

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2018-07-20

Deposited version:
Post-print

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Cretan, A., Bratu, B., Coutinho, C. & Jardim-Goncalves, R. (2017). A negotiation approach to support
interoperability in a collaborative manufacturing environment. In 23rd International Conference on
Engineering, Technology and Innovation, ICE/ITMC 2017. (pp. 1282-1292). Funchal: IEEE.

Further information on publisher's website:
10.1109/ICE.2017.8280028

Publisher's copyright statement:
This is the peer reviewed version of the following article: Cretan, A., Bratu, B., Coutinho, C. & Jardim-
Goncalves, R. (2017). A negotiation approach to support interoperability in a collaborative
manufacturing environment. In 23rd International Conference on Engineering, Technology and
Innovation, ICE/ITMC 2017. (pp. 1282-1292). Funchal: IEEE., which has been published in final form
at https://dx.doi.org/10.1109/ICE.2017.8280028. This article may be used for non-commercial
purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1109/ICE.2017.8280028

A negotiation approach to support interoperability in
a collaborative manufacturing environment

Adina Cretan

Computer Science Department
“Nicolae Titulescu” University of Bucharest

Bucharest, Romania
E-mail: badina20@yahoo.com

Carlos Coutinho
Caixa Mágica Software/ Instituto Universitário de

Lisboa (ISCTE-IUL), ISTAR-IUL,
Lisboa, Portugal

Email:carlos.coutinho.phd@gmail.com

Ben Bratu
Atos, Big Data and Security R&D

Les Clayes-sous-Bois, France
E-mail: ben.bratu@atos.net

Ricardo Jardim-Goncalves
CTS, Departamento de Engenharia Electrotecnica

FCTUNL, UNINOVA, Caparica, Portugal
E-mail: rg@uninova.pt

Abstract—Maintaining the interoperability in a dynamic
competitive manufacturing environment in which different
business enterprises collaborate is difficult to achieve. Our
approach highlights negotiation as the best solution to solve
interoperability problems by reaching the common decision
suitable for all managers of various enterprises in the most
optimized amount of time. In this context, this paper proposes a
multi-agent negotiation model, able to coordinate several
negotiations taking place in parallel among multiple participants.
It is described the negotiation strategy for evaluating and
generating offers and the protocol for sending the offers to the
other agents. This model is being implemented in the H2020
C2NET project for supporting manufacturing.

Keywords—negotiation; enterprise interoperability;
collaboration; negotiation protocol

I. INTRODUCTION
The frequent business changes in a dynamic competitive

manufacturing environment threaten breaking interoperability
among collaborating enterprises requiring a period of
adaptation in order to renew the business relationships. Usually
Small and Medium Enterprises (SMEs) cannot handle these
changes leading to the need to find permanent solutions to
maintain the existing interoperability and to keep their business
partners.

In this respect, the proposed solution consists in a multi-
agent negotiation model able to manage multiple bilateral
negotiations in order to tackle the interoperability problems in
business-to-business interactions within a collaborative
manufacturing environment.

This paper is structured as follows: Section II presents the
relation to existing theories and work; Section III presents
briefly the multi-agent architecture of the negotiation system,
with the main goal of supporting humans in the reestablishment
of collaboration among contractual partners, in the event of
breaking interoperability; Section IV describes the negotiation
protocol; Section V presents the implementation of
coordination mechanisms; Section VI provides a case study in
the manufacturing area, within the European research project

H2020 C2NET, based on the coordination of a set of bilateral
negotiations. Finally, Section VII presents the conclusions on
the proposed solution.

II. RELATION TO EXISTING THEORIES AND WORK

Automated negotiations have been the subject of many

research papers. In this respect, Fujita [1] proposes automated
agents that can estimate the opponents’ strategies based on the
past negotiations. Caillere et al. [2] develop a protocol and
rules which help the agents to coordinate their interactions and
to reach an agreement.

Other negotiation research approaches tackle the issue
related to the design of a negotiation environment, considering
two directions: i) the first in which the intelligent agents
replace humans in negotiations; and ii) the second direction in
which the intelligent software agents assist human user
providing a negotiation support. Considering the first direction,
Lin and Kraus [3] propose a generic environment where
automated agents can proficiently negotiate with human
negotiators. Regarding the second direction, several research
papers propose a collaborative solution based on a service
oriented architecture which helps inter-organizational
information processing in distributed workflows, as in [4] and
[5].

Compared with the presented state of the art, where the
coordination of negotiations is handled at protocol level, the
proposed approach splits the negotiation process into three
discrete processes: decision-making process, coordination
process and communication process at middleware level,
allowing to be integrated in any deliberative Multi-agent
Systems (MAS) or directly as a support in a human interaction
negotiation system.

III. NEGOTIATION SYSTEM ARCHITECTURE
In order to implement our approach concerning the division

of the negotiating process into three distinct processes (i.e.,
decision-making process, coordination process and
communication process), it has been proposed an architecture

structured in four main layers: Negotiation Manager,
Negotiation Agent, Coordination Negotiation Services and
Communication Middleware (Fig. 1).

Fig. 1. The architecture of the negotiation system

A first layer, Negotiation Manager manages all business
decisions regarding the creation of offers, acceptance or
rejection of offers, invitation of another partner to participate in
the negotiation process etc.

The Negotiation Agent, the second layer, has the role of
assisting the Negotiation Manager in making decisions
regarding the negotiations at a global level (i.e., negotiations
with various participants on different jobs) and at a specific
level (i.e., negotiations on the same job with various
participants). During a negotiation, the Negotiation Agent
handles one or more Negotiation Objects, one Negotiation
Framework, as well as a negotiation state represented as a
graph structure.

The third layer, Coordination Negotiation Services,
manages the constraints of the coordination process among
various concurrent negotiations.

The Communication Middleware is the fourth layer, shared
by all negotiation participants ensuring, thus, the
communication process.

In the proposed approach, each Coordination Service
models a specific negotiation step or strategy (i.e., selection of
negotiation participants; outsourcing or insourcing of a job
etc.). In this respect, various Coordination Negotiation Services
have been proposed [6]: Outsrc (resp. Insrc), for outsourcing
(resp. insourcing) jobs by exchanging offers among partners
known from the beginning of negotiation; Block service for
assuring that a task is entirely subcontracted by the single
participant; Split service handles the propagation of constraints
among several slots, negotiated in parallel and issued from the
split of a single job; Broker service deals with the automatic
selection of possible participants in the beginning of the
negotiation; SwapIn (resp. SwapOut) services implement a
coordination mechanism between two ongoing negotiations to
facilitate an exchange between their two tasks; Transp service
implements a coordination mechanism between two ongoing

negotiations in order to facilitate the common transport of their
two tasks. These Coordination Services are able to evaluate the
received offers checking whether these are valid and, further,
able to reply with new offers constructed based on their
particular coordination constraints. On this level, the
interoperability is sustained by developing a generic
coordination framework for the negotiation participants.

The advantages of the proposed negotiation architecture
consist of:

• allowing a precise identification of the coordination
objects;

• managing the dependencies among the existing
negotiations within the manufacturing environment;

• ensuring the coordination of concurrent negotiations at
the Negotiation Services level.

IV. DESCRIPTION OF NEGOTIATION PROTOCOL

The communication process is provided by Middleware
layer that defines generic broadcast and synchronization
mechanisms for different offers exchanged during a negotiation
process. This layer is an extension of Coordination Language
Facility (CLF) Middleware [7] able to support various
collaborative activities taking place within the manufacturing
environment [8]. This extension is called Xplore. At the Xplore
Middleware level, a negotiation process is represented as a
bicolored graph. The evolution of a negotiation in terms of
proposals and counter-proposals is modelled by a black and
white graph in which white nodes, representing negotiation
contexts, and black nodes, representing decision points with
multiple alternatives. Each context (white) node contains a
parameter and a set of attributes with associated values.
Parameter is the task to be negotiated (Negotiation Object)
which is described in a time moment by a set of attributes that
have to be negotiated depending on the specific information
about the state of the negotiation in that node.

The concept of choice introduced by black nodes imposes a
restriction on the construction of the graph Xplore such as: the
sub-graphs that have a common black root must not have any
other node in common. Therefore, the negotiation described in
Fig. 2, involving an initiator (Participant P1) and two potentials
partners (P2 and P3) will require an instance of a Outsrc
service and two instances of the Insrc service for each possible
partner.

As shown in Fig. 2, the participant P1 via its Outsrc
service, has a complete image on the negotiation graph, while
the other two participants through their Insrc services, have
only a partial image on the negotiation graph corresponding to
their own negotiations, having no information about the
existence of the other participant in the negotiation process [9].

N
egotiation	Agent

Negotiation	Manager	

					Decision	Module	

Communication	Middleware

Coordination	Negotiation	Services	

Fig. 2. Example of Negotiation Graph

Following the proposed approach, Fig. 3 provides an
example of graph Xplore, in which the unique parameter of the
negotiation is a printing job along with several attributes and
ranges of possible values.

Fig. 3. The Negotiation Graph with the parameter job

The negotiation partners can create new branches in the
Xplore graph corresponding to different solutions in terms of
negotiated attributes (e.g., cost under 100 Euros or over 100
Euros). In this situation, the participants can continue the
negotiation in every branch of the graph indicating, for
example, another attribute delay (e.g., price over 100 Euros,
but in a shorter time - delay of 1 day or price less 100 Euros,
but in a longer time - delay of 3 days). The interaction
indicating the delay (1 day or 3 days) occurs in two states of
negotiation, corresponding to the two branches of the graph
created by the interaction that takes place on the subject of
price (e.g., the node 2 is represented by the parameter Job and
the attributes cost<100 and delay<3).

As a consequence of the proposed approach whereby the
negotiation process is a distributed process among the involved
participants, the middleware Xplore models it in the same
manner as a construction of a negotiation graph. Each
negotiation partner has his own copy (partial) of the Xplore
graph making decisions and acting only on that copy. In this
respect, the goal of middleware Xplore is to maintain, for each
participant, a graphical image of negotiations and synchronize
the image with the partners involved in the negotiation process.
In order to model this synchronization, the middleware uses six
operations which are called verbs of the Xplore protocol. These
verbs are:

• Connect(n, m): informs a coordination service (e.g.,
Inscr service) that is involved in a negotiation having
the root n and the task to be negotiated will be identified
by parameter m. This identification is necessary to make
clearly the distinction among different graphs Xplore
and the negotiated tasks for each service involved in the
same negotiation.

Fig. 4 shows how the negotiation begins: the participant
P1 invites in the negotiation process the two participants, P2
and P3. By using the verb Connect in two different nodes, the
participants P2 and P3 are introduced by P1 in the current
negotiation, and, depending on their root nodes they will have
different images for the same negotiation.

Fig. 4. Connect verb

• Open(n,n1,…, np): creates a new node n in the graph
Xplore, with the parents nodes n1, ..., np. All parents
nodes n1, ..., np (if any) must be the same color, while
node n will be the opposite color:
- if n is black, then p must be at least equal to 1, where

n is a negotiation decision taken in a negotiation state
resulting from the merger of the negotiation states
represented by white parents nodes for p> 1; if p = 1
then the negotiation stage in which the decision has
been taken is represented by one white parent.

- if n is white, then p must be at most equal to 1, where
n is a state of negotiation that is an alternative to the
decision represented by a single parent black if p = 1
or a first state (null) of negotiation if p = 0.

• Assert(n, v, a, t): expresses the decision taken in the
negotiation state represented by node n, such as the
value of the variable v to have the property expressed by
the term t on the aspect a.

For example, in Fig. 5, assuming that the participant P1
wants to negotiate a task with size= 20K and chooses to
make the same proposal to the participants P2 and P3.

Considering that node 0 is the root of the graph, the
participant P1 uses the verb assert (0, Job, size = 20K) to
introduce in the root of the negotiation graph the attribute
size with value = 20k.

Fig. 5. Assert verb

Further, assuming that the participant P2 wants to make two
separate proposals by opening, in the first stage, a black node -
open (4,2) - and then, starting from this black node, he makes
the proposals opening white nodes - open(5,4) and open(6,4) -
in which he specifies the proposals - assert(5,Job,cost,=40k)
assert(5,Job,quality,=high) and assert(6,Job,cost,=30k)
assert(6,Job,quality,=low).

Using the same verbs, the participant P3 makes a proposal,
as well. Further, the middleware that manages communication
synchronizes the operations made by the two invited
participants P2 and P3 in order to allow the participant P1 to
see their three proposals.

• Request(n, v, a): in order to continue the negotiation, a
participant has to notify the other partners, in the white
node n, about the fact that he expects the assertion on
the aspect a for the decision variable v.

In Fig. 6, the participant P1 announces the other two
participants he expects a proposal for the attribute delay; This
announcement is made by the verb request(0,Job,delay).

Fig. 6. Request verb

• Ready(n): expresses that a participant has enough
information in the white node n and is ready to accept
the proposal.

• Quit(n): expresses that a participant does not want to
continue the negotiation in the white node n.

Assuming that the participant P2 replies with an offer
completed by a value for the attribute delay (Fig. 7) and the
participant P1 is satisfied by this proposal. In this case, P1 can

stop the negotiation in the nodes 6 and 8 - quit (6), and quit (8)
- and accept the proposal of the node 5 - ready (5).

Fig. 7. Ready and quit verbs

Concluding all these aspects, we can say that the
CONNECT verb allows to dynamically involve a new
participant in a negotiation. The OPEN and ASSERT verbs
allow a participant to build the negotiation graph, by creating
and populating context nodes with information about the
negotiation state at these nodes. The REQUEST verb avoids
DeadLock situations by allowing participants to express their
information needs on some given terms of the negotiation in
order to proceed in the negotiation. The READY and the QUIT
verbs allow a participant to declare respectively, that he is
“ready to sign a contract” in the state of a given negotiation
context, or, on the contrary, that he wants to give up the
negotiation at that state (but he may pursue the negotiation in
other branches).

Hence, the Middleware layer provides several generic
coordination and communication mechanisms for
implementation of various activities in a distributed and open
environment.

Particularly, for the negotiation process, the Middleware
layer supports a multi-attribute and multi-participant
negotiation. In addition, the Middleware can manage in parallel
and asynchronously, the various states that compose the same
negotiation.

Thereby, the main feature of this Middleware is the generic
proposed approach. In counterpart, this generic approach leads
to the fact that data incorporated in the nodes are provided by
higher levels (i.e., Negotiation Agent and Coordination
Negotiation Services).

V. THE IMPLEMENTATION OF THE COORDINATION
MECHANISMS

The proposed implementation is structured to allow the
identification of the user part (Negotiation Manager), as well as
the semi-automated part of the negotiation process which the
infrastructure provided to the user.

A. Implementation Constraints
The proposed software architecture has been designed to

satisfy the following implementation constraints [10]:

• The system has to support information sharing and
collaborative decision-making, given the existence of
several autonomous organizations which may be
geographically spread. In this case, it can be expected

that a central server may not be able to support running
the application for a large number of participants.
Therefore, we should provide cloned coordination
services, installed on several Web servers.

• The proposed coordination negotiation services should
be capable of simultaneously running several
negotiations and several transactions in order to provide
a flexible solution to users who want to negotiate part of
their tasks.

• The format of data exchanged during the negotiation
should describe the negotiation object, the attributes of
the negotiation task and the values of different
alternative negotiation states proposed during a
negotiation.

B. The Description of Software Architecture
The proposed software architecture described in Fig. 8 is a

client-server architecture:

• On the client side, there are different manufacturing
companies (e.g., Print-shops) called Components. A
company (component) may choose to negotiate in a
desired coordination service, as well as in a particular
invocation of this service. A service invocation will
create a particular negotiation graph where the company
will negotiate. To view and act on such negotiation
graph, we created a graphic interface called Editor;

• The server side includes the coordination services (e.g.,
Outsrc, Insrc, Block). The various instances of the
services will be managed in parallel. For each
coordination service, we provide a data structure capable
of registering all instances of the respective service. This
enables the server to provide various copies of existing
instances to the registered services.

Fig. 8. The client-server architecture

Every company (print-shop) is implemented as a client
application that communicates with the server using Remote
Procedure Calls (RPC) where the client sends a SOAP (Simple
Object Access Protocol) request to the server and the server
immediately sends a SOAP reply to the client. We chose to use
the SOAP protocol as it provides a simple and reliable
mechanism that enables the transfer of information in a
decentralized and distributed environment.

The coordination services can be implemented in the Java
program allowing a distributed implementation, with the clients
communicating via RPC.

The proposed Editor interface enables users to initiate an
instance of the Outsrc service and then, depending on the
desired negotiation tactic, to attach instances of other services.
For example, if the Manager of a manufacturing company (e.g.,
print-shop) wants the outsourcing task to be executed entirely
by a single participant, it can do so by using the Block service.
The Outsrc service invites the Block service to the ongoing
negotiation; then the Block service invites the Insrc services of
each partner to negotiate with them. The coordination services
manage the graph-structured negotiation.

Every instance of a service, newly invited to the
negotiation, builds its own graph representing its view of the
negotiation in which it is involved. Therefore, a new proposal
can be initiated in the graph of an instance by adding new
nodes, stating the attributes and the related values. This change
in one graph is sent to all instances of the services involved in
the same negotiation.

Every company is implemented as a client application and
the proposed negotiation infrastructure (Negotiation Agent-
Coordination Services-Middleware) is developed on a SOAP
server. We made this choice considering that:

• The client application has to be used exclusively for
viewing a negotiation;

• At a given moment, we have only one negotiation graph
at the client side, while the server manages all
negotiation graphs existing at a certain point in time.

Implementing a distributed system requires that every print-
shop feature the same software structure. The protocol used in
the inter-company communication is XPLORE protocol
implementation.

In the next sub-sections, we will describe every part of the
architecture (Editor, Negotiation Agent, Coordination
Negotiation Services and Xplore), as well as the way these
implementations utilize the properties of the SOAP protocol.

C. Editor Interface
• The proposed Editor is used to control the negotiation of

a participant, enabling the latter to act on the negotiation
graphs. Therefore, starting from this interface, a
company Manager (within the developed architecture)
can choose to negotiate in a particular Coordination
Service and this service will create a graph instance
(Invocation) for every new negotiation. The Editor
represents the image of the Negotiation Agent over all
its Manager’s negotiations. The Manager can use the
Editor to act on a single negotiation graph, while also
being able to navigate among existing negotiation
graphs and choose any of them to continue a
negotiation.

In this context, Fig. 9 describes:

• In the left-hand panel: name of the company (A0), name
of instance of ongoing service (Out1_0) and Outsrc and
Insrc services with existing instances;

• In the middle panel: the bicolored graph representing the
ongoing negotiation status viewed in the selected service
instance;

• In the right-hand panel: three windows for viewing
various data attached in a white node (instance attributes
- asserted, requested attributes – requested and
connections starting from the selected node -
connected).

The middle panel of the Fig. 9 is a graphic implementation
featuring the specific actions of a viewer (node selection,
changes in the location and geometric size of one or several
nodes etc.) and of a controller that enables changes in the
graph structure using the Xplore protocol (the negotiation
graph structure is modeled by Xplore verbs – open, assert,
request, quit, accept, connect).

Fig. 9 - Editor interface

Moreover, we enhanced the client application by
implementing several interfaces for creating and handling
various Negotiation Frameworks or Negotiation Objects that a
Manager can specify and also for building the Database of the
collaborative partners.

In this respect, we specified and implemented two
interfaces for each structure:

• one for viewing the set of all structures of the same type
(for instance, Fig. 10 depicts the whole set of
negotiation objects);

Fig. 10 – Interface for viewing the set of negotiation objects

• another one to create or change the fields for the
respective structure type (for example, Fig. 11 is a
snapshot of creating a new negotiation object).

Fig. 11 – Interface for creating a new negotiation object

As described above, the application called Editor plays the
role of interface between the Manager and the Coordination
Services proposed by the infrastructure and implemented in the
server. These interfaces enable the users (Managers) to join in
the interaction in order to enter their conditions at the
Negotiation Object and Negotiation Framework level and to
make proposals in a certain negotiation.

Consequently, the Editor (as shown in Fig.12) is
implementing a Graph Representation Module to handle a
negotiation graph and a Communication Module to enable the
interaction with the Coordination Services on the Server side
through the various methods proposed by SOAP-Services.

Fig. 12. Editor architecture

D. Graph Representation Module

The Graph Representation Module manages one or
several Graph View (one for each conversation), such that:

• A conversation is represented by a Negotiation
Graph;

• A Negotiation Graph is an oriented bicolored graph
that models the topological structure of the
negotiation graph presented in the conceptual design.
The Negotiation Graph is implemented in the Editor
using the Jgraph library. Also, all Xplore verbs - open

(n,n1,…,np), assert (n,v,a,t), request (n,v,a), quit (n),
ready (n), connect (n,m) – are available for building
the negotiation graph.

The Graph Representation Module features three parts:
Model, View and Controller.

The Model is made of several classes that implement the
Negotiation Graph structure and the negotiation mechanisms
on the bicolored graph.

Thus, a negotiation graph is modeled through a
GraphModel object containing several instances of the
GraphCell object for modeling nodes and arcs (a GraphCell
instance is a node by default). The model also contains
information on the hierarchical relationship among the nodes of
a graph (i.e., parent-child relationship graph). To find this
information, several methods are suggested:

• getSource and getTarget, return the source node and
the target node for an arc. An arc is also the child of
the source node, which allows it to have several arcs
stemming from the same node.

• getChild, getChildCount, getIndexOfChild and
getParent methods. Parentless objects are roots and
can be found using the getRootAt and getRootCount
methods.

The View controls the layout of the negotiation graph
geometric model representation and also updates and displays
the graphic context that links the model (Model) to the
template (View).

GraphView-type objects and CellView-type objects make
up the image of a graph. CellView instances are equivalent to
the GraphCell graph cells of the Model. The GraphView object
manages the set of cells (one for each node or arc).

The Controller manages the rendering process by
specifying the stages of cell editing and handling, as well as the
other “look-and-feel” actions, such as node selection or
movement. The interface is made of:

• a top-level menu enabling the user to send (Publish
button) and receive (Update button) the changes for a
negotiation graph;

• a central panel for viewing the negotiation graph.
From this panel, the authorized actions on the
negotiation graph are performed via a pop-up menu
that is enabled only when a node is subject to an
onmouseover event;

• a left panel where existing asserts/requests are viewed
and new assert/request for a selected node are edited.

E. Communication Module
Every Editor features a Communication Module for the

data transfer to and from the server. The Communication
Module is implemented via two classes
CommunicationModule.java and SoapServiceCall.java.

The CommunicationModule object provides methods
applied by the Graph Representation Module to send and

receive various SOAP-services data, as well as to invoke the
methods proposed by these services.

The CommunicationModule contains:

// the object used to invoke SOAP services

 private SoapServiceCall soap;

// the object used to store data received from the server

 private Node updateNode;

// thread for new data monitoring

 private CommunicationHandlerThread comThread;

Methods used to invoke SOAP services:

register() // is the first method invoked to get the id for the
current editor;

getServices() // asks what are the existing Xplore services
on the server. This method returns a string
whose tokens match the names of various
Xplore services. By default, this method
returns the names of the Outsrc and Insrc
services as the only existing Xplore services;

getInvocations(String serviceName) // asks what are the
existing graphs for the service described by
serviceName, receives a list of idGraph
(String);

getGraph(String idGraph) // requests the graph description
named idGraph. This method returns the graph
description starting with the root node;

addData(String id_Graph, Node node) // sends the user’s
changes, sent data structure is a Node type
structure. The sent node is the highest node in
the hierarchy of the graph with the changed
data;

isNewData() // intercepts the new data on the server, the
return is blocked until new data arrives on the
server;

getData(String id_Graph) // gets new data from the server.
Data returned structure is a Node-type
structure.

To enable SOAP services invocation, we implemented a
SoapServiceCall object that hides SOAP calls. We defined two
methods for calling a SOAP service method:

void init(String serviceName) // Initializes SOAP Service
Facade, encoding style (SOAP envelope) and
URI SOAP service;

Object invoke(String methodName, Vector params)//
Remote Method Invocation asks for the method name
to be invoked and for the list of parameters to be sent
and returns the object received from the server.

F. Negotiation Agent – Coordination Services – Middleware

In line with the architectural design, we implemented the
Negotiation Agent, the Coordination Services and Middleware
Xplore in the server application.

According to the conceptual design of the negotiation
process, a negotiation is modeled as a collaborative
construction of a negotiation graph by the negotiation
participants.

Each participant is represented by one or several
coordination services that seek to synchronize the construction
of the graph using the Xplore primitives. To do this, we
implemented a data structure describing the negotiation graph
handled by an instance of a coordination service.

We also made this instance communicate with the Editor,
on the one hand, and, on the other hand, with the other services
that can be located either on the same server or on other
servers. Communication is encapsulated in invocations of the
methods proposed by SOAP-services.

Further on, we will present the structure of data used to
describe a negotiation graph, then the implementation of SOAP
services.

G. Data Structures
A manufacturing company can be involved in several

negotiations at the same time. Depending on how many
invocations of services are involved in the negotiation process,
each negotiation is supported as a set of graph data structures.
Every graph is a structure of black and white nodes and data
attached to these nodes. In this respect, we suggested two data
structures: Graph. java and Node. java.

Graph.java-type objects contain the description of an
XPLORE graph. It is composed of an instance of the Node
object representing the graph root and a set of Node objects
that represent the graph nodes in a parent-child relationship.
This graph-type representation is the image that an instance of
a service manages at a given time. This also implies
synchronization with the other instances of the services
involved in the current negotiation.

To synchronise the instances involved in the same
negotiation, every Graph object also contains the set of
identifiers of the other instances managing the same
negotiation graph.

The structure of the Graph object is as follows:
public class Graph

{

private Node root;

private int nodesNumber;

private String id; // graph name is
an unique identifier

private Node[] nodesList; // list
of all nodes making up the current
graph;

private String[] relatedGraphs;
// names of graphs with the same

node structure, but not necessary
with the same data in the nodes.

}
A node structure contains data identifying the node’s
structural features (node identifier, graph identifier etc.) and
also the features of the Xplore nodes (color, asserted data
etc.):

String idNode;

String idGraph;

String idClient;

String color;

private final int Max_Related 20;

String parents[Max_Related];

Node offsprings[Max_Related];

private final int Max_Data 50;

String assertList[Max_Data];

String requestList[Max_Data];
These data structures will be used by SOAP-services in the

coordination and synchronization of the communication among
instances of services involved in different negotiations.

H. SOAP Services

The proposed SOAP services provide particular methods
for processing sets of invocations of accessible methods that
provide support for the communication and synchronization
between an instance of a coordination service and a client
(Editor) or between different instances. In this respect, we have
proposed three SOAP services represented by the following
classes: HandlerService, NotificationService and DataService.
We will further detail DataService only, as it constitutes the
SOAP service where the entire negotiation mechanism is
implemented (Negotiation Agent-Coordination Services-
Middleware). The other two SOAP services being exclusively
used to maintain a synchronization between the image of a
negotiation graph in the client (Editor) and the one controlled
by the coordination services in the server.

At the SOAP server level, the number of graphs depends on
the number of clients registered on the server, namely the
number of Editors that a manufacturing company uses, the
number of negotiations that the company attends and
eventually the number of instances of the coordination services
involved in the concerned negotiations. The data structures
used to record this information are as follows:

Client structure
public class Client{ // an instance of this

object is created for every service
registered on the server.

String idClient;

LinkedList outsrc; // list of Xplore Outsrc’s
invocations accessible to this client;

LinkedList insrc; // list of Xplore Insrc’s
invocations accessible to this client;

LinkedList bloc; // list of Xplore Block’s
invocations accessible to this client;

 LinkedList broker; // list of Xplore Broker’s
invocations accessible to this client;

LinkedList split; // list of Xplore Split’s
invocations accessible to this client;

LinkedList swapOut; //list of Xplore
SwapOut’s invocations accessible
to this client;

LinkedList swapIn; //list of Xplore SwapIn’s
invocations accessible to this client;

LinkedList transp; //list of Xplore Transp’s
invocations accessible to this client;

 Boolean newData;

}
- Map of invocations
public Hashtable mapGraphs = new

Hashtable(); // this hashtable contains
all the invocations created by the services
registered to this server. The access key for
an invocation is the id of the graph structure
created during a Xplore service invocation.

- Vector of clients
public Vector vectorClient = new

Vector(20,10); // this vector contains
all registered clients.

- Map of online Graphs
public Hashtable mapInvocations =

new Hashtable() // this hashtable
contains all the invocations currently used
by clients. The access key is the name of
the invocation and the returned data is the
client id.

SOAP DataService proposes several types of methods to
enable the client-server communication, the handling of
negotiation graph-type structures and the coordination and
synchronization mechanisms provided by the coordination
services and the Xplore protocol.

Fig. 13 shows the invocations of the methods proposed by
DataService for client registration:

register() // this is the first method a client invokes
to get a unique Id,

deregister(Id_Client) // deletes the client Id
from the server list.

getServices() // gets different coordination services
that are proposed (e.g., Outsrc, Insrc etc.).
This method returns a string whose tokens
correspond to the name of the various
Xplore services.

getInvocations(String id_Client,
String serviceName) // invokes the
creation of a service instance. This method
returns a string representing the Xplore
services instance id.

getGraph(String id_Client, String
id_Graph) // gets the specified graph.

Fig. 13 – Method invocations in DataService

As specified in the architecture design, instances of services
involved in a negotiation communicate exclusively via Xplore
verbs.

Therefore, DataService also provides the methods to
facilitate communication among instances on the same server,
but also among instances on different servers:

 open (String idGraph, String
idNode, String idsParents);

 assert(String idGraph, String
idNode, String param, String issue,
String term);

 request(String idGraph, String
idNode, String param, String issue);

 quit(String idGraph, String
idNode);

 ready(String idGraph, String
idNode);

 connect(String idGraph, String
idNode, String idService, String map);

The communication among instances of the coordination
services relies on Xplore protocol features. Thus, the
interactions are implemented as RPC (Remote Procedure Call)
invocations that carry the signature of various Xplore verbs.

The following example presents a RPC invocation that
uses the SOAP message format representing the description of

the Xplore verb assert by using the XML scheme (only the
Body part of the SOAP message envelope is shown):

The assert verb description is:
<element name= “assert”

base=”tns:assert”/ >
<complexType name=”assert”>

<element name= “node” type=”tns:node”/>

<element name=”parameter”
type=”tns:parameter”/>

<element name=”issue”
type=”tns:issue”/>

<element name=”term” type=”tns:term”/>

</complexType>

The method is described as follows:
<SOAP-ENV:Body>

 <m:assert xmlns:m="some-URI">

<node>id_node</node>

<parameter>parameter_name</parameter>

<issue>issue_name</issue>

<term>term_name</term>

</m:assert>

</SOAP-ENV:Body>

The proposed implementation of the negotiation process
comprising the description of negotiation objects, the
mechanisms for sending proposals and counterproposals, the
coordination modules and the synchronization mechanisms.
This implementation adds various pieces for building complex
multi-agent conversations. Integrating interoperability
technologies, such as HTTP, SOAP, XML/XSL and Servlet,
allows for smoothly attaching agents that carry conversations
with other agents or human users on the Web.

VI. CASE STUDY FROM H2020 C2NET
The Horizon 2020 C2NET project envisages the support of

manufacturing companies like the French dermo-cosmetics
factory Pierre Fabre with a cloud-based environment that
fosters the interoperability of the factory with its supply chain
(suppliers, partners, customers). The project features the
possibility of analysing and optimising manufacturing plans
involving several partners who can choose to negotiate any
change that may occur in their collaborative environment
which can lead to breaking interoperability. The proposed
solution provides support for reaching an agreement in the
shortest possible time in an automatic and autonomous manner
with little support of human interaction.

The project is implementing the proposed negotiation
model in order to capture all the negotiation steps and
decisions, so that at any time it is possible to roll back to one or
more stages of the negotiation to retake the environment to
alternative decisions or even to “what-if” scenario analysis.

VII. FINAL CONSIDERATIONS
This paper describes the implementation of the negotiation

coordination model via a three-layered architecture:
Negotiation Agent, Coordination Negotiation Services and
Middleware Xplore.

This structure is in line with our approach of splitting the
negotiation process into three discrete processes: decision-
making process, coordination process and communication
process.

The communication process is managed by the middleware
layer that defines the generic mechanisms of communication
and synchronization among several agents. At the middleware
level, communication is based on the Xplore protocol that
enables the management of the concurrent negotiations where,
at any moment, participants can choose to simultaneously
negotiate in several negotiation states.

The coordination process is managed by the coordination
negotiation services layer.

The main feature of this approach is the fact that the
coordination process is fully distributed on several coordination
modules allowing to be defined several specialized services
that can be used in any negotiation. This distribution of
coordination constraints also allowed the services to run
simultaneously, which enhanced the efficiency of the system,
making it capable of evaluating several negotiation offers at the
same time.

The decision-making process is provided by the
Negotiation Agent layer that models the support mechanisms
for the interaction processes within the collaborative
manufacturing environment, mainly, for creating offers and
making decisions in a negotiation. This layer manages the
decisions that can be made on the negotiation strategy for
evaluating and generating offers and on the protocol for
sending the offers to the other agents. The goal at this level is
to allow the human user to intervene in the decision making
process. We can thus separate the decision making process
from agents, which reinforces the generic applicability of our
negotiation model.

ACKNOWLEDGMENT
The authors wish to acknowledge the support of the

European Commission through the funding of the H2020
C2NET project for their support, interaction and contribution
in the development of the business case that is presented on this
paper.

REFERENCES

[1] K. Fujita, “Automated Negotiating Agent with Strategy Adaptation for
Multi-times Negotiations”, chapter in Recent Advances in Agent-based
Complex Automated Negotiation, Studies in Computational Intelligence,
Vol. 638, pp 21-37, 2016.

[2] R. Caillere, S. Arib, S. Aknine, and C. Berdier, “A Multiagent
Multilateral Negotiation Protocol for Joint Decision-Making”, chapter
in Recent Advances in Agent-based Complex Automated Negotiation,
Studies in Computational Intelligence, Vol. 638, pp 71 - 88, 2016.

[3] R. Lin and S. Kraus, “Can Automated Agents Proficiently Negotiate with
Humans,” Communic. of the ACM, Vol. 53/1, pp. 78-88, 2010.

[4] C. Badica, S. Ilie, M. Kamermans, G. Pavlin, and M. Scafes, “Using
Negotiation for Dynamic Composition of Services in Multi-

organizational Environmental Management,” Environmental Software
Systems. Frameworks of Environment, Vol. 359, pp 177-188, 2011.

[5] A. Penders, G. Pavlin, M. Kamermans, “A Collaborative Approach to
Construction of Complex Service Oriented Systems.” Intelligent
Distributed Computing IV. Studies in Computational Intelligence, vol.
315, pp. 55–66, Springer, 2010.

[6] A. Cretan, C. Coutinho, B. Bratu, and R. Jardim-Goncalves,
“NEGOSEIO: A Framework for Negotiations toward Sustainable
Enterprise Interoperability,” IFAC Journal Annual Reviews in Control,
Vol. 36, Issues 2, pp. 291-299, 2012,
DOI=10.1016/j.arcontrol.2012.09.010.

[7] J.-M. Andreoli, D. Arregui, F. Pacull, M. Riviere, J.Y. Vion-Dury and J.
Williamowski, “CLF/Mekano: A Framework for Building Virtual-
Enterprise Applications”. In Proc. of EDOC, Mannheim, Germany, 1999.

[8] J.-M. Andreoli and S. Castellani, “Towards a Flexible Middleware
Negotiation Facility for Distributed Components”. In Proc. of “E-
Negotiation” DEXA, Munich, Germany, 2001.

[9] C. Coutinho, A. Cretan, C.F. da Silva, P. Ghodous, and R. Jardim-
Goncalves, “Service-based Negotiation for Advanced Collaboration in
Enterprise Networks”, Journal of Intelligent Manufacturing, Volume 27,
Issue 1, pp. 201–216, February 2016, DOI=10.1007/s10845-013-0857-4.

[10] C. Coutinho, A. Cretan, and R. Jardim-Goncalves, “A Negotiation Model
for Concurrent Engineering”, Proceedings of the 7th International
Systems & Concurrent Engineering for Space Applications Conference
(SECESA 2016) pp. 1210 - 1218, October 2016, Madrid, Spain.

