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ABSTRACT 
Higher order adaptive algorithms are sensitive to 

impulse interference. In the case of the LMF (Least Mean 
Fourth), an easy and effective way to reduce this is to 
median filter the instantaneous gradient of the LMF 
algorithm. Although previous published simulations 
have indicated that this reduces the speed of 
convergence, no analytical studies have yet been made to 
prove this. In order to enhance the usability this paper 
presents a convergence and steady-state analysis of the 
Median LMF adaptive algorithm. As expected this 
proves that the Median Lh4F has a slower convergence 
and a lower steady-state error compared to the LMF. 

1. INTRODUCTION 
In 1984 Walach and Widrow introduced the LMF 

algorithms as a supplement to the widely used LMS 
algorithm [l]. Since then it has been extensively used 
especially for data echo cancellation and channel 
equalization. In these applications the involving signals 
have short tailed distributions and consequently the LMF 
outperforms the conventional LMS algorithm. Although 
widely used, an overlooked problem of the LMF 
algorithm is its high distribution sensitivity which was 
theoretically shown in [2]. Due to this sensitivity the 
performance of the LMF algorithm is inferior for long 
tailed distributed data. This was illustrated by an example 
in [3] where binary distributed data was corrupted by 
impulses, which completely destroyed the convergence 
of the conventional LMF algorithm. In order to reduce 
this problem a new adaptive algorithm combining the 
LMF algorithm and the nonlinear median filter was 
presented. The Median LMF algorithm is defined as the 
conventional LMF algorithm where the instantaneous 
gradient is replaced by its median: 

VMED = MED t V  ( k )  1 N (1) 

where N is the length of the median filter and is usually 
chosen odd [4], and 

(2) 
V ( k )  = -e ( k )  3X ( k )  , 

MED { V ( k )  = MED ( V  ( k )  , . , ., V ( k  - N + 1 )  } . 

This gives the following equation for the coefficients 
update of the adaptive filter: 

W ( k + l )  = W ( k )  - 4 p v M E D ( k ) .  (3) 

The behaviour of this new algorithm (called Median 
LMF adaptive algorithm) is of course different from the 
LMF algorithm, and in [2] the following three 
characteristics were illustrated by simulations: 

Impulses are removed from the instantaneous 

The first characteristic is of course obvious due to 
the median filtering, which removes large gradient values 
in the update of the coefficients. In order to verify the last 
two characteristics a convergence and steady-state 
analyses will be performed in the following Section. 
Because of the lowpass nature of the median filter the 
gradient variance will be reduced. This is more 
pronounced for long tailed distributions, where the 
median filter has a high attenuation 141. This suggests that 
Median LMF is less distribution sensitive than the LMF 
algorithm. This is illustrated in Section 3. 

gradient, giving a more regular convergence; 
The speed of convergence is reduced; 
A larger convergence factor can be chosen. 

2. CONVERGENCE AND STEADY- 
STATE STUDY 

2.1 Convergence Analysis 
The convergence properties of adaptive 

algorithms are important in order to understand the 
transient behaviour. For most algorithms the 
convergence analysis is relatively simple, but due to the 
nonlinearity of the median operator, this is quite difficult 
for the Median LMF algorithm. A way to make the 
analysis tractable is to use the following two 
assumptions: 

Assumption 1. The coefficients W(k) are slowly 
varying and can be considered constant for N 
consecutive samples. 
Assumption 2. If U and v are two (non-correlated) 
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i.i.d. sequences, each having symmetrical pdf and 
mean value 0, and k ,  respectively, then: 

E { M E D { u + v } ~ }  = E { M E D { v } ~ }  = k (4) 

If only U is symmetrical distributed, then the equation (4) 
is only approximately true. Although a complete 
convergence analysis has been made for the LMF (see 
[5] ) ,  it is customary to restrict it to the vicinity of the true 
solution, i.e. the values of the weight deviation vector 
V(k)=W(k)-W* are small [ 11. Consequently the higher 
order terms of V(k)  can be neglected and the mean value 
of the weight deviation vector can be approximated as 

E { V ( k +  I ) }  = E { V ( k ) }  
( 5 )  

-12pE { MED {nZ ( k )  x ( k )  X T ( k )  V ( k )  } N }  , 

where the approximation in assumption 2 has been 
used’. The argument to the i’th median operator of the 
gradient vector, called V, ( k )  can be written as: 

n2 ( i l ) (  x2 ( k -  i )  v 1  ( k )  + x ( k -  i ) x  ( k - n i )  v m  ( k )  

If the input sequence x(k )  is assumed to be symmetrical 
i.i.d. having zero mean, then the use of assumption 1, 
assumption 2 and the independence of n(k), x (k )  and 
V(k)  will lead to the equation: 

1 L -  1 

m = 0. m f 1 

E ( V ( k +  1 ) )  = E { V ( k ) }  
(6) 

-12pE { MED { n2 ( k )  x2  ( k )  } N }  E { V ( k )  } 

We obtained a very similar formula with the one from 
conventional LMF algorithm, and consequently the 
Median LMF will converge in the mean if the 
convergence factor is chosen in the interval: 

(7) 1 

6 E  (MED ( n 2  ( k )  x’ ( k )  } N }  

O < p <  

It is difficult to compute the upper limit of this 
inequality, since it requires the pdf of the product 
n2(k)2(k).. For ordinary symmetrical distributions like 
double exponential, Gaussian and uniform, we have 

E{MED { n 2 ( k ) ~ 2 ( k )  },I < ~ { n ’  ( k ) x 2  ( k )  1. (8) 

Thus the convergence factor of the Median LMF can be 
chosen larger than for the LMF algorithm, especially for 
long tailed distributions. In practice it is though easier to 
choose the same step-size as for the LMF algorithm. The 
time-constant for the adaptation can easily be found 

1. Here x(k) is the near-end signal, n(k) is the 
far-end signal, and L is the length of the 
adaptive echo canceller [3]. 

from equation (6) as: 

(9) I 

12pE { MED { t i2  ( k ) . r 2  ( k )  } N }  

z =  

The Median LMF will therefore have a slower 
convergence than the conventional LMF for the same p , 
as illustrated by simulations in [3]. This is of course most 
pronounced for long tailed distributions and large values 
of N where the median has the best attenuation. 

2.2 Steady-State Analysis 
We expect a better steady-state performance than 

for the LMF due to the reduction of the sensitivity of the 
gradient estimate. We follow once again [ 11, by finding 
an approximation of the covariance matrix of the weight 
deviation vector: 

2 p E  { ( MED ( n3 ( k )  x ( k )  } A2} 
covv ( k )  = I .  (10) 

n n  

3 E  { MED {a‘ ( k )  x’ ( k )  } N }  

The covariance matrix has a diagonal structure, thus the 
componcnts of the wcight dcviation vector arc non- 
correlated. This can be exploited in the definition of the 
misadjustment to ignore the cross-terms [I]: 

E (( V T @ )  x ( k )JZ I  
M =  (1  1) 

E { n 2 ( k )  1 

It is possible to approximate this misadjustment by: 

We can compare this equation with LMF case where we 
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Fig.1. Gaussian distributed signals 



I 
1 2 3 4 5 6 1  -50; 

10' Iteration 

Fig.2: Signals corrupted by impulsive noise 

have 

A comparison of these two equations demonstrates that 
the theoretical misadjustment of the Median LMF 
algorithm is lower than the misadjustment of the LMF 
algorithm (except for binary distributed data where the 
two algorithms have the same misadjustment). This 
lower misadjustment is expected due to the variance 
reduction of the instantaneous gradient made by the 
median filter, and is of course most pronounced for long 
tailed pdf s .  

3. SIMULATIONS 
Two different examples are presented in this 

section. First the sensitivity of the LMF algorithm to 
impulse noise and the robustness of the Median LMF is 
illustrated. Secondly the performance characteristics of 
the Median LMF adaptive algorithm for long tailed 
distributed signals are shown (slower convergence and 
lower misadjustment). The performance measure used in 
all of the figures in this section is the normalized norm 
p ( k )  of the weight deviation vector [3]. 

3.1 Data Echo Cancellation 
The setup used in this example is the data echo 

cancellation, which is an application where the LMF 
algorithm has been widely used [6]. The main purpose of 
an echo canceller for data transmission is to cancel the 
echo generated by the imperfect impedance matching at 
a hybrid transformer. This echo will, if not removed, 
disturb or destroy the desired signal sent from the other 
end of the line (called far-end signal). Here the echo path 
is modelled as a simple low-pass filter [6], where 

-400 ~ 0.5 1 1.5 2 2.5 

ln4 Iteration 

Fig.3: Double exponential distributed signals 

a=0.800250. Both the input signal to the adaptive filter 
and to the echo path are modelled as random binary 
sequences having the values {+ l , - l }  and {+f,-f} 
respectively. Impulses are added to the received 
sequence to simulate transmission and decoding errors. 
This is done simply by changing the polarity of the 
received sample if an error occur (the probability of error 
isp). For this example L=32, p=0.0005, f2=0.1 and step- 
size have been chosen 0.002. The performance curve is 
depicted in Figure 2, and as expected this demonstrates 
the noisy convergence of the LMF when transmission or 
decoding errors occur. This is avoided by the Median 
LMF (plotted in the same figure for N=3), and this 
demonstrates the robustness of the Median LMF 
compared to the conventional LMF algorithm. 

3.2 Distribution Sensitivity 

algorithms are used to identify the system [I]: 
In this example the LMF and the Median LMF 

(14) H ( z )  = 0.1 + 0.2~- '  + 0 . 3 ~ - ~  + O . ~ Z - ~  + O . ~ Z - ~  

+ O . ~ Z - ~  + O . ~ Z - ~  + 0.2~-7 + 0 . 1 ~ - ~ .  

To illustrate the dependency of the convergence and the 
steady-state performance upon the signal distribution, 
two different distributions of the input and noise signals 
are used. In Figure 1 the signals are Gaussian distributed 
whereas double exponential signals are used in Figure 3. 
In both examples SNR=lO dB, N=3, L=9 and step-sizes 
are 0.001. These two figures clearly demonstrates the 
lower misadjustment and the slower convergence of the 
Median LMF algorithm. This is more obvious for the 
double exponential distributed signals in Figure 3. 
Having the attenuation capabilities of the median filter in 
mind (best attenuation for long tailed noise), this 
behaviour is expected. 

In Section 2.1 it was mentioned that the Median 
LMF algorithm is less distribution sensitive than the 
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Fig.4 Different distributions (LMF) 

conventional LMF algorithm. The high sensitivity of 
the LMF algorithm is due to the variance of the 
instantaneous gradient estimate, which is large for long 
tailed distributions. Because the median filter has a 
good attenuation of these distributions the inclusion of 
the median filtering of the gradient reduces this 
problem. This is also illustrated in this section. To 
demonstrate we use the same setup, i.e. a system 
identification where the system to be identified is 
described by same equation. The convergence factor is 
identical 0.005 for both algorithms: Median LMF 
(N=3) and LMF. Thus we eliminate its effect on the 
steady-state error. In Figure 4 and 5 the results of the 
simulation are plotted, and as described the Median 
LMF has a more uniform steady-state performance. 
While the steady-state error for the LMF has a 20 dB 
spread, this is now reduced to 5 dB without changing 
the convergence factor. The cost for this is a slower 
convergence and an increase of the steady-state error 
for the binary distributed data, which can be explained 
by introduction of correlation in the gradient [ 13. If the 
length of the median filter is increased, the spread in 
performance for small median filter windows (N=5 to 
N=9) is even smaller. Unfortunately will the spread 
increase again for large median filter windows, due to 
the increased steady-state error for binary sequences. 
Therefore, the Median LMF should be restricted to 
small median filters. 

4. CONCLUSIONS 

The Median LMF adaptive algorithm combines the 
conventional LMF algorithm and the median filter. by 
combining these two the sensitivity of the LMF 
algorithm to long tailed distributed signals is reduced. 
In this paper a convergence and a steady-state analysis 
of the Median LMF algorithm is presented. Due to the 
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Fig.5. Different distributions (Median LMF) 

nonlinear nature of the median filter these analyses are 
difficult and in order to make them feasible some 
assumptions were necessary. Both analyses were 
verified in examples, which showed that the Median 
LMF has a slower convergence than the conventional 
LMF. This can though be reduced by choosing a larger 
convergence factor. 
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