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Abstract—Softwarization and virtualization are key concepts
for emerging industries that require ultra-low latency. This is only
possible if computing resources, traditionally centralized at the
core of communication networks, are moved closer to the user, to
the network edge. However, the realization of Edge Computing
(EC) in the sixth generation (6G) of mobile networks requires
efficient resource allocation mechanisms for the placement of
the Virtual Network Functions (VNFs). Machine learning (ML)
methods, and more specifically, Reinforcement Learning (RL),
are a promising approach to solve this problem. The main
contributions of this work are twofold: first, we obtain the
theoretical performance bound for VNF placement in EC-enabled
6G networks by formulating the problem mathematically as a
finite Markov Decision Process (MDP) and solving it using a
dynamic programming method called Policy Iteration (PI). Second,
we develop a practical solution to the problem using RL, where
the problem is treated with Q-Learning that considers both
computational and communication resources when placing VNFs
in the network. The simulation results under different settings
of the system parameters show that the performance of the Q-
Learning approach is close to the optimal PI algorithm (without
having its restrictive assumptions on service statistics). This is
particularly interesting when the EC resources are scarce and
efficient management of these resources is required.

Index Terms—NFV, EC, Dynamic Programming, MDP, Policy
Iteration, Q-Learning, Reinforcement Learning

I. INTRODUCTION

Future beyond 5G(B5G)/6G networks are expected to bring
new improvements over the previous mobile networks (4G and
5G) and enable new paradigms. This technological evolution
paves the way for endless services tailored to specific verticals;
e.g., e-Health, Industry 4.0, Internet of Things (IoT), and auto-
motive. More cells and antennas will be deployed in combina-
tion with advanced technologies, such as Virtual Radio Access
Network (vRAN), which enable partial or full virtualization of
the network through Network Function Virtualization (NFV)
and Network Slicing. To serve all these needs, current and
future networks heavily rely on the Edge Computing (EC)
concept to reduce the distance between the end user and the
computing resources. By placing Virtual Network Functions
(VNF) in proper edge computing centers at the edge of the
network, data is no longer stored or processed in a distant data
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center, which translates into a significantly lower latency [1]
at the cost of additional complexity of network management.

B5G/6G technologies are expected to provide an increase in
capabilities, all in a multi-vendor environment, with particular
focus on ultra-low latency data transmission. It is no won-
der that B5G/6G networks are expected to become complex
systems, making it difficult to deploy and manage services
on them. The options abundance in terms of offered services
makes it even more difficult to determine an optimal way
to deliver them in the future and to predict the demand in
order to deploy in the most efficient way the infrastructure.
Such a complex system requires advanced methods targeting
an optimal use of its resources.

A major issue with managing EC-enabled 6G network is
the inter-relation between the computing and communication
resources to provide services—to admit the user’s request, the
corresponding VNF should be placed in a EC center that has
sufficient computing resources as well as sufficient communi-
cation resource to handle the offered traffic load. Therefore,
dealing with the edge cloud and transport Key Performance
Indicators (KPIs) simultaneously is the added complexity for
the MNO when purporting to provide scalability. This is one
of the issues that we studied in this paper.

Furthermore, in this paper we also analytically find the
optimal performance bounds of such edge cloud scenarios that,
unlike previous work, combine computing and communication
characteristics to take decisions. The scenario is designed so
that it is mathematically tractable. Consequently, the problem
is formulated as a Markov Decision Process (MDP) and its
optimal solution is found through the Policy Iteration (PI)
algorithm. After that, this paper focuses on the design of a
practical algorithm that is able to perform as close as possible
to the theoretical bound in terms of rejection ratio. It is
practical in the sense that it does not take any restrictive
assumption on service statistics, hence it can be applied to
real networks. And given its low rejection ratio compared to
other approaches, it makes the most out of the resources of
the operator. In this direction, and given their potential, AI/ML
approaches [2], and more specifically, reinforcement learning,
is shown to perform close to optimal under multiple conditions
if enough iterations are run.
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A. Related Work

Resource management between network edge nodes has
been widely researched and studied in various domains. The
authors in [3] propose a Q-Learning algorithm to choose
optimal offloading among Fog network nodes. To evaluate the
performance of this algorithm, it is compared with existing
offloading methods as: Least-Queue, Nearest Node or Random
Node selection. Reference [4] formulates the resource alloca-
tion problem in EC as a minority game, and then compares the
performance of different RL methods to make its agent solve
the game. Akkarit et al. [5] present the automatic adaptation
of container instances under a Q-Learning algorithm and also
with the implementation of neural networks to maintain a cer-
tain service quality level without reducing the cloud computing
resources. Yala L. et al. [6] propose an algorithm for placing
VNF using optimization-adapted Genetic Algorithm meta-
heuristic which aims at minimizing latency and maximizing
service availability.

Some of the above works differ from this paper in that the
evaluation stage of the proposed algorithms are compared with
solutions that do not necessarily yield the optimal solution
which considers both transport and cloud related parameters.
In this paper, Q-Learning is evaluated against a mathematical
solution that allows measuring the performance gap between
the two. Moreover, the problem is posed as a finite MDP and
solved by a model-based and a model-free RL algorithm.

B. Main Contributions

This paper takes the architecture of the H2020 5GPPP
5Growth project1 [7] as a general reference. The 5Growth
project aims to validate the operation of 5G systems deployed
in vertical industries and incorporates (through open APIs)
AI/ML-related algorithms in service deployment and opera-
tion.

In this paper, VNF placement decisions for each service
requests are made according to specific operational require-
ments (e.g., ensuring an efficient use of edge resources while
maximizing the number of services delivered over the shared
infrastructure). First, the theoretical performance bounds are
calculated through Dynamic Programming (DP) and in the
form of a model-based MDP solved through the PI algorithm.
For this, all state transition probabilities must be computed
in advance, as well as all possible valid states. This is an
algorithm that mathematically allows the optimal solution to
be obtained from all possible solutions in the search space.
Another algorithm representing reasonable operation guide-
lines is best fit, which is also taken as reference for comparison
with theoretical bounds and practical learning algorithms. This
algorithm is inspired in the classic load balancing algorithm
Weighted Round Robin [8], but adapted to the needs of the
topic under consideration. In best fit approach, each EC has
a weight based on the administrators chosen criteria. The EC
with the highest weight serves the request.

1https://5growth.eu/

Finally, the problem has been approached through a Q-
Learning off-policy time differential algorithm to conceive a
deployable algorithm in practice that performed as close as
possible to the optimal bound. In this case, an agent observes
each incoming new VNF request. Based on the network state,
the agent performs an action by assigning it to an optimal EC
node to maximize the total number of processed VNF requests
in the system. In summary, the key contributions of this paper
are:
• The optimal VNF placement problem is formulated as a

finite MDP and solved using a model-based algorithm,
i.e., PI, considering cloud and transport network condi-
tions, hence obtaining the optimal performance bounds.

• A practical solution is given for a (near) optimal solution
using a model-free and off-policy algorithm, i.e., Q-
Learning, and compared with PI and best fit.

• The simulation results make it clear that Q-Learning
works near-optimally when EC resources must be man-
aged conscientiously.

The rest of the paper is organized as follows. Section
II describes the considered scenario, system model and the
problem statement. Section III presents the problem as an
MDP and the PI approach. Section IV introduces both practical
solutions, Q-Learning and best fit algorithms. Section V details
each of the simulations that have been carried out. Finally,
section VI draws the conclusions.

II. SCENARIO AND SYSTEM MODEL

A. Considered Scenario

In this paper, we consider the joint use of cloud and
transport KPIs to make the optimal decision in the placement
of VNFs. Fig. 1 shows an example application scenario of our
approach. If only cloud or transport parameters are considered
separately during VNF placement decision making process
(i.e. selecting the most appropriate EC), the requested service
cannot be provided in some cases. For example, consider the
utilization of link 1 (poor quality link) in Fig. 1 for only cloud
aware decision making to reach EC3 (EC with high cloud
resource) and link 2 (good quality link) for only transport
aware decision making to reach EC2 (EC with low cloud
resources). In both conditions, both transport and cloud level
service requests cannot be provided efficiently. For this reason,
the selection of a EC center must depend on both cloud and
transport parameters as is done with link 3 (high quality link)
to reach EC1 (EC with high cloud resources). More specif-
ically, in [9] the authors have demonstrated that considering
both transport and cloud related parameters simultaneously,
better EC decisions are taken by the previously trained ML
models.

B. System Model and Problem Statement

In this paper, we make the following assumptions. The
MNO operates a network with K = {1, . . . ,K} ECs, and
provides a set I = {1, . . . , I} of VNFs to users. Each user
request asks for an instance of a VNF i ∈ I. The requests
for VNF type i ∈ I arrive and depart following Poisson



Fig. 1. Edge computer nodes across different network regions

processes with rate λi and µi, respectively. The problem
is assumed to be online - i.e. the demands arrive into the
system one-by-one. The network management system keeps
records of the VNFs served by each network EC node. Each
request req is represented by a vector compounded of the
number of CPU cores of the corresponding VNF and the
bandwidth of the required traffic [reqcpu, reqbw]; e.g., [3, 100]
is a request for a VNF that needs 3 CPU cores and processes
100 Mbps traffic. The requests are represented by the set
J = {req1, req2, ..., reqJ}.

Under these assumptions, the problem is to place each given
VNF request in a proper EC, without knowledge of future
requests in order to maximize the acceptance rate. The solution
to this problem should consider both the capacity constraints
of the ECs and the bandwidth constraints of the links.

III. OPTIMAL SOLUTION

In this section we obtain the optimal solution of the problem
by formulating it as a finite MDP then solving it using DP,
i.e., the PI algorithm.

A. The MDP Formulation

An MDP [10], models controlled stochastic dynamical sys-
tems whose evolution is subject to random factors and which
can be modified by certain decisions. An MDP provides a
mathematical framework for learning sequential decision mak-
ing, where actions in each state s provide not only immediate
rewards R, but also the subsequent state s′. Mathematically,
an MDP is a 5-tuple of 〈S,A,P,R, s0〉, where:
• S: the environment’s finite set of states
• A: the finite set of applicable actions within the environ-

ment states
• P: the state transition probabilities where
P(St+1 = s′ | St = s,At = a)

• R(s, a, s′): the immediate reward the agent obtains for
being in state s, taking action a and ending up in the
subsequent state s′.

• s0: the initial state at which the agent starts its task
We assume here that the environment is fully observable

and the environment state at time t, denoted st, contains all
the relevant environment information to the agent. It reflects

not only the network status at time step t, but also the VNF
reqj arriving into the system at time t.

An MDP where all 5-tuple elements are known in advance,
is called a model-based MDP and can be solved by DP
methods, such as the PI algorithm. This allows to obtain the
optimal agent’s policy π∗(s), in order for it to place as many
VNFs as possible.

We define the state st as a vector of vectors st = [[ecs], [d]],
where ecs represents as many vectors as there are EC nodes in
the system, ecs = [[M1], [...], [MK ]]. Each Mk vector has size
I which is the total number of different VNF types. The value
of the i-th element of [Mk] determines the total number of
active requests using instances of VNF type i ∈ I, otherwise
0. Following the technique presented in [11], the vector [d]
has size I and only one of its i-th elements can take a value
while the remaining elements are 0; where d[i] = +1 if an
incoming request req requests an instance of VNF type i, and
d[i] = −1 if a request that have been using an instance of
VNF type i departs from the network.

The state transition probabilities P are crucial to compute
the optimal agent’s policy π∗(s). In this paper, the P are
computed from the VNF req arrival and departure rates, λi
and µi ∀i ∈ I. To describe the process of computing P let us
define two subsets of the state space, namely:
• S+ ⊂ S = {s | ∃i s. t. di = +1}
• S− ⊂ S = {s | ∃i s. t. di = −1}
Whenever s ∈ S+, this implies a request reqj that can

either be served by a EC node chosen by the agent A(s) ∈
{M1,M2, ...,MK} or rejected due to insufficient resources to
handle it. The states s ∈ S− are completely transparent to
the agent, since it does not perform any action upon departure
of requests; therefore, there is no agent action as such, we
could say that the action is void. Let us illustrate this with
an example considering the following scenario: I = {1, 2},
λ1 = 2, λ2 = 4, and µ1 = 0.25, µ2 = 1.

In Fig. 2, s0 reflects the network status where the type 1
request arrives at t = 0. The agent chooses a = M1, so is
allocated on EC 1, which increments M1[1] by 1. After this
action, there are several possible s′ that depend on the next
event—a new req of type 1 or 2 could arrive in the system, a
departure of the req of type 1 in M1 or of type 2 in M2 could
also happen. Fig. 2 shows how the transition probabilities are
calculated based on the transition rates using the competing
exponentials theorem [12]. The numerator of P is the rate of
the corresponding event, i.e., λi for the states s ∈ S+, and for
the departure states s ∈ S−, it is the total number of active
req of type i that are held times the corresponding departure
rate, µi. The denominator is the total rate of all possible events
in this state. Note that the arrival rates are independent and
the departure rates depend on the total number of active req
of each type in the Mk.

In Fig. 3, s0 indicates that a req of type 2 is departing from
the system. It could be from M1 or M2. Fig. 3 shows the
state transition probabilities only for the case where the req is
departing from M1; for M2, it would be the same procedure
as shown here. In this case, the P is composed of two terms,



s0 = [[[1,0], [0,1]], [1,0]]
a = M1 a = M2

s′ 1 = [[[2,0], [0,1]], [1,0]]

s′ 2 = [[[2,0], [0,1]], [0,1]]

s′ 3 = [[[2,0], [0,1]], [−1,0]]

s′ 4 = [[[2,0], [0,1]], [0, − 1]]

#(s′ 1) = λ1
λ1 + λ2 + 2μ1 + μ2

#(s′ 2) = λ2
λ1 + λ2 + 2μ1 + μ2

#(s′ 3) = 2μ1
λ1 + λ2 + 2μ1 + μ2

#(s′ 4) = μ2
λ1 + λ2 + 2μ1 + μ2

#(s′ 1) = 0.266

#(s′ 2) = 0.533

#(s′ 3) = 0.066

#(s′ 4) = 0.133

...

Fig. 2. State transition probabilities for an arrival event

s0 = [[[1,1], [0,1]], [0, − 1]]
req2 departs from M1

s′ 1 = [[[1,0], [0,1]], [1,0]]

s′ 2 = [[[1,0], [0,1]], [0,1]]

s′ 3 = [[[1,0], [0,1]], [−1,0]]

s′ 4 = [[[1,0], [0,1]], [0, − 1]]

#(s′ 1) = μ2
2μ2

⋅ λ1
λ1 + λ2 + μ1 + μ2

#(s′ 3) = μ2
2μ2

⋅ μ1
λ1 + λ2 + μ1 + μ2

#(s′ 4) = μ2
2μ2

⋅ μ2
λ1 + λ2 + μ1 + μ2

#(s′ 1) = 0.137

#(s′ 2) = 0.275

#(s′ 3) = 0.0172

#(s′ 4) = 0.068

...

#(s′ 2) = μ2
2μ2

⋅ λ2
λ1 + λ2 + μ1 + μ2

req2 departs from M2

Fig. 3. State transition probabilities for a departure event

µ2/2µ2 is the probability of req of type 2 that is departing
from M1, considering µ2 from M1 and M2. The second term,
as shown in Fig. 2, is obtained by the competing exponentials
theorem. Note that the sum of probabilities P(si) is equal to
0.5, since only half of the possible transitions are represented.
In this paper, R(s, a, s′) = 1 if the given request is deployed
in one of the EC nodes and R(s, a, s′) = 0 if the demands
are rejected.

B. Dynamic Programming

DP is a collection of methods by which it is possible to
obtain the optimal policy of an MDP, as long as all elements

of the model are known in advance. The PI algorithm is one
of these methods [13].

As shown in Algorithm 1, PI is divided into two sub-
algorithms; Policy Evaluation and Policy Improvement. The
former computes Vi(s) ∀s ∈ S for a given policy πi(s) . The
latter improves the previously given policy πi(s) and obtains
a new improved policy πi+1(s).

The state-value function V (s) pairs s to r and determines
how good it is for the agent to be in a given s. The V (s) can be
expressed in terms of π(s), where Vπ(s) describes how good
it was for the agent to follow its π(s) in a particular s, take
an a and transition to another s′. The immediate R(s, a, s′)
plus the function V (s′) of the landed next state s′ determines
how good the original s was; more precisely, we have

Vπ(s) =
∑
a

π(a | s)
∑
s′

P[R(s, a, s′) + γV (s′)]

The discount rate γ ∈ [0, 1] prevents the agent from
infinitely returning to a state accumulating rewards. If γ ≈ 1
the agent will prioritize expected future rewards. In contrast,
when γ ≈ 0 the agent will strongly consider the immediate
rewards. Each iteration is guaranteed to result in an improved
new policy until the optimal strategy is obtained. Since a finite
MDP is a finite set of S and A, convergence of V ∗(s) to obtain
the π∗(s) is achievable in a finite number of iterations. Prior
knowledge of all valid s, allows to set γ ≈ 1.

Finally, out of all possible policies, there’s at least one to
be better or equally as good to all other policies achieving the
optimal state-value function V ∗(s); more specifically:

V ∗(s)← max
π

Vπ(s) ∀s ∈ S.

Algorithm 1 Policy Iteration
Randomly initialize V (s) ∈ R and π(s) ∈ A(s) ∀s ∈ S
while ∆ > θ do . The Policy Evaluation loop

. θ determines the accuracy of estimation
∆← 0
for ∀s ∈ S do
v ← V (s)
V (s)←

∑
s′,r p(s

′, r | s, π(s))[r + γV (s′)]
∆← max(∆, |v − V (s)|)

policystable ← true
for ∀s ∈ S do . The Policy Improvement loop
actionold ← π(s)
π(s)← argmaxa

∑
s′,r p(s

′, r | s, a)[r + γV (s′)]
if actionold 6= π(s) then
policystable ← false

if policystable then
return π∗

else
go to Policy Evaluation loop

IV. PRACTICAL SOLUTIONS

In the MDP formulation, we defined a subset S− to derive
the transition probabilities in the case of departure from a



demand, as in Fig. 3. Since it is not needed in the practical
solution, we redefine the state as follows:

s = [reqcpu, reqbw,M
fcpu
1 , ...,Mfcpu

K ,Mfbw
1 , ...,Mfbw

K ]

where Mfcpu
k is the available CPU units of the k-th EC

node, and Mfbw
k is the available BW connection to reach the

k-th EC node.

A. Q-Learning

In cases where not all aspects of the system are known
in advance, model-free reinforcement learning approaches can
find the (near) optimal policy. Here, the agent must learn from
its own actions without a given π(s); hence, it is also an off-
policy model.

The Q-Learning algorithm [14] drives the agent’s learning
by assigning values to (s, a) pairs. The Q-values define how
good an action is in a given state. They are updated for each
interaction with the environment by the following rule:

Q(s, a)︸ ︷︷ ︸
new value

← Q(s, a)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

·

temporal difference︷ ︸︸ ︷(
R(s, a, s′)︸ ︷︷ ︸

reward

+ γ︸︷︷︸
discount rate

· max
a′

Q(s′, a′)︸ ︷︷ ︸
estimate of optimal future value︸ ︷︷ ︸

new value (temporal difference target)

−Q(s, a)︸ ︷︷ ︸
old value

)

By introducing a learning rate α ∈ [0, 1], it is possible to
control the variation of Q-values, where α defines to what
degree the agent replaces the old data with new ones. A rate
α ≈ 1 forces the agent to consider the latest information, while
α ≈ 0 causes the agent to learn nothing. In the update rule
of Q-Learning, the new Q-value is the weighted combination
between the old Q-value and the new observation that the agent
must believe. Q-Learning algorithm converges to an optimal
Q-value, Q∗(s, a), given sufficient α and exploration over S
that satisfies the Robbins-Monro conditions [15] [16].

A disadvantage of Q-Learning is that the agent can only
learn from actions performed in visited states, otherwise
there is no learning. The chain of successive actions and the
resulting states form an episode. This leads to the exploita-
tion/exploration dilemma. It might be interesting for the agent,
especially at the beginning of its training2, adopt an explorer
profile to visit as many states and try as many actions as
possible within those states. When the agent’s learning reaches
a certain level, it is more beneficial to exploit the known
actions that bring higher rewards when revisiting the known
states. This strategy is known in the literature as ε-greedy [13].

Q-Learning differs from PI in that it cannot be evaluated
directly without the agent having prior experience. That is, it
requires knowledge about what to do when confronted with an

2There is no training concept as such in Q-Learning as is exists in other
ML domains. Nonetheless, we refer to training as the initial episodes in which
the agent attempts to populate its Q-Table.

s, otherwise the agent’s actions would be completely random
according to the ε-greedy strategy. Therefore, the Q-Learning
agent is trained with several different VNF req sequences
before using its agent to evaluate. To prevent Q-Learning
agent from being confronted with an unknown state (during
the evaluation stage) and failing its attempt to search for it in
Q-Table, the algorithm has been modified to allow it to learn
during the evaluation stage as well.

Algorithm 2 Q-Learning
Set values for: learning rate α, discount rate γ
Randomly initialize Q[s, a] ∈ R ∀s ∈ S, ∀a ∈ A(s)
for each episode do

Initialize S
for each step do

if evaluation then
if s in Qtable then
a← argmax(Q(s, a))

else
behave as in not evaluation

else
a← action from A(s) by ε-greedy strategy
Observe s′

r ←R(s, a, s′)
Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s′, a′)−Q(s, a)]
s← s′

Until ST

Another important aspect to consider in the present work
is that there is no absorbing/terminal state ST in the VNF
placement problem. In episodic tasks, a ST is reached when
the agent reaches its goal or commits an error that forces the
environment to restart. However, in our problem, the VNFs
assignment should be done as long as there are requests.
Therefore, in this work ST is determined by the total number
of reqj in the VNF req training files.

B. Best Fit

In addition to Q-Learning, we develop another practical so-
lution called best fit which is inspired by a classical Weighted
Round Robin load balancing algorithm. The algorithm assigns
the incoming VNF request to the EC that has the highest
network metric value l which is defined as follows,

l = a
Mfcpu
k

100
+ (1− a) 1

Numhops

where Numhops is the number of hops from the BS to the EC
node, and a =Mubw

k / (Total Network BW) where Mubw
k is

the BW connection used to reach the k-th EC node.
The algorithm best fit first checks if all EC nodes have

enough CPU and BW resources, otherwise a rejection is
generated. If there is only one EC with available resources,
the VNF req is assigned to that EC node. If there is more than
one EC node with the same resource availability, the VNF req
in this paper is randomly assigned. If there is more than one
EC node with different resources availability, the VNF req is
assigned to the EC node that is proved to have the highest l.



TABLE I
DEFAULT SIMULATION SETTINGS

Settings Values
Initial network status [4, 12, 0, 0, 1000, 400, 0, 0]

No. training files 10
No. req in training files 500

No. episodes in training files 250
No. evaluation files 20

No. req in evaluation files 500
[λ1, λ2] [3, 2]
[µ1, µ2] [1, 0.5]

[req1, req2] [(1, 300), (3, 50)]

V. SIMULATION RESULTS

The following simulations were performed from a theoreti-
cal perspective, since the PI algorithm requires a large amount
of computational resources and execution time. It would be a
tedious task to simulate a network with a large number of
entities. For this reason, several BSs demanding req and two
EC nodes were considered to meet the demands. The goal is
to measure the performance of Q-Learning and observe how
far it is from a mathematical solution, a model-based MDP,
and how much it can outperform best fit. During the evaluation
stage all three algorithms are run for only one episode over
the same set of VNF requests. Unless otherwise specified, the
following simulations are run with the settings defined in Table
I.

A. Influence of α and γ in Q-Learning algorithm

Continuous tasks, such as the one considered here, force the
agent to compromise by achieving a high reward in the long-
run but giving enough importance to each current state value.
The agent must learn to some degree, but without constantly
overriding what it has already learned. Therefore, α and γ
must be configured considering the nature of the task the agent
is expected to develop.

Fig. 4 shows four different Q-Learning simulations repre-
senting the average reward (Y-axis) collected by the agent over
the course of 250 episodes (X-axis) through the same 500 VNF
req sequence file. Note that setting α and γ to consider the
most recent information and to favor the long-term reward
does not ensure the desired learning convergence, Fig. 4(c).
This is mainly because there is no ST that determines the
goal to be achieved. Setting α and γ to 0.5 have been show
to be satisfactory.

B. Influence of ε-greedy parameters in Q-Learning algorithm

The Q-Learning ε-greedy sub-algorithm that determines
how much of an explorer or exploiter the agent is has certain
parameters that define exactly how long the agent will take on
such profiles. The decay rate (εdecay) has huge impact on the
convergence of the agent’s learning performance, as shown in
Fig. 5.

Depending on the number of episodes, a very small εdecay
rate may mean that the agent can never exploit what it has
already learned, as in Fig. 5(c). By leaving a minimum epsilon
value εmin = 0.001 and a εmax = 1, the probability that the

(a) α = 0, γ = 0.001 (b) α = 0.5, γ = 0.5

(c) α = 0.9, γ = 0.9 (d) α = 0.5, γ = 0.9

Fig. 4. Influence of α and γ in Q-Learning algorithm

(a) εdecay = 0.1 (b) εdecay = 0.01

(c) εdecay = 0.001 (d) εdecay = 0.03

Fig. 5. Influence of ε-greedy parameters in Q-Learning algorithm

agent explores from time to time increases, even towards the
end of the training stage. This is the reason why certain peaks
are seen along the performance curve once it has converged
Fig. 5(a). Fig. 5(d) shows the same level of convergence and
the same average reward as in Fig. 5 (a) but over the course
of 2000 episodes instead of 250 with an εdecay = 0.03. ε
decays after each episode using: ε = εmin + (εmax − εmin) ·
e(−εdecay·episodei).

C. Rejection ratio with respect to VNF arrival rate

In these simulations, the performance of all three algorithms
is evaluated using different λi rates, as shown in Table II. The
goal is to analyze how the reqj arrival rate affects the resources
of the EC nodes. The agent is forced to handle consecutive



TABLE II
SIMULATION SETTINGS TO ANALYZE ARRIVAL RATE

Parameter Sim. 1 Sim. 2 Sim. 3
Factor 0.2 1.0 2.0

[λ1, λ2] [0.6, 0.4] [3, 2] [6, 4]
[µ1, µ2] [1, 0.5] [1, 0.5] [1, 0.5]

Fig. 6. Rejection ratio with respect to VNF arrival rate

incoming requests with short and high arrival rate. The results
are shown in Fig. 6, where the X-axis represents the different
factor values by which the VNF arrival rates are multiplied.

In Simulation 1, the short λ2 and µ2 ensure that such a
demand arrives and departs in a short time, returning the
resources to the EC center to which they were allocated,
and thus becoming available again. As reqj inter-arrival times
increases, (Simulations 2 and 3), the MDP achieves a slightly
better policy than Q-Learning. The agent must constantly learn
how to assign the demands among the resources of EC nodes
as they are occupied for longer time steps. This occasionally
results in rejections. Nevertheless, the performance difference
is very small, indicating that the agent behaves optimally when
EC centers’ resources are scarce.

D. Rejection ratio with respect to EC and link capacity

In these simulations, we evaluate the performance of the
algorithms with different CPU cores and BW link capacities,
as shown in Table III. The results are shown in Fig. 7.

In Fig. 7, for Simulation 1, the scarce available resources,
for either Mfcpu

1 or Mfbw
2 , determine the performance dif-

ference between MDP and Q-Learning. The Q-Learning’s
policy is better than that of best fit, but worse than that of
MDP. The Mfcpu

1 are used up very quickly, so the rest of the
outcome is somehow deterministic. As the available resources
are increased in each EC, Q-Learning appears to improve its
learning and to closely converge to ideal policy of the MDP.
It should be noted that the randomness of Q-Learning during
the exploration stage, determines, to some extent, the starting
point for building the path for the optimal policy. When the
exploitation stage begins, the probabilities of changing what
is already known are less likely.

TABLE III
SIMULATION SETTINGS TO ANALYZE EC RESOURCES

Parameter Sim. 1 Sim. 2 Sim. 3
Factor 0.8 1.0 1.2

[Mfcpu
1 ,Mfcpu

2 ] [4, 8] [5, 10] [6, 12]
[Mfbw

1 ,Mfbw
2 ] [800, 320] [1000, 400] [1200, 480]

Fig. 7. Rejection ratio with respect to EC and link capacity

E. Rejection ratio with respect to EC resource heterogeneity

In this simulations, we analyze how the agent can effectively
reflect the heterogeneity of EC resources. To this end, in
simulations EC 1’s available resources are fixed, i.e. [4, 1000],
while EC 2’s CPU cores are increased as ECcpu2 = β ·ECcpu1 ,
and its available BW is decreased as ECBW2 = 1

β · EC
BW
1 .

The simulation settings and corresponding results are shown
in Table IV and Fig. 8 respectively.

The first thing that can be observed in all simulations is
the small influence of each resource parameter on the agent’s
decision. It is clear that the agent treats the lack of resources
similarly whether it is CPU or BW. It is noticeable that
simulation 1 and 3 show almost the same results in terms of
rejection ratio, and the difference between the two simulations
is a factor 3. Simulation 2 also shows the same dynamics as
all previous simulations: Q-Learning performs slightly worse
when the resources are larger and there are more opportunities
to assign reqj among the network’s EC centers.

F. Rejection ratio with respect to VNF demand heterogeneity

In these simulations, we proceed similarly to the previous
one, but with implications for the VNF demand values. In this
case, the req1 demands remain static and the req2 values are
changed according to the Table V.

For req2, as the number of CPU requests increases,
req2cpu = β · req1cpu, the required link BW is lowered,
req2BW = 1

β · req1BW . The results are shown in Fig. 9. In
Fig. 9, for β = 1.5, a similar agent behavior, when available
resources are not critical, can be seen. Seems to perform worse
than MDP. As EC resources begin to be scarce, Q-Learning
approximates the MDP, resulting in similar policies.



TABLE IV
SIMULATION SETTINGS TO ANALYZE EC HETEROGENEITY

Parameter Sim. 1 Sim. 2 Sim. 3
β 1.0 2.5 3.0

Mfcpu
2 [4] [10] [12]

Mfbw
2 [1000] [400] [333]

Fig. 8. Rejection ratio with respect to EC resource heterogeneity

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the problem of VNF place-
ment in EC-enabled 6G networks, considering both compu-
tational and communication resources. We have developed
theoretically optimal and practical solutions to this problem.
We obtained the former by formulating the problem as a finite
MDP, solved via PI. The latter is the model-free reinforcement
learning approach. We evaluated the solutions in a wide range
of network parameter settings. It has been shown that there is
a striking performance similarity between Q-Learning and PI,
especially when both algorithms face limited EC resources.
Nevertheless, the MDP needs to know all the environment
dynamics in advance, which is an arduous task in a real world
scenario. It has also been shown that Q-Learning performs
better than best fit in all cases and it performs well considering
cloud and transport network parameters, which was the main
objective in the problem.

Once near-optimality of learning-based approaches is shown
in this paper thanks to the mathematical tractability of the
scenario, future work will be devoted to extend the proposed
practical schemes towards increasingly complex 6G scenarios,
e.g., through Deep Q-Networks (DQN).
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