
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

On-demand Key Distribution for Cloud Networks

Paladi, Nicolae; Tiloca, Marco; Nikbakht Bideh, Pegah; Hell, Martin

Published in:
Proceedings of the 24th Conference on Innovation in Clouds, Internet and Networks

DOI:
10.1109/ICIN51074.2021.9385528

2021

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Paladi, N., Tiloca, M., Nikbakht Bideh, P., & Hell, M. (2021). On-demand Key Distribution for Cloud Networks. In
Proceedings of the 24th Conference on Innovation in Clouds, Internet and Networks IEEE - Institute of Electrical
and Electronics Engineers Inc.. https://doi.org/10.1109/ICIN51074.2021.9385528

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ICIN51074.2021.9385528
https://portal.research.lu.se/en/publications/ee962232-1c79-4cf0-aa8e-4ab5925f4b02
https://doi.org/10.1109/ICIN51074.2021.9385528


Acc
ep

ted
Auth

or
Vers

ion

On-demand Key Distribution for Cloud Networks
Nicolae Paladi

RISE and Lund University
Isafjordsgatan 22

Kista, Sweden
Email: nicolae.paladi@eit.lth.se

Marco Tiloca
RISE Research Institutes of Sweden

Isafjordsgatan 22
Kista, Sweden

Email: marco.tiloca@ri.se

Pegah Nikbakht Bideh and Martin Hell
Lund University

John Ericsons Väg 3
Lund, Sweden

Email: {pegah.nikbakht bideh, martin.hell}@eit.lth.se

Abstract—Emerging fine-grained cloud resource billing creates
incentives to review the software execution footprint in virtual
environments. Operators can use novel virtual execution en-
vironments with ever lower overhead: from virtual machines
to containers, to unikernels and serverless functions. However,
the execution footprint of security mechanisms in virtualized
deployments has either remained the same or even increased. In
this demo, we present a novel key provisioning mechanism for
cloud networks that unlocks scalable use of symmetric keys and
significantly reduces the related computational load on network
endpoints.

I. INTRODUCTION

Increasingly fine-grained billing for computation [1] and
network resources [2] is a notable recent trend. Such fine-
grained billing creates strong incentives to develop and deploy
applications that utilize a minimum amount of computing
and network resources. This calls for a novel approach in
application development and deployment, allowing to trim
down the use of computing and network resources without
compromising the security of the deployment.

Network architectures designed for cloud computing, such
as Software-defined networking (SDN), help in network man-
agement and configuration. While capabilities introduced by
SDN allow new key distribution mechanisms, public key cryp-
tography is usually preferred to symmetric key cryptography
in cloud and virtualised environments, especially to support
the setup of secure associations and secure communication
channels.

However, public key cryptography is CPU-expensive and
adds additional communication costs. These costs and over-
head can be reduced by relying on symmetric key cryptogra-
phy instead. On the other hand, symmetric key cryptography
leads to challenges including secure key provisioning and
authentication.

To address these challenges, we demonstrate a novel, on-
demand symmetric key distribution mechanism between end-
points in SDN deployments. The mechanism reduces the
number of steps for providing symmetric keys to the endpoints,
the computational load on the endpoints and the required time
to setup the secure communication. The approach leverages
existing channels established during the deployment orches-
tration and used for endpoint monitoring and patching. It
does not establish new communication channels to enable

the solution, leaving the attack surface practically unchanged.
Our mechanism enables flow-specific symmetric keys and is
compatible with (D)TLS v1.2 [3][4] and v1.3 [5][6].

II. ARCHITECTURE

We consider the network architecture in Figure 1, which
includes: a Client endpoint C; a Server endpoint S; an SDN
Controller for establishing and managing network flows; and
a network Switch capable to forward traffic between C and S,
according to the established flows.

The endpoints C and S are under the control of a common
logical Controller, but they do not necessarily belong to the
same network. Note that the architecture does not preclude the
scenario of a distributed controller, which acts as a single log-
ical Controller but is distributed across several instances [7].
The Controller is assumed to have three pre-established secure
communication channels, i.e. one with C, one with S, and one
with the Switch; these can be, for instance, secure (D)TLS
sessions. As highlihgted above, we reuse connections that are
commonly in place for operational purposes, such as endpoint
monitoring or updates.

Note that the proposed mechanism is also compatible with
alternative, serverless architectures. In this case, the two end-
points will act as initiator and responder, instead of client and
server.

Figure 1: High level network architecture and components

In the considered setup, C wishes to securely communicate
with S, for instance through a secure (D)TLS session. To speed
up the secure communication setup and improve performance
as a whole, this abstract focuses on C and S as establishing a
secure communication session using a symmetric key K. This
typically requires pre-sharing K, whose distribution requires
prior knowledge of the communication pattern expected from
C and S, as well as of the whole network topology, which is
impractical.https://doi.org/10.1109/ICIN51074.2021.9385528 c©2021 IEEE



Acc
ep

ted
Auth

or
Vers

ion

Instead, the approach taken in this demo enables the fast
distribution of K on-demand as coordinated by the Controller,
at the time when the network flow between C and S is
established. This allows the two endpoints to have a different
symmetric key per flow, each used by a different application
to establish a secure session over that flow.

The result is the effective separation of the security domains
of different flows from one another, with benefits for the
different applications running over those different flows. That
is, other than being computationally cheap, establishing per-
flow keys has the advantage that compromising the symmetric
key of one flow does not affect the security of other flows
and their respective applications, hence ensuring separation of
security domains with minimal overhead.

Also, the considered approach overall simplifies the distri-
bution and management of key material in the network, which
in turn simplifies the maintenance of hardware and software
for cryptographic operations and key generation.

A. Workflow Summary

The key K is distributed as follows. After C has sent a first
packet addressed to S, the Switch does not find any matching
flow rule in its flow table and sends a control message to the
Controller.

Then, the Controller generates a new flow rule for the traffic
between C and S, as well as a symmetric key K associated
to that flow. The Controller uses a secret seed with sufficient
entropy and a secure Key Derivation Function to derive the
symmetric key K. The Controller essentially generates as
many keys as new flows it establishes.

After that, the Controller separately provides K to both
C and S, over the respective secure communication channel.
Finally, the Controller provides the new flow rule to the
Switch, that can now forward the packet from C to S.

Having received K, both C and S install it as the key
associated to this network flow and use it to establish a secure
communication session, for example through the (D)TLS
Handshake protocol. C and S communicate over that flow and
the established secure session. While the demo focuses on the
implementation with (D)TLS, our approach is compatible with
other protocols for secure session establishment.

The symmetric key K has an expiration time of its own,
after which the Controller can accordingly terminate the flow
according to an administrative policy, and the endpoints can
later request to start a new flow if needed. If C and S close
the secure session but the flow still exists, the two endpoints
can open a new session over it before the key expires, without
notifying the Controller.

III. INNOVATIVE CONCEPTS AND RELEVANCE

The demonstrated mechanism introduces flow-specific en-
cryption keys and describes a key provisioning mechanism that
leverages the use of symmetric encryption keys in virtualised
deployments within an administrative domain. Flow-specific
encryption keys allow using distinct key material to protect
traffic on different flows between two same endpoints.

This is a novel construct specifically designed for software-
defined networks and especially relevant for virtualised enter-
prise networks. While this is in line with a defence-in-depth
security approach, it does not on its own introduce a per-
formance overhead, assuming that network traffic encryption
is already used. This is because, instead of using the same
cryptographic material to protect all network communication
between two endpoints, every flow uses an independent set of
cryptographic material.

Likewise, the approach does not trade computational over-
head for network communication overhead. Instead, it practi-
cally enables the use of symmetric key encryption, embedding
the payload in the flow establishment communication. This
is different from the approaches typically used for PSK
distribution, since it is agnostic of network topology and traffic
requirements, and it occurs at run-time and on-demand, with
no need for early information on peers and expected flows.

The rationale for shifting the task of key generation from
endpoints to a dedicated component integrated in the network
control is as follows. Centralised network management and
network virtualisation are commonly used to implement a con-
sistent set of policies in enterprise networks. Our demonstrated
approach allows implementing network-wide consistency in
key generation while minimising endpoint code-base and
resource usage by removing the need for key generation code
in endpoints. In turn, this can help reduce operational costs
for the network infrastructure without compromising security.
Moreover, keys can be pre-generated and cached whenever the
CPU load on the controller host is at its minimum, thus trading
storage for computation. The use of symmetric keys is tightly
coupled with the implementation of flow-specific encryption
keys and is essential in achieving high scalability and - in
certain scenarios - reducing the computational overhead of
network traffic encryption.

In an enterprise computation setting, flow-specific encryp-
tion using symmetric keys allows deploying robust and flex-
ible network traffic encryption throughout the network do-
main. This helps to protect at scale network traffic between
lightweight computation environments (such as Docker or
Linux containers, unikernels or serverless functions), with
minimal computational overhead. In turn, this allows organ-
isations to benefit from the trend towards ever more fine-
grained cloud resource billing and match their costs with the
computational resources used.

Finally, key generation in a dedicated component allows to
make full use of hardware support for both key generation
and key management. Key generation can be facilitated with
improved entropy sources such as a hardware entropy source,
while hardware security modules are often used to facilitate
the implementation of key management policies.

IV. DEMONSTRATION FUNCTIONS AND FEATURES

On a high level, our approach is explained in the basic
scenario introduced below1: two endpoints running in a vir-
tualised network environment establish for the first time a

1Recorded video: https://vimeo.com/431482962



Acc
ep

ted
Auth

or
Vers

ion

communication session over an OpenFlow switch. Since there
is no flow rule matching this network pattern, the switch
upstreams the first packet (a TCP SYN in this scenario) to
the Controller for inspection.

An application of the Controller generates a symmetric key
and deploys it to both endpoints. After that, the Controller
returns the upstreamed packet to the data plane and the
communication session establishment continues. Once the end-
points established a TCP session, they start using the deployed
symmetric key and proceed to wrap the communication in a
TLS session.

Figure 2: System test bed

The test bed, illustrated in Figure 2, is implemented in four
Docker containers with the following roles: (a) Client; (b)
Server; (c) Controller; (d) Open vSwitch (OvS). The endpoints
communicate over TLS 1.3 [5] implemented with GnuTLS
[8], version 3.6.5. The Controller container runs Ryu 3.12 and
a custom Python application, that defines packet matching and
subsequently generates and delivers keys to the endpoints. The
OvS container runs an instance of Open vSwitch that routes
packets between endpoints and forwards predefined packet
types to the Controller.

The specific features shown by this demonstration are:
1) Deployment of new symmetric keys to the end-points for

each flow;
2) Establishment of a secure communication channel using

the deployed symmetric keys;
3) Formal verification of the approach using ProVerif.
In order to verify the security of the proposed solution,

we modelled it with ProVerif2. Throughout the modeling, we
maintained the assumption of a pre-established secure channel
between the Client and the network Controller, as well as
between the Server and the network Controller. The channels
were securely pre-established using different key material,
assumed inaccessible for the adversary. The Client, the Server,
the Switch and the network Controller are each modelled as
independent, top-level processes.

Then, we verified the following security properties:
1) The secure provisioning and resulting secrecy of key K,

i.e. the key associated to the flow between the Client and
the Server;

2https://anonymous.4open.science/r/bb45538c-2e5d-4f70-a919-f1dedb9d158a

2) The secure possession of key K by Client, Server and
Network Controller.

The demo shows how cloud network deployments can lever-
age the use of per-flow keys, using pre-shared symmetric keys.
This improves both security - as different flows stemming from
different applications are separated - as well as efficiency since
symmetric key operations require less overhead than their
asymmetric counterparts. Moreover, the demonstrator shows
how the key distribution can be incorporated into the widely
used TLS protocol. Thus, with only minor modifications to
an existing cloud deployment, we can achieve this increase in
security and efficiency. Users can interact with the demo by
downloading the provided implementation and deploying it on
their local setup.

V. FUTURE WORK

The demonstrator is under active development and we intend
to expand this work in several directions. A first target is to
adapt the key sharing mechanism to other widely used network
security protocol suites (primarily IPsec). Other future works
include verifying the performance in hyperscale settings and
integrating with cloud orchestration software.

VI. ACKNOWLEDGEMENTS

This work was supported in part by the Swedish Foundation
for Strategic Research, grant RIT17-0035; by VINNOVA and
the Celtic-Next project CRITISEC; by the H2020 projects
SIFIS-Home and ASCLEPIOS (Grant agreements 952652 and
826093); and by the Wallenberg AI, Autonomous Systems and
Software Program (WASP).

REFERENCES

[1] Y. Zhu, J. Ma, B. An, and D. Cao, “Monitoring and Billing of A
Lightweight Cloud System Based on Linux Container,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems Workshops
(ICDCSW). New York, NY, USA: IEEE, 2017, pp. 325–329.

[2] H. Jin, X. Wang, S. Wu, S. Di, and X. Shi, “Towards optimized fine-
grained pricing of iaas cloud platform,” IEEE Transactions on cloud
Computing, vol. 3, no. 4, pp. 436–448, 2014.

[3] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.2,” RFC 5246 (Proposed Standard), RFC Editor, Fremont,
CA, USA, pp. 1–104, Aug. 2008, updated by RFCs 5746, 5878,
6176, 7465, 7507, 7568, 7627, 7685, 7905, 7919. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc5246.txt

[4] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security
Version 1.2,” RFC 6347 (Proposed Standard), RFC Editor, Fremont,
CA, USA, pp. 1–32, Jan. 2012, updated by RFCs 7507, 7905. [Online].
Available: https://www.rfc-editor.org/rfc/rfc6347.txt

[5] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,”
RFC 8446, RFC Editor, Fremont, CA, USA, Aug. 2018.

[6] E. Rescorla and H. Tschofenig and N. Modadugu, “The
Datagram Transport Layer Security (DTLS) Protocol Version
1.3,” May 2020, work in Progress. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-tls-dtls13-38

[7] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. R. Kompella,
“ElastiCon; an elastic distributed SDN controller,” in 2014 ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems (ANCS). IEEE, 2014, pp. 17–27.

[8] N. Mavrogiannopoulos and S. Josefsson and D. Ueno and C. Latze and
A. Pironti and T. Zlatanov and A. McDonald, GnuTLS Reference Manual.
London, GBR: Samurai Media Limited, 2015.


