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Abstract—Nonnegative matrix factorization (NMF) is widely
used for clustering with strong interpretability. Among general
NMF problems, symmetric NMF is a special one that plays an
important role in graph clustering where each element measures
the similarity between data points. Most existing symmetric NMF
algorithms require factor matrices to be nonnegative, and only
focus on minimizing the gap between similarity matrix and
its approximation for clustering, without giving a consideration
to other potential regularization terms which can yield better
clustering. In this paper, we explore factorizing a symmetric
matrix that does not have to be nonnegative, presenting an
efficient factorization algorithm with a regularization term to
boost the clustering performance. Moreover, a more general
framework is proposed to solve symmetric matrix factorization
problems with different constraints on the factor matrices.

Index Terms—symmetric matrix factorization, generalized op-
timization framework, clustering

I. INTRODUCTION

Nonnegative matrix factorization (NMF) [15] problem is
formulated as the following: given a data matrix X =
[x1,x2, . . . ,xn] ∈ Rm×n

+ containing n observations, each
observation denoted as xi is an m dimensional vector, where
Rm×n

+ denotes the set of m × n element-wise nonnegative
matrices. NMF aims to find a lower-rank matrix approximation
represented by:

X ≈ UV T , (1)

where U = [u1,u2, . . . ,uk] ∈ Rm×k
+ , and V =

[v1,v2, . . . ,vk] ∈ Rn×k
+ . Typically squared Frobenius norm

is used to measure the distance between X and UV T , so the
objective in NMF is formulated as [10]:

min
U ,V ≥0

∥X −UV T ∥2F , (2)

where ∥Q∥2F =
∑

i,j Q(i, j)2. Usually, k is assumed to be
smaller than min{m,n}, thus NMF can be regarded as a
lower-rank approximation problem.

Apparently, the NMF paradigm described above conducts
clustering based on input data directly and assumes data is
well linearly separable. However, for data that lies in a specific
manifold (say a certain sphere or two moons), it will yield
a poor result. Therefore, graph clustering is introduced to
overcome the difficulty based on a matrix that measures the
similarity between each data point [12]. The factorization of
similarity matrix A ∈ Rn×n

+ will yield a lower-rank matrix

H ∈ Rn×k
+ which plays a similar role as V for cluster

assignment [7], [12], [20], [22]. Specifically, symmetric NMF
formulates the objective as:

min
H≥0

∥A−HHT ∥2F , (3)

where k is the number of clusters. Compared to classical
NMF, symmetric NMF is more flexible in terms of admitting
any reasonable measurement with mixed signs such as cosine
similarity [21], [32], [34].

Previous work on symmetric NMF mostly requires that the
matrix H is nonnegative. Therefore, even A is not explicitly
constrained to be non-negative, in practice, it is equivalent
to setting the negative elements to be 0. When symmetric
NMF is applied to graph clustering, the result is directly
obtained from H while ignoring some other techniques such
as graph regularization to promote clustering performance.
In this paper, we comprehensively study symmetric matrix
factorization with its application in graph clustering. Our
contribution is threefold:

• We first extend vanilla symmetric NMF and study a more
general case where there is no non-negative constraint on
H and interpret it in a meaningful manner. We propose
a very efficient updating algorithm that can be extended
to the non-negative case.

• A regularization term is added to boost the clustering
performance. Instead of merely focusing on minimizing
the objective ∥A − HHT ∥2F , we impose graph regu-
larization term to ensure that data points with higher
similarity value share more similar cluster indicators, and
vice versa, with H admitting mixed signs.

• We propose a general framework that can deal with
symmetric matrix factorization problems with various
constraints by learning the stepsize adaptively.

This paper is organized as follows: Section II describes
the motivation behind the problem. Section III provides the
problem formulation and optimization methods, including one
column-wise update method with fast speed, and one more
general framework. Section IV shows the convergence rate of
our method. Section V reports the experimental results on both
image datasets and text datasets, followed by the Conclusion
Section. Our code is available on GitHub.1

1https://github.com/clair-lab/Symmetric-Matrix-Factorization
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Fig. 1: An illustration of symmetric matrix factorization on A ∈ Sn.
The green block indicates the similarity is high, the corresponding
rows (first two) in H should also be similar, so they are filled with
the same color. The red block indicates the similarity is low, where
the corresponding rows (5th and 7th, respectively) in H should be
dissimilar, filled with different colors.

II. MOTIVATION

In symmetric NMF for clustering, the objective function (3)
is to measure the gap between the original similarity matrix A
and HHT , where H is the clustering assignment matrix with
nonnegative constraint. However, most algorithms only aim to
minimize the gap ∥A − HHT ∥2F while ignoring the poten-
tial over-fitting which may lower the clustering performance.
Following the idea in graph regularization [4], [6]: data points
that have high similarity (in A) should have closer clustering
indicators (rows of H), and vice versa, which is demonstrated
as Fig. 1. Accordingly, the regularization term is given by:

min
H≥0

n∑
i,j=1

Aij∥hi − hj∥22, (4)

where hi denotes i-th row in H .
Though theoretically, A admits mixed signs, however, due

to the nonnegative constraint on H , negative elements are
treated as 0 after projection and play no role in learning.
Therefore, we remove the nonnegative constraint on H . Natu-
rally, if Aij is negative, the indicators should be significantly
different and Aij∥hi−hj∥22 remains negatively small, which is
in accordance with the spirit of graph regularization. Negative
element hij denotes the unlikelihood of i-th data belonging
to j-th cluster while positive represents the very likelihood.
Therefore we formulate the objective with regularization as:

min
H

∥A−HHT ∥2F + λ

n∑
i,j=1

Aij∥hi − hj∥22, (5)

where λ is the tuning regularization parameter.
To verify whether the regularization term can help to boost

the clustering performance, a pilot experiment is conducted
on COIL-20 data set [23]. Fig. 2 shows clustering accu-
racy [33] comparison obtained from the same initialization
and constraint (admitting mixed signs on H) with the only
difference being the existence of the regularization term.
We can see that the clustering performance is significantly
improved by incorporating the regularization term into the
objective, especially when the number of clusters grows larger.
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Fig. 2: Accuracy of clustering comparison on COIL20 data set with
different cluster numbers.

Moreover, regarding H , there can be different constraints on
it. One can verify that if HTH = I , then it becomes spectral
clustering [1], [24]; if all is zero except one element is 1 in
each row of H , then it is K-means; if each row is nonnegative
and the sum is 1 [16], [26], then it is the probability distri-
bution to each cluster. Instead of proposing ad-hoc algorithms
with various constraints, we will systematically address the
problem by providing a general framework that can obtain
optimal solutions with updates efficiently.

III. FORMULATION AND ALGORITHM

In this section, we propose our algorithm to solve (5) which
enjoys faster convergence than its existing counterparts.

A. Reformulation

By noting the regularization term is in row-wise form, we
are to reformulate the objective in a more compact way as:

Theorem 1. (5) is equivalent to:

min
H

∥A− λL−HHT ∥2F , (6)

where L is the Laplacian matrix given by L := D − A ∈
Rn×n and D is the degree matrix, which is diagonal defined
as: D(i, i) =

∑
j(A(i, j)).

Proof of Theorem 1. Following [4], we have:
n∑

i,j=1

Aij∥hi − hj∥22 = 2tr(HTLH). (7)

Therefore, (5) is equivalent to

min
H

∥A−HHT ∥2F + 2λtr(HTLH). (8)

By expanding (6), we obtain:

min
H

∥A− λL−HHT ∥2F

=min
H

tr(A− λL−HHT )T (A− λL−HHT )

=min
H

∥A−HHT ∥2F + 2λtr(HTLH)

+ terms irrelevant to H.

(9)



Thus we conclude that solution to (5) is the same as to (6) in
terms of optimizing H .

B. Column-Wise Fast Update

Given the new formulation in (6), we now turn to provide
detailed updating rule for H .

We first denote A−λL as M , obviously M is still symmet-
ric, though not necessarily positive definite. The optimization
problem thereafter can be reformulated as:

min
H

f(H) = ∥M −HHT ∥2F . (10)

The above problem, theoretically speaking, has closed solu-
tions, though not unique (unless M is negative semi-definite).
One can see that if H is an optimal solution, then HR admits
the same objective as long as RRT = I (R ∈ Rk×k).
Apparently, if M is positive definite, from Eckart-Young-
Mirsky theorem, H(:, i) = ±√

σivi will obtain the minimal
where σi is the top i-th eigenvalue and vi is the corresponding
eigenvector of M . When M is negative definite, then H∗ = 0
is unique solution. If M has mixed signs in the eigenvalues,
then H(:, i) = ±

√
max{σi, 0}vi. However, one significant

disadvantage of the above method is when the size of M is
very large, conducting eigenvalue decomposition is extremely
computationally demanding. As a contribution, in our paper,
we seek an alternative that is more applicable in practice. In
light of the non-convexity of (10), where optimizing H is
challenging due to its high order, we turn to optimize:

min
H,P

∥M −HP T ∥2F + λ∥H − P ∥2F , (11)

where as long as λ is sufficiently large, hopefully, we have
H∗ = P ∗, which is not difficult to obtain optimal solutions
by utilizing any practical method such as alternating minimiza-
tion. The following theorem will give a more specific bound:

Theorem 2. Let (H∗,P ∗) be critical points of (11),
where σn(·) denotes the n-th largest eigenvalue and λ >
∥H∗P ∗T ∥F−σn(M)

2 , then H∗ = P ∗ and H∗ is a critical point
of original problem (10).

Proof of Theorem 2. We first introduce the following lemma
which is very useful for later proof [17], [35].

Lemma 1. For any symmetric A ∈ Rn×n and positive semi-
definite matrix B ∈ Rn×n, we have:

σn(A) trace(B) ≤ trace (AB) ≤ σ1(A) trace(B),

where σi(A) is the i-th largest eigenvalue of A.

Now we turn to check the sub-differential of f at critical
point (H∗,P ∗) which is:

∂H∗f(H∗,P ∗) = 2[(H∗P ∗T −M)P ∗ + λ(H∗ − P ∗)] = 0,

∂P ∗f(H∗,P ∗) = 2[(P ∗H∗T −M)H∗ − λ(H∗ − P ∗)] = 0.
(12)

By subtracting the second line from the first, we have:

(2λI +M)(H∗ − P ∗) = P ∗H∗TH∗ −H∗P ∗TP ∗. (13)

By taking the inner product H⋆ − P ⋆ on both sides:

⟨2λI+M , (H∗ − P ∗)(H∗ − P ∗)T⟩
=⟨P ∗H∗TH∗ −H∗P ∗TP ∗,H∗ − P ∗⟩.

(14)

Applying Lemma 1 on the LHS, we have:

⟨2λI+M , (H∗−P ∗)(H∗−P ∗)T⟩ ≥ (2λ+σn(M))∥H∗−P ∗∥2F ,
(15)

while applying Lemma 1 on the other side we have:

⟨P ∗H∗TH∗ −H∗P ∗TP ∗,H∗ − P ∗⟩

=

〈
P ⋆H⋆T +H⋆P ⋆T

2
, (H⋆ − P ⋆)(H⋆ − P ⋆)T

〉

−

∥∥∥H⋆P ⋆T − P ⋆H⋆T
∥∥∥2
F

2

≤

〈
P ⋆H⋆T +H⋆P ⋆T

2
, (H⋆ − P ⋆)(H⋆ − P ⋆)T

〉

≤σ1

(
P ⋆H⋆T +H⋆P ⋆T

2

)
∥H⋆ − P ⋆∥2F

≤∥P
⋆H⋆T +H⋆P ⋆T

2
∥F ∥H⋆ − P ⋆∥2F

≤∥H∗P ∗T∥F ∥H⋆ − P ⋆∥2F .

(16)

Combining the above two equations we have:

(2λ+ σn(M))∥H∗ − P ∗∥2F ≤ ∥H∗P ∗T∥F ∥H⋆ − P ⋆∥2F .
(17)

Thus, if λ > ∥H∗P ∗T ∥F−σn(M)
2 , then H∗ = P ∗ and any

critical points satisfying (12) are also those for (10).

The following lemma gives a bound for ∥H∗P ∗T ∥F .

Lemma 2. For (11), suppose the objective decreases with
initialization P 0 = H0, then for any k ≥ 0, the iterate
(Hk,P k) generated by any algorithm satisfies:

∥HkP
T
k ∥F ≤ ∥M −H0P

T
0 ∥F + ∥M∥F . (18)

Proof of Lemma 2. By the assumption that the algorithm de-
creases the objective function, we have:

∥M −HkP
T
k ∥2F + λ∥Hk − P k∥2F ≤ ∥M −H0H

T
0 ∥2F

=⇒ ∥M −HkP
T
k ∥2F ≤ ∥M −H0H

T
0 ∥2F

=⇒ ∥HkP
T
k ∥F ≤ ∥M∥F+∥M −HkP

T
k ∥F

≤ ∥M∥F+∥M −H0P
T
0 ∥F .

Corollary 1. If λ > 1
2 (∥M∥F +∥M −H0P

T
0 ∥F −σn(M))

and P 0 = H0, then any algorithm decreases the objective in
(11) will result in P ∗ = H∗.

Proof. This is established by Lemma 2 and Theorem 2.

Discussion 1. In our case, M is symmetric, not necessarily
positive semi-definite (PSD). To compute σn(M), which can



Algorithm 1 Efficient update to optimize (11)

Initialization: H0 = P 0 ∈ Rn×k.
while not converge do

for i = 1 : k do
M = M −

∑
j ̸=i hjp

T
j .

h+
i = (M+λI)pi

∥pi∥2+λ , p+
i =

(M+λI)h+
i

∥h+
i ∥2+λ

.
end for

end while
Output: H∗ = P ∗.

be negative, it is very time-consuming if eigenvalue decompo-
sition is utilized given its complexity level being O(n3) when
n is large. Therefore, we can divide it into the following cases:

• when M is PSD, then λ > 1
2 (∥M∥F +∥M−H0P

T
0 ∥F )

will naturally satisfy the requirement, admitting desired
optimal solutions.

• when M is not PSD, we can first compute the leading
eigenvalue (t) by power iteration or Lanczos method [13],
which gives O(log(n)/k) and O((log(n)/k)2) conver-
gence rate, respectively [31]. By setting λ > 1

2 (∥M∥F +

∥M −H0P
T
0 ∥F + |t|), one can verify that it will obtain

desired solution with significantly reduced complexity
than eigenvalue decomposition.

To end this proof part, we propose an efficient algorithm
that will decrease the objective monotonically.

By noticing HP T = hip
T
i +

∑
j ̸=i hjp

T
j , we can optimize

H and P column by column. Different from the column-
wise update process proposed in other studies [27], [29], there
is no assumption needed in our update algorithm, the update
formula in our method is much more straightforward and a
detailed proof of sufficient decrease in objective function with
our method is provided.

Denote M = M −
∑

j ̸=i hjp
T
j , we have:

h+
i = arg min

hi

∥M − hip
T
i ∥2 + λ∥hi − pi∥22

= arg min
hi

(∥pi∥2 + λ)h2
i − 2⟨hi, λpi +Mpi⟩

=
(M + λI)pi

∥pi∥2 + λ
.

(19)

Moreover, by noticing the strongly convexity (α =
2(∥pi∥2 + λ)) of objective w.r.t. h, one have:

f(hi,pi)− f(h+
i ,pi)

≥⟨∇hi
f(h+

i ,pi),hi − h+
i ⟩+

α

2
∥hi − h+

i ∥2

≥λ∥hi − h+
i ∥2,

(20)

which indicates a sufficient decrease by updating hi. Similarly,
one can have the same conclusion while updating pi.

Fig. 3 shows the convergence curves of Algorithm1,
SymANLS [35] and alternating direction method of multipli-
ers (ADMM) [3] when solving symmetric matrix factorization
problem. From the figure, we see Algorithm 1 converges very
fast which indicates its superiority.
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Fig. 3: Typical convergence curve which shows the superiority of our
proposed method.

C. A More General Framework for Constrained Optimization

Though the above subsection describes a simple, yet very ef-
ficient algorithm to obtain an optimal solution, still it can’t deal
with most constraint problems such as ∥h∥2 = 1, ∥h∥0 ≤ s,
etc. [18], where different constraint indicate various meanings
such as sparsity, probability distribution etc. In this subsection
we propose a more general framework to solve (10).

Recall the relationship between second-order Taylor expan-
sion and gradient descent:

f(y) ≈ f(x)+ ⟨∇f(x),y−x⟩+ 1

2
⟨y−x,∇2f(x)(y−x)⟩.

(21)
If we replace Hessian ∇2f(x) with 1

t I , then min f(y) is to
minimize ∥y − x + t∇f(x)∥22, where t is the step size in
gradient descent method. It can be verified that:

∇f(H) = 4(HHTH −MH). (22)

By invoking (21) to update H+, we get:

H+ = arg min
H′∈H

f(H ′)

= arg min
H′∈H

f(H) + ⟨∇f(H),H ′ −H⟩+ 1

2t
∥H ′ −H∥2F

= arg min
H′∈H

1

2t
∥H ′ − (H − t∇f(H))∥2F

= PH(H − t∇f(H)).
(23)

H denotes the feasible set satisfying the constraint. Stepsize
t in the above update rule should be relatively small to avoid
gradient explosion. However, if it is too small, the convergence
becomes slow, which should be avoided as well. As a contri-
bution, we propose a method with adaptive stepsize which
will make the objective decrease monotonically.

Algorithm 2 provides a generalized framework to solve
any symmetric matrix factorization with different constraints.
Below we provide some concrete examples:



Algorithm 2 Optimize (10) where H ∈ H
Input: M = A− λL.
Initialization: H0 ∈ H, i = 0.
while i < K do

∇f(Hi) = 4(HiH
T
i Hi −MHi).

Li = 4σmax(HiH
T
i −M) + 8σmax(H

T
i Hi).

Hi+1 = PH(Hi − t∇f(Hi)), where t = 1
2Li

.
i = i+ 1.

end while
Output: HK .

• Example I: Nonnegative constraint H ≥ 02:

H+ = max{H − t∇f(H), 0}. (24)

• Example II: Unit constraint ∥h∥2 = 1:

h+ =
h− t∇f(h)

∥h− t∇f(h)∥2
. (25)

• Example III: Sparsity constraint ∥h∥0 ≤ s:
WLOG, assume the top s entry with maximum magnitude
in h is indexed as [1, s], then [19]

h+ =

{
(h− t∇f(h))j if j ∈ [1, s],

0 otherwise.
(26)

• Example IV: Orthogonality Constraint HTH = I:

H+ = UTV ,

where [U ,Σ,V ] = svd(H − t∇f(H)).
(27)

• Example V: ℓ1-norm constraint on ∥h∥1 ≤ α [2]. By
denoting Tλ(h) = [h− λe]+ ⊙ sgn(h), we have:

h+ =

{
h if ∥h∥1 ≤ α,

Tλ∗(h) otherwise,
(28)

where λ∗ is positive root for ∥Tλ(h)∥1 = α which can
be solved within O(nlog(n)) [5].

IV. CONVERGENCE ANALYSIS

In the last section we mentioned the step size t should not
be too large or small, and in this section, we will determine the
best t in each update which guarantees the objective decreases
monotonically by introducing the following lemma to begin:

Lemma 3. For a function f with a Lipschitz continuous
gradient L, if ∥∇f(x) − ∇f(y)∥2 ≤ L∥x − y∥2 then
f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2 ∥y − x∥22.

Proposition 1. For (10), in each i-th update, Li =
4σmax(HiH

T
i −M) + 8σmax(H

T
i Hi).

Proof of Proposition 1. For sake of simplicity, we denote H
as Hi. With Lemma 3, it is equivalent to show f(H ′) −

2One can verify that Algorithm 1 can also work if we set every column
nonnegative, which can simply be obtained via h+

i = max{ (M+λI)pi
∥pi∥2+λ

, 0},

p+
i = max{ (M+λI)h+

i

∥h+
i ∥2+λ

, 0}.

f(H) − ⟨∇f(H),H ′ −H⟩ ≤ L
2 ∥H

′ −H∥2F . By denoting
H ′ as H +∆H , we have:

f(H +∆H)− f(H)− ⟨∆H,∇f(H)⟩
= 2⟨HHT −M ,∆H∆HT ⟩+ ∥H∆HT +∆HHT ∥2F
≤ 2(⟨HHT −M ,∆H∆HT ⟩+ ∥H∆HT ∥2F + ∥∆HHT ∥2F )
= 2tr(∆HT (HHT −M)∆H) + 4tr(∆HHTH∆HT )

≤ [2σmax(HHT −M) + 4σmax(H
TH)]∥∆H∥2F =

L

2
∥∆H∥2F ,

(29)

where σmax(·) denotes the maximum singular value.

Below we show that the objective function f(H) in Algo-
rithm 2 has sufficient decreasement in each update with step
size t = 1

2L and the generated sequence is convergent.

Theorem 3. Let g(Hk) := f(Hk)+ C(Hk) be the objective
function sequence generated by Algorithm 2 with constant step
size tk = 1

2Lk
. Then the sequence g(Hk) obeys sufficient

decrease: g(Hk−1)− g(Hk) ≥ Lk

2 ∥Hk −Hk−1∥2F .

Proof of Theorem 3. From (23), noting that Hk minimizes
J(H) = ⟨∇f(Hk−1),H − Hk−1⟩ + 1

2t∥H − Hk−1∥2F +
C(H), where C(H) represents any constraint C(H) ={
0,H ∈ H
∞, else

, thus we naturally have J(Hk) ≤ J(Hk−1),

which implies:

⟨∇f(Hk−1),Hk −Hk−1⟩+
1

2t
∥Hk −Hk−1∥2F

≤C(Hk−1)− C(Hk).
(30)

According to the definition of Lipschitz continuous, Lemma. 3,
and when t = 1

2Lk
in (30), we have:

f(Hk) + C(Hk)− f(Hk−1)− C(Hk−1)

≤⟨∇f(Hk−1),Hk −Hk−1⟩+
Lk

2
∥Hk −Hk−1∥2F

+ C(Hk)− C(Hk−1)

≤− Lk∥Hk −Hk−1∥2F +
Lk

2
∥Hk −Hk−1∥2F

=− Lk

2
∥Hk −Hk−1∥2F .

(31)

One can see that if Hk ∈ H, then (31) degenerates
to f(Hk−1) − f(Hk) ≥ Lk

2 ∥Hk − Hk−1∥2F . Therefore,
(10) decreases with update. Now repeating for all k will
give L̄

2

∑∞
k=1 ∥Hk − Hk−1∥2F ≤ g(H0), where L̄ :=

min{L1, . . . , Lk} > 0 and establishes its convergence.

Theorem 4. In Algorithm 2, to ensure min ∥∇f(H) +
∂C(H)∥2F ≤ ϵ, we need at most T = O( 1ϵ ) iterations.

This indicates that the algorithm reaches a critical point at
least a sub-linear convergence rate. Below is the proof:

Proof. First, by definition:

H+ = arg min
H′

⟨∇f(H),H ′−H⟩+ 1

2t
∥H ′−H∥2F +C(H ′),

(32)
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Fig. 5: Accuracy (Y-axis) comparison with λ changes (X-axis). Left: on a subset of 5 clusters from COIL-20. Middle: on a subset of 12
clusters from Reuters-21578. Right: on a subset of 10 clusters from TDT2.

which implies:

0 ∈ ∇f(H) +
1

t
(H+ −H) + ∂C(H+). (33)

WLOG, now we define AH+ ∈ ∇f(H+) + ∂C(H+),
apparently it indicates the gap to H∗ which satisfies 0 ∈
∇f(H∗) + ∂C(H∗). Accordingly:

AH+ ∈ ∇f(H+)+∂C(H+) = ∇f(H+)−∇f(H)−1

t
(H+−H).

(34)
As f is L-Lipschitz gradient continuous, then:

∥AH+∥ ≤ ∥∇f(H+)−∇f(H)∥+ 1

t
∥H+ −H∥

≤ L∥H+ −H∥+ 1

t
∥H+ −H∥

= 3L∥H+ −H∥,

(35)

where the first line comes from subadditivity inequality, the
second line is by definition of Lipschitz gradient continuity,
while the last line is by definition of t = 1

2L .
On the other hand, f(H) − f(H+) ≥ L

2 ∥H
+ − H∥2F ,

therefore:
∥AH+∥2F ≤ 9L2∥H+ −H∥2F

≤ 9L2 ∗ 2

L
(f(H)− f(H+))

= 18L(f(H)− f(H+)).

(36)

By repeating the above for all k:∑
i

∥Ai∥2F ≤ 18L(f(H0)− f(Hk)) ≤ 18Lf(H0). (37)

Thus, min ∥Ai∥2F ≤ 18Lf(H0)
T , that is as long as T =

18Lf(H0)
ϵ = O( 1ϵ ), then min ∥Ai∥2F = ϵ which finishes

the proof. Apparently, our algorithm has a at least sub-linear
convergence rate.

We compare our proposed method with the nonnegative
constraint on H using projected gradient descent and the
Newton-like method in SymNMF [12] in terms of convergence
speed on synthetic data in Fig. 4. When run with the adaptive
step-size setting, it converges way faster than others.

TABLE I: Datasets Information

Dataset #Clusters #Samples Dimensionality

COIL-20 20 1440 1024
CIFAR-10 10 3000 1024

Reuters-21578 41 8213 18933
TDT2 30 9394 36771



TABLE II: Normalized mutual information (NMI) of different algorithms on four datasets with varying numbers of clusters

COIL-20 CIFAR-10 Reuters-21578 TDT2

Method 2 10 20 3 6 10 2 8 15 2 10 20

K-means 0.901 0.624 0.591 0.296 0.287 0.201 0.785 0.553 0.421 0.752 0.532 0.501
NMF 0.907 0.729 0.522 0.308 0.288 0.195 0.819 0.752 0.598 0.822 0.666 0.600

Spectral 0.877 0.701 0.677 0.309 0.298 0.201 0.828 0.611 0.499 0.829 0.607 0.592
SymHALS 0.911 0.688 0.652 0.308 0.255 0.198 0.855 0.631 0.552 0.822 0.611 0.588

SNMF 0.911 0.659 0.638 0.311 0.302 0.188 0.872 0.566 0.531 0.751 0.689 0.603
SymNMF 0.951 0.739 0.662 0.307 0.289 0.209 0.897 0.692 0.605 0.802 0.671 0.662

GNMF 0.951 0.701 0.652 0.319 0.301 0.217 0.852 0.772 0.618 0.798 0.699 0.652
DSC 0.949 0.752 0.701 0.318 0.302 0.297 0.876 0.779 0.682 0.851 0.691 0.664
Ours 0.958 0.797 0.725 0.341 0.319 0.302 0.901 0.798 0.755 0.861 0.729 0.705

TABLE III: Clustering accuracy (AC) of different algorithms on four datasets with varying numbers of clusters

COIL-20 CIFAR-10 Reuters-21578 TDT2

Method 2 10 20 3 6 10 2 8 15 2 10 20

K-means 0.921 0.674 0.631 0.316 0.297 0.221 0.815 0.563 0.503 0.800 0.581 0.533
NMF 0.923 0.765 0.586 0.330 0.306 0.198 0.900 0.777 0.616 0.839 0.693 0.629

Spectral 0.898 0.737 0.702 0.332 0.316 0.228 0.889 0.645 0.513 0.896 0.639 0.602
SymHALS 0.927 0.703 0.682 0.321 0.287 0.219 0.881 0.658 0.575 0.851 0.639 0.601

SNMF 0.932 0.686 0.653 0.328 0.312 0.202 0.890 0.586 0.552 0.781 0.703 0.630
SymNMF 0.972 0.772 0.695 0.321 0.305 0.231 0.911 0.721 0.627 0.823 0.703 0.689

GNMF 0.968 0.722 0.683 0.343 0.326 0.232 0.871 0.802 0.628 0.825 0.715 0.676
DSC 0.972 0.788 0.722 0.339 0.321 0.318 0.903 0.811 0.703 0.863 0.720 0.687
Ours 0.975 0.815 0.787 0.369 0.346 0.328 0.922 0.823 0.782 0.878 0.756 0.736

V. EXPERIMENTS

A. Datasets

Two image datasets and two text datasets are used in the ex-
periment: COIL-20 [23], CIFAR-10 [11], Reuters-21578 [25],
and TDT2 [28]. Detailed descriptions of the number of clus-
ters, number of samples, and dimensionality of these datasets
can be found in Table I.

B. Experimental Settings

Clustering performances of the following 9 algorithms are
compared:

1) Standard K-means;
2) NMF using alternating nonnegative least squares algo-

rithm [10]; The data matrix X is transformed into its
normalized-cut weighted version;

3) Spectral clustering (Spectral) [24], [30];
4) Hierarchical Alternating Least Squares (HALS) for sym-

metric NMF (SymHALS) [35];
5) Symmetric NMF using Procrustes rotations (SNMF) [8];
6) Symmetric NMF (SymNMF) [12];
7) Graph regularized nonnegative matrix factorization

(GNMF) [4];
8) Deep subspace clustering (DSC) [9];
9) Our method. Algorithm 2 is used to solve the objective

function (10).
In order to randomize the experiments, we conduct the

evaluation using subsets of the whole datasets with different

cluster numbers. For each selected number of clusters K, 10
test runs are conducted on a randomly chosen subset with
K clusters. When K is the total number of clusters in the
complete data set, the test runs are repeated on the entire data
set. The symmetric matrix A can be obtained by utilizing any
similarity measures, for simplicity we use the inner product
similarity. Throughout the experiments, we use Matlab R2019a
on a laptop with a 1.4 GHz QuadCore Intel Core i5 processor.

C. Results and Analysis

The clustering quality is measured by normalized mutual
information (NMI) [14], a measurement of similarity from
information theory, and clustering accuracy (AC), the percent-
age of items correctly clustered with the maximum bipartite
matching [33]. AC is defined as follows:

AC =

∑n
i=1 δ(ri,map(li))

n
, (38)

where li is the obtained cluster label, ri is the original provided
label, n is the number of total samples, δ(x, y) equals 1 when
x = y and equals 0 otherwise, and map(li) is the permutation
function that maps each li to the equivalent cluster label
provided via Hungarian algorithm.

Fig. 5 shows how the clustering accuracy of our method
varies with different values of λ. The performance is not
changing dramatically with respect to the parameter λ, and
our method has consistently ideal performance if λ is within
a reasonable range. It’s reasonable to observe that the optimal



value of λ is slightly dependent on the data since the dimen-
sionality and magnitude of the data can all have some effect on
it. Experiment results of normalized mutual information and
clustering accuracy on the four datasets are shown in Table II
and Table III. We report the mean of NMI and AC for each
given cluster number K over 10 test runs, the highest accuracy
for each K is highlighted. We can see that for both image
data and text data, our proposed method can always achieve
the best clustering performance among all the methods, and
the improvement is significant, both in NMI and AC. One
potential reason that the performance on CIFAR-10 is not that
good as on COIL-20 may be the images from CIFAR-10 have
more complex and varying backgrounds than the images from
COIL-20. Although as the number of clusters increases, all
methods’ clustering performance is getting worse, our method
is relatively stable with an increasing number of clusters
compared to other methods.

VI. CONCLUSION

In this paper, we study the symmetric matrix factorization
problem with a regularization term. We propose an efficient
column-wise update rule and provide a general framework
that can be extended to solve symmetric matrix factorization
problems with various constraints. We prove the convergence
rate with theoretical analysis. The results of extensive experi-
ments on real-world data sets validate the effectiveness of our
algorithm and its superiority in data clustering tasks.

REFERENCES

[1] Francis Bach and Michael Jordan. Learning spectral clustering. Ad-
vances in neural information processing systems, 16(2):305–312, 2004.

[2] Amir Beck. First-order methods in optimization. SIAM, 2017.
[3] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and

statistical learning via the alternating direction method of multipliers.
Now Publishers Inc, 2011.

[4] Deng Cai, Xiaofei He, Jiawei Han, and Thomas S Huang. Graph reg-
ularized nonnegative matrix factorization for data representation. IEEE
transactions on pattern analysis and machine intelligence, 33(8):1548–
1560, 2010.

[5] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra.
Efficient projections onto the l 1-ball for learning in high dimensions. In
Proceedings of the 25th international conference on Machine learning,
pages 272–279, 2008.

[6] Quanquan Gu and Jie Zhou. Co-clustering on manifolds. In Proceedings
of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 359–368, 2009.

[7] Zhaoshui He, Shengli Xie, Rafal Zdunek, Guoxu Zhou, and Andrzej
Cichocki. Symmetric nonnegative matrix factorization: Algorithms and
applications to probabilistic clustering. IEEE Transactions on Neural
Networks, 22(12):2117–2131, 2011.

[8] Kejun Huang, Nicholas D Sidiropoulos, and Ananthram Swami. Non-
negative matrix factorization revisited: Uniqueness and algorithm for
symmetric decomposition. IEEE Transactions on Signal Processing,
62(1):211–224, 2013.

[9] Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, and Ian Reid.
Deep subspace clustering networks. arXiv preprint arXiv:1709.02508,
2017.

[10] Hyunsoo Kim and Haesun Park. Nonnegative matrix factorization based
on alternating nonnegativity constrained least squares and active set
method. SIAM journal on matrix analysis and applications, 30(2):713–
730, 2008.

[11] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. 2009.

[12] Da Kuang, Chris Ding, and Haesun Park. Symmetric nonnegative matrix
factorization for graph clustering. In Proceedings of the 2012 SIAM
international conference on data mining, pages 106–117. SIAM, 2012.
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