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Abstract—CogWatch is an EU project developing technologies
for cognitive rehabilitation of stroke patients. The CogWatch pro-
totype is an automatic system to re-train patients with Apraxia or
Action Disorganization Syndrome (AADS) to complete activities
of daily living (ADLs). This paper describes the approach to
automatic planning based on a Markov Decision Process, and
real-time action recognition (AR) based on instrumented objects
using Hidden Markov Models. The experimental results demon-
strate the ability of a psychologically plausible planning system
integrated in a Task Model (TM) to improve task performance
via user simulation, and the viability of the approach to AR.

I. INTRODUCTION

In the UK alone it is estimated that over 150,000 people
have a stroke each year [16]. It is estimated that 68% of stroke
survivors suffer from Apraxia or Action Disorganization Syn-
drome (AADS), which leads to the impairments of cognitive
abilities to complete activities of daily living (ADLs) [26],
[27], [28]. AADS can have a serious impact on patients’ ability
to live independent lives in their own homes. For example,
when making a cup of tea or preparing a snack, patients
might perform a wrong sequence of actions, skip steps, or
misuse objects with possible safety implications. Caregivers
can provide assistance, but patients who aspire to independent
living may be unwilling to accept this as a long-term solution.
Hence, the objective of the CogWatch project [17], [5] is to
develop an advanced and intelligent assistive system to re-train
patients on how to carry out ADLs. To achieve this the system
must be able to monitor the patient’s progress through the
ADL and provide appropriate guiding cues or feedback when
an error is detected. Thus recognition of the individual actions
that make up the ADL, and planning of the optimal strategy
the patient should follow during the task are critical.

Several assistive systems have been designed to increase
independent ADLs completion of cognitively impaired pa-
tients. These can range from alarms that remind people of
their task, to interactive ubiquitous computing systems that
provide step-by-step guidance on how to perform the activity.
An example is the electronic system developed by Levinson [4]
that uses artificial intelligence (AI) to automatically generate
the best plan to complete the required steps during the task.
Boger et al. and Kautz et al. developed an AI based approach
to determine when and how to deliver cues to cognitively
impaired patients during everyday tasks such as cooking [29]
and handwashing [19]. The Autominder System developed by
Pollack et al. [25] uses dynamic Bayesian networks as an

underlying domain model to coordinate prompts delivering
through activities. Capturing ADL through sensors is not new
[1], [2], [14], [12], [7], [8], [13], [3], and when combined
with AI, Barucha showed that sensing capabilities improve the
reability and viability of assistive systems [20]. Nevertheless,
there has been less attention devoted to the definition and
recognition of subtasks in these activities. Moreover, despise
the growing interest in incorporating smart techniques, most
of the devices required manual input from the user and were
not able to sense the context in which they were being used
or the users’ preferences. Many devices were not designed to
indicate when the task is completed, or when an error from the
user has occurred, what type was this error, and if assistance
was needed. The implication of involving clinical specialists
in the system development have also received little attention in
the studies. Thus, we aim to demonstrate that a context-aware
planning system (referred as Task Model (TM)) integrating AI
technics, which takes into account clinical specialists’ knowl-
edge and users’ preferences makes an assistive system more
efficient, when combined with a complex action recognition
system (AR). Independently we provided evidences that those
two components are valid: the AR was tested with data from
healthy and patients, and the TM using a simulated user based
on performances of healthy and patients. We are currently
collecting data on the efficacy of the real system.

II. SYSTEM ARCHITECTURE OVERVIEW

CogWatch’s current goal is to re-train stroke survivors
providing them autonomous guidance during tea making. The
complete system (figure 1) comprises sensorized objects (mug,
kettle, jug), an AR, a Markov Decision Process based TM and
a Prompting System. It works as follows: First, the patient
chooses the type of tea out of four options (e.g. black tea with
sugar). This information is passed to the TM that uses it to
provide correct strategies. Patient’s behaviour is detected via
sensors attached to the objects used during the task. This data is
communicated wirelessly to the AR which aim is to recognise
what action the patient has performed. The AR outputs are
passed to the TM, which is in charge of the planning and
monitoring of the patient’s progress through the task. In other
words, each time the patient makes an action, the AR outputs
an observation, and the TM records it in order to determine
the patient’s state (i.e, its understanding of what the patient
has achieved so far). The state s is passed to the Action
Policy module that plans what should be done next (what
“optimal strategy” a should be suggested) in order to assist



Fig. 1. Structure of CogWatch: au and a denote the user’s action and the
TM’s strategy, s is the user’s state, ER - the error recognition module, and the
circumflex indicates an estimate. Error − ID is the user’s error type.

Fig. 2. A jug fitted with a CogWatch Instrumented Coaster (CIC) (left) and
an ‘open’ CIC (right)

the patient. Moreover, in contrast to most previous AI planning
systems, here we also implemented an Error Recognition (E.R)
module. This module analyzes the state s in order to identify
potential errors in the patient’s plan. Finally, the TM outputs
a recommendation for the next best action, and if needed
alerts the Prompting system that an error has occurred. The
Prompting System uses a table designed by clinicians to map
the output from the TM to the type of cue that should be
retrieved. We next describe each core components in more
details: the AR and the TM.

A. HMM-based Action Recognition based on Instrumented
Objects

For the system to assist the patient properly, it must be
able to recognize the patient’s actions (sub-goals). The AR is
in charge of this matter and uses HMMs based on instrumented
objects. Indeed, sensors are integrated into the kettle, mug and
milk jug. To avoid patient confusion, the chosen solution is to
package the sensors and circuitry into an instrumented coaster
(figure 2), the ‘CogWatch Instrumented Coaster (CIC)’, that
is fitted to the underside of the object. This is inspired by the
MediaCup concept [3]. The sensors in the CIC are a 3-axis
accelerometer and 3 force sensitive resistors (FSRs), together
with a Bluetooth transmitter to send data to a host computer.
The CIC was designed according to 3 criteria: (i) Its sensors
should capture relevant data to identify the sub-goals of tea-
making. (ii) The CIC needs to fit under an object, so that the
FSRs can record the object’s weight. The size of the CIC was
defined by the circumferences of the bases of the coffee mug
and milk jug. Finally, (iii) The selection of sensors was based
on power efficiency relative to cost of the sensors and their
processing capability. When the objects are moved the sensors
communicate relevant data to the HMMs based AR.

Although HMMs are a generic framework for statistical
sequential pattern processing, they have been developed most
intensely for speech recognition (ASR). An HMM-based ASR
system has four parts: a feature extraction component that
converts speech into a sequence of acoustic feature vectors

Fig. 3. Structure of the CogWatch AR: Parallel sub-goal detector set (a), and
a single detector (b).

Y , a statistical grammar, typically based on n-grams, which
gives the vocabulary and the probability of each vocabulary
word given previous words, a pronunciation dictionary, which
specifies one of more phone-level transcriptions of each vocab-
ulary word, and a set of phone-level acoustic HMMs. Typically
these are context sensitive to account for co-articulation effects.
Viterbi decoding finds the sequence of words W such that
an approximation to the probability P (W |Y ) is maximised.
There are a number of important differences between AR
and ASR which determine the design of our HMM-based
AR system: (i) in ASR words occur sequentially, whereas in
AR actions can occur in overlapping time (e.g. because the
subject uses both hands). Therefore finding the most probable
sequence of actions is inappropriate in AR, (ii) in ASR the
same features are used by all HMMs, whereas in AR it is clear
that different subsets of features are appropriate for recognising
different sub-goals (e.g., sensors attached to the kettle are not
directly relevant to “Pour Milk’). Finally, (iii) in AR there
is no universally accepted equivalent to a ‘phone set’. The
CogWatch AR is a parallel array of ‘sub-goal detectors’, each
dedicated to a different sub-goal (figure 3(a)). The input to a
detector is the sub-vector of sensor outputs that are relevant
to that sub-goal. A detector consists of a multiple state sub-
goal HMM and a single state ‘background’ HMM, with each
HMM state associated with a Gaussian mixture model (GMM).
These HMMs are configured in parallel, so that they compete
to explain the input data (figure 3(b)). The data is processed
separately for each parallel detector using a Viterbi decoder
[10]. A detector’s output up to time t is generated as soon as its
classification of the data up to t is unambiguous, using partial
trace-back [11], and the memory used to store alternative
explanations of the data up to t is freed. In this way the
decoders can run indefinitely. The real-time CogWatch AR
uses HMM file formats from the hidden Markov model toolkit
(HTK) [22]. Thus HMM parameters can be optimised off-line
using HTK and then transferred to the CogWatch AR.

B. MDP-based Task Model

The TM is based on a Markov Decision Process (MDP).
The MDP is a mathematical tool for planning, learning and
describing decision-making in probabilistic environments. It is
defined as a four-tuple (S,A, P,C) [6], where: S is a finite set
of states, A is a finite set of actions, P is the transition function
(P (s, a, s′) denotes the probability of reaching state s′ from s
given that action a was taken), and C(s, a) the cost of taking
a in state s. Given an MDP, the problem is to find the optimal
strategy π∗ which is a mapping from states to actions, where
π∗(s) is the best action to perform in state s. Its computation



is based on the policy value V ∗(s), which is the expected sum
of costs incurred by a session starting in state s at time t = 0,
and following π∗, until the final state is reached at TF . Note
that angle brackets indicate expected values.

V ∗(s) =<

TF∑
t=0

c(st, at) >, (1)

where s0 = s and at = π∗(st). It can also be expressed as:

V ∗(st) = mina[< c(st, a) > +
∑
s

P (s, a, st)V
∗(s)]. (2)

π∗ is then defined by:

π∗(st) = argmina[< c(st, a) > +
∑
s

P (s, a, st)V
∗(s)] (3)

Those strategies are computed using a Monte Carlo Algorithm
[9]. Prior to implement it, the MDP’s theory has to take into
account CogWatch’s context:

1) Action Space: Using the principles of task analysis [15],
each type of tea is decomposed into a hierarchy of sub-goals,
tasks and sub-tasks. CogWatch currently focuses on the first
level, where eight sub-goals have been identified, plus one
common error (9), and one potentially hazardous activity (10).
These are:

1) “Fill Kettle” (using water from a pre-filled jug),
2) “Boil Water”,
3) “Pour Kettle” (i.e. pour boiling water into the mug),
4) “Add Teabag”,
5) “Add Sugar”,
6) “Add Milk”,
7) “Stir”,
8) “Remove Teabag”,
9) “Pour Cold Water from Jug into Mug”, and

10) “Toy with the Kettle”.

2) State Space: States of the MDP-based TM directly
correspond to user’s states. Specifically, a state is a sequence
of actions performed. For example, a state can be represent as
a list: sk=[a1, a2, a4,...], where each an is an action in the
Action Space. In other words, the state space is a list containing
all the states the user can reach while completing the task.

3) Transition Function: CogWatch is currently used with
real participants under the supervision of a clinician. Thus, we
make the assumption that the transition function P (s, a, s′) is
binary. Suppose:

• The current state s corresponds to the sub-goal se-
quence a1, a2, ..., an,

• a is the sub-goal g, and

• s′ is a1, a2, ..., an, g

Then P (s, a, s′) = 1 and P (s, a, t) = 0 for all states t 6= s′.

4) Cost Function: The cost function C(s, a) is a mecha-
nism to incorporate human judgment about the importance of
different types of behaviour into the MDP. In our case, we
combined two types of functions: one that allows the MDP to
find the fastest strategy (i), and another one that takes into
account the way participants successfully perform the task

TABLE I. DATA USED IN AR DEVELOPMENT. DURATIONS ARE IN
HOURS. ‘TOY(1)’ AND ‘TOY(2)’ CORRESPOND TO THE PATIENT ‘TOYING’

WITH THE WATER JUG AND KETTLE, RESPECTIVELY.

Sub-goal Trials Dur. Sub-goal Trials Dur.
Pour kettle 138 6.43 Stir 138 5.55
Add milk 123 4.06 Toy(1) 26 0.73
Add sugar 120 3.42 Boil water 125 2.21
Add teabag 144 3.11 Toy(2) 30 1.14
Fill kettle 146 7.12

Rem. teabag 134 6.33 Full trial 99 25.11

and clinicians’ preferences (ii). This decision has been taken
because the fastest strategy may be valid, but is not necessarily
psychologically plausible. Later we will demonstrate that when
the cost function (i) is combined with relevant knowledge from
users and clinicians (i.e., cost function (ii)), it allows the TM
to generate more meaningful and efficient strategies during the
task. When using the cost function (i) only, the TM’s strategies
will be referred as Non-Psychologically Plausible; when using
the combination (i) and (ii), the TM’s strategies will be referred
as Psychologically Plausible.

III. EXPERIMENTS AND RESULTS

A. AR Evaluation

Twenty-six participants, aged between 18 and 80, com-
pleted multiple individual sub-goals and multiple full tea-
making trials. In all cases synchronized sensor outputs were
recorded. The recordings are summarised in table I. In total
there are 1124 recordings of isolated actions (40.09 hours)
and 134 recordings of complete tea-making (25.11 hours). Full
trials took place under five different conditions. Subjects were
asked to: (i) Make a cup of tea as they would normally make
it for themselves, (ii) make a cup of tea in a different way,
and follow cues presented on a screen, which gave step-by-
step instructions on how to make the tea, where (iii) the cues
followed the participant’s normal way of making tea), (iv) the
cues differed from the participant’s routine way of making
tea, and (v) the cues were in random order and did not lead
to successful tea-making. HMM optimisation was performed
off-line with HTK. The optimised parameters are the number
of states N in the sub-goal HMMs (N = 5, 10, 20, 30, 40, 50,
60), with each state associated with a single Gaussian PDF,
and the number of GMM components M in the single state
background’ HMM (M = 1, 2, 8, 32, 64, 128, 256, 512).
Results are presented for the two sub-goals ‘Pour Kettle’ and
‘Add Milk’. Five- fold cross-validation was used for parameter
estimation, evaluation and testing. For each pair of values N
and M , 60% of the ‘target’ sub-goal data and 60% of the other
sub-goal data, were used to estimate the parameters of the sub-
goal and background HMMs, respectively. For initialisation
of the sub-goal model, each recording of the sub-goal in
the training set was divided into N equal segments, and the
data in the nth segments was used to estimate the mean and
diagonal covariance matrix of the nth HMM state. The HMM
parameters were then optimised using the standard Baum-
Welch algorithm [22], [10]. For the background model, all
of the recordings of the non-target sub-goal in the training
set were used to estimate the mean and (diagonal) covariance
matrix of a single Gaussian PDF. This was repeatedly divided
and then optimised using the E-M algorithm and standard tools
in HTK [22]. An evaluation set, comprising 20% of the ‘target’



Fig. 4. Performance of detectors ‘Pour kettle’ (left) and ‘Add milk’
(right). Horizontal axes are number of ‘background’ model GMM components.
Different graphs correspond to different numbers of states in the ‘sub-goal’
HMM.

sub-goal data and 20% of the recordings of other sub-goals
that were not in the training set, was used to test each sub-
goal detector. The results, averaged over all 5 folds, are shown
in figure 4. The ‘sub-goal accuracy’ A is defined by

A = 1− (D + I)/K)100 (4)

where K, D and I are the number of test examples of the sub-
goal, the number of times that the sub-goal is not detected (the
number of deletions), and the number of times that the sub-
goal is falsely detected (the number of insertions), respectively.
For each fold, the optimal numbers of sub-goal HMM states
and background model GMM components were chosen based
on these results. Next, a test set comprising the remaining
20% of the ‘target’ sub-goal data and 20% of the other sub-
goal data, was used to test the optimal configurations of each
of the sub-goal detectors. The accuracy, averaged over the
5 folds, is 98.13% for ‘Pour Kettle’ and 99.82% for ‘Add
Milk’. Finally, both detectors were tested together on the 99
full trials, using HMM parameters chosen according to figure 4
and trained using all of the ‘isolated sub-goal’ recordings. This
resulted in an overall accuracy of 93.83%, with 5 state sub-
goal models and 128 component background models. Because
the AR comprises separate detectors for each sub-goal, and
the final test is on complete trials, this results is not affected
by the addition of further sub-goal detectors.

B. TM Evaluation

The initial evaluation of the Task Model consists of mea-
suring its ability to suggest valid strategies only. This was done
because we were interested in the successful completion of a
single trial. So here we did not report results on the efficacy of
the integration of the E.R module, as it was assumed that its
impact would only be seen across trials. To reliably evaluate
the TM’s action policy, a large number of repetitive interactions
between participants and the system are necessary. To achieve
this, we created a simulated impaired user SimU based on data
from fifty-two control and cognitively impaired participants,
aged between 21 and 82, who completed four types of tea
(black tea, black tea with sugar, white tea, white tea with
sugar) 100 times. Integrating this data into its mechanism,
the SimU generates plausible sequences of actions while in-
teracting with a virtualization of CogWatch. The experiments
we ran showed the validity of the TM’s strategies, and that
psychologically plausible strategies are more effective than
non-psychologically plausible valid strategies.

Fig. 5. Structure of the Simulated User.

1) Simulated User: Figure 5 shows the architecture of the
SimU. The core of the SimU is the module User’s choice.
It takes as inputs four parameters: User’s transition Matrix,
Behavioural strategy, Memory model, and TM’s strategy. The
latter collects the optimal strategies π∗ sent by the TM
during the task, which the SimU complies with a probability
α. The User’s transition Matrix is based on action bigram
probabilities calculated from examples of action sequences
performed by real participants. In an attempt to make this
mechanism plausible and compensate the limitations induced
by the use of bigram probabilities, the SimU has different
behaviouralstrategies, which permit it to overcome its po-
tential lack of knowledge of what action to output next. The
Memory model module gives the possibility to decide how
the SimU remembers or forget what it performed in the past.
Taking into account those four parameters, the User’s choice
then chooses which action au to output.

2) Virtualization of CogWatch: The SimU is integrated into
a virtualization of CogWatch, which follows the same structure
of the real system as described in figure 1. The SimU replaces
the module called User with sensorized objects and is directly
connected to a virtual AR and Prompting System, the MDP-
based TM remains the same. The virtual AR is implemented
as a simple N ×N confusion matrix C (N is the number of
sub-goals) whose i, jth entry is the probability that the AR
system outputs sub-goal j when the user executes sub-goal
i. As the AR output is verified by a clinician in the current
system, we assume that the virtual AR is 100% accurate, so
that C is the identity matrix.

3) Experiments: During the first experiment, the SimU tried
to make each type of tea 3000 times. Table II shows its success
rate when executing the strategies suggested by the TM and
when ignoring it. For black tea and black tea with sugar,
the SimU’s success rate is 100% when it complies with the
TM’s strategies. This means that the TM’s strategies are 100%
accurate for those two tasks. When the SimU ignores the TM
and performs the tasks following its own plan, its success rate
significantly decreases: 76% for black tea, 54.1% for black
tea with sugar. In the case of white tea and white tea with
sugar, the assistance of the TM’s strategies also permits to
increase the SimU’s success rate, but the latter is no longer
100%. This is not due to the TM’s strategies, but linked to
the fact that CogWatch is an after-effect system, where an
action has to be made by the user for the TM to plan what to
should be done next. If the first action is an error that cannot
be corrected, the system cannot help the user. Apart from
those cases, the results highlight that the TM’s psychologically
plausible strategies always permit a compliant SimU to increase



TABLE II. SIMULATED USER’S SUCCESS RATES WHEN INTERACTING
WITH THE COGWATCH SIMULATOR. PSYCHOLOGICALLY PLAUSIBLE

STRATEGIES RETRIEVED BY THE TM.

Types of tea Assisted by TM Ignoring TM
Black Tea 100.0% 76.0%

Black Tea With Sugar 100.0% 54.1%
White Tea 97.1% 48.0%

White Tea With Sugar 96.0% 24.2%

its ability to succeed each task.

In the second experiment, we compare the SimU’s success
rate at varying compliance when the TM outputs Psycho-
logically Plausible (P.P) strategies, or Non-Psychologically
Plausible (N.P-P) ones. As explained in section II-4, this is
due to the cost function used in the MDP. In figure 6, we see
that when the SimU is 100% compliant to the TM’s strategies,
whether the latter outputs a N.P-P or P.P strategy has no impact
on the SimU’s performance. This is an indicator that both N.P-
P and P.P strategies are valid. Nevertheless, as soon as the
SimU decreases its compliance to the TM’s outputs, we can
see (figures 6(a-b-d-e)) that its success rate is higher when
the strategies are psychologically plausible. In (figures 6(a-b)),
when the SimU follows a N-P.P strategy with a compliance
at 20% during the task, its success rate is the same as if it
was trying to perform the task by itself (0% compliance). We
can then conclude that if both strategies are valid, the P.P
one is optimal compared to N-P.P. To make a parallel with
a realistic situation, the P.P strategy can be seen as a familiar
one; a strategy able to take into account the ways a clinician
would perform the tasks or the optimal ways the patients are
used to perform when they succeed. So, with P.P strategies,
when the user completes the task and accepts to comply,
the TM succeeds to redirect the user on the most efficient
ways of succeeding the task. On the other hand, even if a N-
P.P strategy is always correct, it does not take into account
the patient’s habits, which then leads to more users’ failures.
Indeed, in [23], [24] De Klein and Graybiel highlighted the
impact of familiar and unfamiliar sequences on success rate.
We learn that familiar sequences are easier to execute and
requires less effort and energy, as this is done through a sub-
cortical structure where the sequence is reduced to a single
unit. In contrast for novel sequences or sequences that diverge
from the familiar one, one needs to use cortical mechanisms
(more effort, higher demands on resources) to re-create them.

IV. DISCUSSION

Our experiments have shown that the MDP-based Task
Model integrated in a simulation of the current CogWatch Sys-
tem permits to correctly assist a virtually impaired simulated
user during each task. We believe that similar results will be
observed when experiments being run with real participants are
completed. From an architectural and computational point of
view, to have implemented this virtual simulation of CogWatch
allowed us to validate the Task Model’s capability to fulfil
the requirements needed for the system to be a context-aware
intelligent assistive device. In the future, the TM will be
extended to other types of tasks, such as teeth brushing. The
flexibility of its current structure already allows such extension,
but specific errors definitions will have to be defined and
integrated. Another issue that will be tackled is the granularity
of the actions the TM analyses. Indeed, we would like to

Fig. 6. SimU’s success ratio at varying compliance to the Task Model’s
strategy. P.P and N-P.P stand for Psychologically Plausible and Non-
Psychologically Plausible strategy; a, b, d and e correspond to black tea, black
tea with sugar, white tea, white tea with sugar.

deal with actions that are at a lower level of hierarchy. For
example, we would like the TM to understand if the patient
fails adding an ingredient it is because an object is hold with
a wrong grip, or because he/she fails other complex dexterous
movements. As far as the AR is concerned, we showed that
the error rates for unseen isolated sub-goals (1.87% and 0.18%
for ‘Pour Kettle’ and ‘Add Milk’) are extremely low and
validate combining instrumented objects with HMM-based
action recognition. The error rate for complete trials, 6.17%
overall error rate for two detectors, is higher. However, it
represents insertion or deletion of just 7 instances of ‘Pour
Kettle’ or ‘Add Milk’ in 2.5 hours of trials and thus represents
extremely good performance. Since the real-time CogWatch
AR gives identical results to HTK, this is also the performance
of the real-time system. In addition, the CogWatch AR with
two detectors runs in real-time on live data. Beyond these
examples, numerous challenges remain such as the amount of
human supervision needed by the AR. Currently, when used
with real participants, the AR is supervised by a clinician, so
its outputs always perfectly correspond to the user’s actions.
As our goal is to have as little human supervision as possible,
in the next prototypes we will have to take into account
the uncertainties associated to the AR. Indeed, the AR may
misrecognize some actions performed by the user during the
task, which means that the state the TM believes the user
to be in might not be true all the time. Such uncertainties
are inevitable, and a MDP-based Task Model cannot cope
with them well. Thus, a solution will be to replace the MDP
with a Partially Observable MDP (POMDP) [18] which can
accommodate uncertainties in the state space. So, when the AR
will output an observation, instead of choosing a strategy based
on the most probable state, a POMDP-based TM will base it
on a probabilistic distribution over all states. In the context of
a fully automatic system, we believe that such enhancements
will permit obtaining a more accurate representation of the
environment, and a robust guidance under uncertainties.

ACKNOWLEDGMENT

This work has been supported by the European Commis-
sion under the grant FP7-ICT-2011-288912.



REFERENCES
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