, the parallel strategy significantly improves the
efficiency of the merging and the pruning phase. The running
time drops by 13.8% and 50.0% on average of all datasets
except Geo.

E. Sensitivity (RQ4)

We further study the sensitivity of the primary hyperpa-
rameters of the proposed MultiEM through the following
experiments. Since the range of the running time of different
datasets is too wide, following [36], [37], we normalize the
running time to show its variation trend better.
Influence of γ. We conduct a sensitivity analysis on the
threshold γ described in Section III-B. The results are shown

0

1.5

3

4.5

6

R
u

nn
in

g
ti

m
e

(s
)

R M M(p) P P(p)

3.3

0.7 0.6

1.5

5.2

S

1.5

(a) Geo

0

4.5

9

13.5

18

R
u

nn
in

g
ti

m
e

(s
)

R M M(p) P P(p)S

15.5

5.8 5.8
3.7

7.5
6.0

(b) Music-20

0

35

70

105

140

R
u

nn
in

g
ti

m
e

(s
)

R M M(p) P P(p)S

123

53

128

65
77

10

(c) Music-200

0

10

20

30

40

R
u

nn
in

g
ti

m
e

(m
)

R M M(p) P P(p)S

20.4

9.1

37.3

19.1

13.4

0.5

(d) Music-2000

0

25

50

75

100

R
u

nn
in

g
ti

m
e

(m
)

R M M(p) P P(p)S

0.72.2
9.4

82.8

40.6

15.6

(e) Person

0

5

10

15

20

R
u

nn
in

g
ti

m
e

(s
)

R M M(p) P P(p)S

6.5
8.1

18.0

9.910.3

7.3

(f) Shopee

Fig. 5. Running time of each key module of MultiEM. Due to the space
limitation, we use abbreviations. “S” represents automated attribute selection,
“R” denotes entity representation, “M” represents merging, “P” denotes
pruning, and “(p)” represents merging/pruning in parallel.

in Figure 6(a). It is observed that as γ varies, there are
corresponding changes in the matching performance of Mul-
tiEM. This is because the value of γ affects the selection of
significant attributes and thus the entity representation, which
is a key factor for the effectiveness of unsupervised entity
matching.
Sensitivity to the merging order. We select four different
random seeds {0, 1, 2, 3} and repeated the experiments on all
datasets. The results are shown in Figure 6(b). As observed,
our proposed method is not sensitive to the order of tables
in the merging phase. The average variation in F1 scores is
only 1.4 across all datasets. This finding can be attributed to
the fact that in hierarchical merging, every entity will likely
compare with another entity at some hierarchy. As a result,
the order has little effect on the overall results.
Sensitivity to m. We conduct a sensitivity analysis of the
distance threshold m described in Section III-C. It is observed
that the matching performance of MultiEM is sensitive to m
since the table-wise hierarchical merging strategy of MultiEM
relies on the similarity of the entities. Therefore, we choose

11

 G e o M u s i c - 2 0 M u s i c - 2 0 0 M u s i c - 2 0 0 0 P e r s o n S h o p e e

0 . 8 0 . 8 5 0 . 9 0 . 9 50
2 5
5 0
7 5

1 0 0
F1

-sc
ore

 (%
)

g
(a) MultiEM

0 1 2 32 0
4 0
6 0
8 0

1 0 0

F1
-sc

ore
 (%

)

s e e d
(b) MultiEM

0 . 0 5 0 . 2 0 . 3 5 0 . 50
2 5
5 0
7 5

1 0 0

F1
-sc

ore
 (%

)

m
(c) MultiEM

0 . 0 5 0 . 2 0 . 3 5 0 . 50 . 5
0 . 7 5

1
1 . 2 5
1 . 5

No
rm

ali
zed

 Ti
me

m
(d) MultiEM

0 . 7 0 . 8 0 . 9 12 0
4 0
6 0
8 0

1 0 0

F1
-sc

ore
 (%

)

e
(e) MultiEM

0 . 7 0 . 8 0 . 9 10 . 5
0 . 7 5

1
1 . 2 5
1 . 5

No
rm

ali
zed

 Ti
me

e
(f) MultiEM

Fig. 6. Sensitivity analysis.

the optimal m within the range described in Section IV-A for
each dataset. In addition, the running time decreases slightly
with the increase of m due to the reduced merged pairs.
Sensitivity to ϵ. We perform a sensitivity analysis of the
clustering radius ϵ in Eq. 12 and Eq 14. The results are
reported in Figures 6(e) and 6(f). We find that the overall
matching performance is stable as the ϵ varies. In some cases,
the F1 score increases when ϵ increases; in others, it drops.
That is because a smaller ϵ leads to more false outlier entities,
while a larger ϵ will cause misjudgment of some core entities
and reachable entities. In addition, we find that the running
time of MultiEM under different ϵ is stable since ϵ only affects
the correctness of pruning and not the number of pruning
operations.

V. RELATED WORK

Entity Matching (EM) is one of the most fundamental tasks
in data management, which is significant for many downstream
tasks. Many practical approaches have been developed to
solve this problem, including rule-based methods [38], [39],
crowdsourcing-based methods [40], [41], and traditional ML-
based methods [3], [42].

In recent years, Deep Learning has been widely used for
Entity Matching. DeepER [43] uses deep neural networks
as feature extractors and considers EM as a binary clas-
sification task. DeepMatcher [7] systematically describes

a space of DL solutions for EM. Auto-EM [44] improves
performance by pre-training the EM model with entity-type
detection as an auxiliary task. Ditto [1] first applies the
pre-trained language models to EM, which gains the SOTA
performance. JointBERT [45] and Sudowoodo [46] integrate
other purposes/tasks to enhance the matching performance.
FlexER [47] employs contemporary methods for universal en-
tity resolution tasks. However, DL-based methods rely on lots
of labeled samples for better performance. To this end, Rotom
[48] leverage meta-learning and data enhancement techniques.
CollaborEM [17] designs a self-supervised framework for
EM. In addition, some other studies also try to enhance the
performance via active learning [49], [50], transfer learning
[4], [51], [52], and other promising technologies [53]–[55].

Most EM methods are only designed for two tables, which
limits their application in multi-source scenarios. Some studies
[11], [56] apply clustering algorithms to multi-source entity
matching. MSCD-HAC [10] proposes extensions to hierarchi-
cal agglomerative clustering to match and cluster entities from
multiple sources. MSCD-AP [11] regard multi-table entity
matching as an affinity propagation clustering task. ALMSER
[8] proposes a graph-boosted active learning method for multi-
source entity resolution. However, as evaluated in Sections
IV-B and IV-C, they are not effective and efficient enough.

VI. CONCLUSIONS

For the first time, we formally study the problem of un-
supervised multi-table EM and formulate it as a two-step
process (i.e., merging and pruning). We propose an efficient
and effective solution, dubbed MultiEM. First, we present
a parallelizable table-wise hierarchical merging algorithm to
match multiple tables efficiently. Furthermore, in terms of
effectiveness, we enhance the entity representation quality by
a novel automated attribute selection strategy and explicitly
avoid the transitive conflicts by hierarchical merging. Finally,
we develop a density-based strategy to prune outliers and
further improve effectiveness. Extensive experimental results
on six real-world datasets with various numbers of sources
(i.e., from 4 to 20) demonstrate the superiority of MultiEM
both in the effectiveness and efficiency compared with the
state-of-the-art approaches.

Based on our analysis, the main limitations of our work
are twofold: (i) To ensure efficiency, we focus solely on
representation-based entity matching and do not explore more
effective interaction-based techniques, which are used for most
SOTA supervised EM methods like Ditto and PromptEM;
(ii) we overlook the merging paths of each data item in the
hierarchical merging, which could be helpful for subsequent
pruning.

In the future, we plan to explore a more efficient merging
strategy to support larger-scale data, e.g., merging in a dis-
tributed manner. And we plan to investigate some interactive
technologies, such as self-supervised learning, to enhance
effectiveness. These efforts will contribute to advancing the
state-of-the-art in entity matching and enable the processing
of larger and more complex data in real-world applications.

12

REFERENCES

[1] Y. Li, J. Li, Y. Suhara, A. Doan, and W.-C. Tan, “Deep entity matching
with pre-trained language models,” PVLDB, vol. 14, no. 1, pp. 50–60,
2020.

[2] P. Wang, X. Zeng, L. Chen, F. Ye, Y. Mao, J. Zhu, and Y. Gao,
“Promptem: prompt-tuning for low-resource generalized entity match-
ing,” PVLDB, vol. 16, no. 2, pp. 369–378, 2022.

[3] P. Li, X. Cheng, X. Chu, Y. He, and S. Chaudhuri, “Auto-fuzzyjoin:
Auto-program fuzzy similarity joins without labeled examples,” in
SIGMOD, 2021, pp. 1064–1076.

[4] J. Tu, J. Fan, N. Tang, P. Wang, C. Chai, G. Li, R. Fan, and X. Du,
“Domain adaptation for deep entity resolution,” in SIGMOD, 2022, pp.
443–457.

[5] PriceRunner, 2023. [Online]. Available: https://www.pricerunner.com/
[6] Skroutz, 2023. [Online]. Available: https://www.skroutz.gr/
[7] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep,

E. Arcaute, and V. Raghavendra, “Deep learning for entity matching: A
design space exploration,” in SIGMOD, 2018, pp. 19–34.

[8] A. Primpeli and C. Bizer, “Graph-boosted active learning for multi-
source entity resolution,” in ISWC. Springer, 2021, pp. 182–199.

[9] R. Wu, S. Chaba, S. Sawlani, X. Chu, and S. Thirumuruganathan,
“Zeroer: Entity resolution using zero labeled examples,” in SIGMOD,
2020, pp. 1149–1164.

[10] A. Saeedi, L. David, and E. Rahm, “Matching entities from multiple
sources with hierarchical agglomerative clustering.” in KEOD, 2021,
pp. 40–50.

[11] S. Lerm, A. Saeedi, and E. Rahm, “Extended affinity propagation
clustering for multi-source entity resolution,” BTW 2021, 2021.

[12] L. Gazzarri and M. Herschel, “Progressive entity resolution over incre-
mental data,” in EDBT, 2022.

[13] G. Papadakis, E. Ioannou, E. Thanos, and T. Palpanas, “The four gener-
ations of entity resolution,” in Synthesis Lectures on Data Management,
2021.

[14] R. Cappuzzo, P. Papotti, and S. Thirumuruganathan, “Creating embed-
dings of heterogeneous relational datasets for data integration tasks,” in
SIGMOD, 2020, pp. 1335–1349.

[15] P. Yin, G. Neubig, W. tau Yih, and S. Riedel, “Tabert: Pretrain-
ing for joint understanding of textual and tabular data,” ArXiv, vol.
abs/2005.08314, 2020.

[16] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” in EMNLP, 2019.

[17] C. Ge, P. Wang, L. Chen, X. Liu, B. Zheng, and Y. Gao, “Collaborem:
A self-supervised entity matching framework using multi-features col-
laboration,” TKDE, 2021.

[18] J. Wang, Y. Li, and W. Hirota, “Machamp: A generalized entity matching
benchmark,” CIKM, 2021.

[19] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang, and
X. Lin, “Approximate nearest neighbor search on high dimensional
data—experiments, analyses, and improvement,” TKDE, vol. 32, no. 8,
pp. 1475–1488, 2019.

[20] Q. Huang, J. Feng, Y. Zhang, Q. Fang, and W. Ng, “Query-aware
locality-sensitive hashing for approximate nearest neighbor search,”
PVLDB, vol. 9, pp. 1–12, 2015.

[21] Q.-Y. Jiang and W.-J. Li, “Scalable graph hashing with feature transfor-
mation,” in IJCAI, 2015.

[22] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for
high dimensional data,” TPAMI, vol. 36, pp. 2227–2240, 2014.

[23] Y. A. Malkov and D. Yashunin, “Efficient and robust approximate near-
est neighbor search using hierarchical navigable small world graphs,”
TPAMI, vol. 42, no. 04, pp. 824–836, 2020.

[24] X. Deng, H. Sun, A. Lees, Y. Wu, and C. Yu, “Turl: Table understanding
through representation learning,” SIGMOD, vol. 51, no. 1, pp. 33–40,
2022.

[25] P. Yin, G. Neubig, W.-t. Yih, and S. Riedel, “Tabert: Pretraining for joint
understanding of textual and tabular data,” in ACL, 2020, pp. 8413–8426.

[26] I. Yamada, A. Asai, H. Shindo, H. Takeda, and Y. Matsumoto,
“Luke: Deep contextualized entity representations with entity-aware self-
attention,” in EMNLP, 2020, pp. 6442–6454.

[27] T. Kim, C. Park, J. Hong, R. Dua, E. Choi, and J. Choo, “Reweighting
strategy based on synthetic data identification for sentence similarity,”
in COLING, 2022, pp. 4853–4863.

[28] N. Arabzadeh, A. Bigdeli, S. Seyedsalehi, M. Zihayat, and E. Bagheri,
“Matches made in heaven: Toolkit and large-scale datasets for supervised
query reformulation,” in CIKM, 2021, pp. 4417–4425.

[29] S. H. Lim and L. Wynter, “Q2r: A query-to-resolution system for natural-
language queries,” in NAACL, 2022, pp. 353–361.

[30] M. A. Hall and G. Holmes, “Benchmarking attribute selection techniques
for discrete class data mining,” TKDE, vol. 15, no. 6, pp. 1437–1447,
2003.

[31] D. Paulsen, Y. Govind, and A. Doan, “Sparkly: A simple yet surprisingly
strong tf/idf blocker for entity matching,” PVLDB, vol. 16, pp. 1507–
1519, 2023.

[32] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters in large spatial databases with noise,” in
SIGKDD, 1996.

[33] H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek, “Density-based
clustering,” WIREs DMKD, vol. 1, no. 3, pp. 231–240, 2011.

[34] A. Howard, C. Liew, M. Wong, and S. Dane, “Shopee - price match
guarantee,” 2021. [Online]. Available: https://kaggle.com/competitions/
shopee-product-matching

[35] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in EMNLP, 2014, pp. 1532–1543.

[36] S. W. Min, V. S. Mailthody, Z. Qureshi, J. Xiong, E. Ebrahimi, and
W.-m. Hwu, “Emogi: efficient memory-access for out-of-memory graph-
traversal in gpus,” PVLDB, vol. 14, no. 2, pp. 114–127, 2020.

[37] X. Chen, R. Dathathri, G. Gill, and K. Pingali, “Pangolin: An efficient
and flexible graph mining system on cpu and gpu,” PVLDB, vol. 13,
no. 8, pp. 1190–1205, 2020.

[38] A. Elmagarmid, I. F. Ilyas, M. Ouzzani, J.-A. Quiané-Ruiz, N. Tang,
and S. Yin, “Nadeef/er: Generic and interactive entity resolution,” in
SIGMOD, 2014, pp. 1071–1074.

[39] R. Singh, V. V. Meduri, A. Elmagarmid, S. Madden, P. Papotti, J.-
A. Quiané-Ruiz, A. Solar-Lezama, and N. Tang, “Synthesizing entity
matching rules by examples,” PVLDB, vol. 11, no. 2, pp. 189–202, 2017.

[40] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. Shavlik,
and X. Zhu, “Corleone: Hands-off crowdsourcing for entity matching,”
in SIGMOD, 2014, pp. 601–612.

[41] J. Wang, T. Kraska, M. J. Franklin, and J. Feng, “Crowder: Crowdsourc-
ing entity resolution,” PVLDB, vol. 5, no. 11, 2012.

[42] P. Konda, S. Das, A. Doan, A. Ardalan, J. R. Ballard, H. Li, F. Panahi,
H. Zhang, J. Naughton, S. Prasad et al., “Magellan: toward building
entity matching management systems over data science stacks,” PVLDB,
vol. 9, no. 13, pp. 1581–1584, 2016.

[43] M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani, and N. Tang,
“Distributed representations of tuples for entity resolution,” PVLDB,
vol. 11, no. 11, pp. 1454–1467, 2018.

[44] C. Zhao and Y. He, “Auto-em: End-to-end fuzzy entity-matching using
pre-trained deep models and transfer learning,” in WWW, 2019, pp.
2413–2424.

[45] R. Peeters and C. Bizer, “Dual-objective fine-tuning of bert for entity
matching,” PVLDB, vol. 14, pp. 1913–1921, 2021.

[46] R. Wang, Y. Li, and J. Wang, “Sudowoodo: Contrastive self-supervised
learning for multi-purpose data integration and preparation,” arXiv
preprint arXiv:2207.04122, 2022.

[47] B. Genossar, R. Shraga, and A. Gal, “Flexer: Flexible entity resolution
for multiple intents,” arXiv preprint arXiv:2209.07569, 2022.

[48] Z. Miao, Y. Li, and X. Wang, “Rotom: A meta-learned data augmentation
framework for entity matching, data cleaning, text classification, and
beyond,” in SIGMOD, 2021, pp. 1303–1316.

[49] J. Kasai, K. Qian, S. Gurajada, Y. Li, and L. Popa, “Low-resource deep
entity resolution with transfer and active learning,” in ACL, 2019, pp.
5851–5861.

[50] Y. Nafa, Q. Chen, Z. Chen, X. Lu, H. He, T. Duan, and Z. Li, “Active
deep learning on entity resolution by risk sampling,” Knowledge-Based
Systems, vol. 236, p. 107729, 2022.

[51] D. Jin, B. Sisman, H. Wei, X. L. Dong, and D. Koutra, “Deep transfer
learning for multi-source entity linkage via domain adaptation,” PVLDB,
vol. 15, no. 3, pp. 465–477, 2021.

[52] N. Kirielle, P. Christen, and T. Ranbaduge, “Transer: Homogeneous
transfer learning for entity resolution.” in EDBT, 2022, pp. 2–118.

[53] Y. Gao, X. Liu, J. Wu, T. Li, P. Wang, and L. Chen, “Clusterea: scalable
entity alignment with stochastic training and normalized mini-batch
similarities,” in SIGKDD, 2022, pp. 421–431.

[54] X. Liu, J. Wu, T. Li, L. Chen, and Y. Gao, “Unsupervised entity
alignment for temporal knowledge graphs,” in WWW, 2023, pp. 2528–
2538.

13

https://www.pricerunner.com/
https://www.skroutz.gr/
https://kaggle.com/competitions/shopee-product-matching
https://kaggle.com/competitions/shopee-product-matching

[55] D. Yao, Y. Gu, G. Cong, H. Jin, and X. Lv, “Entity resolution with
hierarchical graph attention networks,” in Proceedings of the 2022
International Conference on Management of Data, 2022, pp. 429–442.

[56] M. Nentwig, A. Groß, and E. Rahm, “Holistic entity clustering for linked
data,” in ICDM. IEEE, 2016, pp. 194–201.

14

	Introduction
	Preliminaries
	Problem Formulation
	Sentence-BERT
	Approximate Nearest Neighbor Search (ANNS)

	Method
	Overview of MultiEM
	Enhanced Entity Representation
	Table-wise Hierarchical Merging
	Density-based Pruning
	MultiEM in Parallel

	Experiments
	Experimental Setup
	Experiments on Effectiveness (RQ1)
	Experiments on Efficiency (RQ2)
	Ablation Study (RQ3)
	Sensitivity (RQ4)

	Related work
	Conclusions
	References

