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ABSTRACT

Visual tracking is still a challenging problem in computer vision.
The applications of Visual Tracking are far-reaching, ranging from
surveillance and monitoring to smart rooms. In this work, we pro-
pose a new method to track arbitrary objects using both sum-of-
squared differences (SSD) and color-based mean-shift (MS) track-
ers in the Kalman filter framework. The SSD and the MS trackers
complement each other by overcoming their respective disadvan-
tages. The rapid model change in SSD tracker is overcome by the
MS tracker module, while the inability of MS tracker to handle
large displacements and occlusions is circumvented by the SSD
module. In addition, rapid scale changes of the object generated
by camera ego-motion or zooming are measured by a global affine
motion estimation. Finally, the global appearance model on which
MS relies is updated, based on the Bhattacharyya distance between
this target model and current candidate model. This permits to
tackle global appearance changes of the object. The performance
of the proposed tracker is better than the individual SSD and MS
trackers.

1. INTRODUCTION

Visual tracking in a cluttered environment remains one of the chal-
lenging problems in computer vision for the past few decades.
Various applications like surveillance and monitoring, video in-
dexing and retrieval require the ability to faithfully track the ob-
jects in a complex scene involving appearance and scale change.
Though there exists many techniques for tracking objects, color-
based tracking with kernel density estimation, introduced in [1, 2],
has recently gained more attention among research community due
to its low computational complexity and its robustness to appear-
ance change. The former is due to the use of a deterministic gra-
dient ascent (the “mean shift” iteration) starting at location in pre-
vious frame. The latter relies in the use of a global appearance
model, usually in terms of colors, as opposed to very precise ap-
pearance models such as pixel-wise intensity templates.

Though mean shift (MS) tracker performs well for the se-
quences with relatively small object displacement, its performance
is not guaranteed for objects that get occluded, move fast (inter-
frame displacement larger than their size), exhibit large scale changes,
or are subject to global appearance (e.g., color) changes.

In this paper, we try to improve the performance of MS track-
er against i) large displacements and occlusions, ii) global appear-
ance changes, and iii) large scale changes due to camera operation.
For each of these problems, solutions have been considered within
pure MS trackers: incorporation of a dynamical model (e.g., using

Kalman filter in [1, 3] or particle filter in [4, 5]) to cope with large
displacements, occlusions and, to some extent, with scale changes;
simple linear histogram updates with fixed forgetting factor [5] for
on-line adaptation of reference model; rather complex procedures
[6, 7] for addressing the generic problem of scale changes (no mat-
ter their origin).

The originality of the proposed approach is to address the three
problems within a single and simple approach which exploits the
complementarity of global reference color model and instantaneous
motion estimation based on pixel-wise intensity conservation. The
latter is provided by greedy minimization of the intensity sum-of-
squared differences (SSD), which is classic in point tracking and
motion field estimation by block matching.

In our approach, the problem with large displacements is tack-
led by cascading this SSD tracker with a MS tracker. In order to
adapt to the current global appearance of the object, the reference
model is carefully updated at every frame. Finally, scale changes
of the object that are due to the camera zoom effect or ego-motion,
are estimated by approximating the dominant apparent image mo-
tion by an affine model.

2. PROPOSED ALGORITHM

In this work the tracking is done in the Kalman filter framework.
The object to be tracked is specified by center location and s-
cale (for a fixed aspect ratio) in the image plane. The objective
of the tracking algorithm is to find the correct location in the fu-
ture frames. An SSD tracker based on frame-to-frame appearance
matching is useful in finding the location of the objects in the fu-
ture frame. However, the problem with the SSD tracker is its short-
term memory which can cause drifting problems or even complete
loss in worse cases. On the other hand, MS trackers, which rely
on persistent global object properties such as color, can be much
more robust to detailed appearance changes caused by shape and
pose modification. But MS tracker, due to its gradient ascent na-
ture, has problems with large displacements and occlusions. It
would be fruitful if we could combine the advantages of the afore-
mentioned two trackers. In this work, we cascade the two trackers
to get a better tracking performance. The measurement obtained
by this combined tracker module is used for estimating the states
of the Kalman filter.

The state-space representation of the tracker to be plugged in
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Fig. 1. Overview of the proposed tracking system

the Kalman filter is:
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wherext = (xt, yt) indicates the location of the object center at
time t, st is the scale at timet andwt is a white Gaussian noise
with diagonal varianceQ. The measurement equation relates the
states and measurements at timet as follows:
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whereut = (ut, vt) is the measured velocity (displacement) of
the object,ξt is the measured zoom factor (ratio of scale at timet
over scale at timet− 1), andzt is a white Gaussian noise with di-
agonal varianceRt. The displacement measurementut is obtained
through the SSD-MS tracker module, whereas scale measurement
is provided by global parametric motion estimation. The overview
of the proposed system is illustrated in Fig. 1. The following sub-
sections explain each of the module in detail.

2.1. SSD-MS motion measurement

The SSD tracker localizes the object in the given search window
of the next frame based on minimum distance between the target
and candidate object images. SSD tracker works well even for
large displacement as long as the object appearance changes only
slightly between the two consecutive frames. In reality, the ap-
pearance of the object often changes considerably with time. In a
typical SSD tracker, the winning candidate becomes the new target
for the next time instance. This process makes the SSD to forget
the original model rapidly with time though for a given target it
performs well between any two consecutive frames.

Given the state estimate(x̂t−1, ŝt−1) at previous instant, the
SSD-based displacement estimate is

u
ssd
t = arg min

u∈W

∑

d∈D

[Ft(u + x̂t−1 + ŝt|t−1d)

− Ft−1(x̂t−1 + ŝt−1d)]2
(3)

whereFt−1 andFt are the two consecutive intensity images,ŝt|t−1 =
ŝt−1 is the scale prediction,W is the search window, andD is the
normalized sub-image support (rectangle of original object’s size
and origin at its center).

This first displacement estimate is used for initializing the MS
tracker. The target color modelq = (qi)i=1···m, with

∑m

i=1 qi =
1, is composed ofm bins in some appropriate color space (e.g.,
RGB or Hue-Saturation). It is gathered at the initialization of the
overall tracking. The candidate histogramp(x, s), at locationx
and scales in the current frame is given by:

pi(x, s) =

∑

d∈s·D k(s−2|d|2)δ[b(x + d)− i]
∑

d∈D k(s−2|d|2) (4)

wherek(x) is a convex and monotonic decreasing kernel profile,
almost everywhere differentiable and with supportD, which as-
signs smaller weights to pixels far away from the center,δ is the
Kronecker delta function, and functionb(x) ∈ {1...m} is the col-
or bin number at pixelx in the current frame. One seeks the loca-
tion whose associated candidate histogram is as similar as possible
to the target one. When similarity is measured by Bhattacharyya
coefficient,ρ(p,q) =

∑

i

√
piqi, convergence towards the near-

est local minima is obtained by the iterative mean-shift procedure
[1]. In our case, this gradient ascent at timet is initialized at
y0 = x̂t−1 + ussd

t and proceeds as follows:

1. Given current locationy0 and scaless, compute candidate
histogramp(y0, s) and Bhattacharyya coefficientρ[p(y0, s),q].

2. Compute candidate position

y1 =

∑

d∈s·D w(y0 + d)k′(s−2|d|2)(y0 + d)
∑

d∈s·D w(y0 + d)k′(s−2|d|2)

with weights at locationx

w(x) =

m
∑

i=1

√

qi

pi(y0, s)
δ[b(x)− i].

3. Whileρ[p(y1, s),q] < ρ[p(y0, s),q]
doy1 ← 1

2
(y1 + y0)

4. If ‖y1 − y0‖ < ε stop,
otherwise sety0 ← y1 and repeat Step 2.

The final estimate provides the displacement measurementut =
y1 − x̂t−1. Finally, the two entries associated to this measure-
ment in the covariance matrixRt of the observation model (2) are
chosen as

σ
2
u = σ

2
v = αe

−βκ(y1)
, (5)

whereκ(y1) is the curvature of the SSD function aroundy1 and
α andβ are two parameters set to102 and 50 respectively in the
experiments.

2.2. Scaling measurement

Scaling is another important parameter in visual tracking. Often
the scale change of the objects are due to the camera zoom op-
eration or camera ego-motion. The scale change in our work is
measured (to be plugged in Kalman Filter) through the affine mo-
tion parameters of the global (dominant) image motion between
the current and next frame. Such parameters can be estimated in
a fast and robust way [8]. If the2 × 2 matrix At stands for the



linear part of the affine motion model thus estimated at timet, the
measured zoom factor is

ξt = 1 + 0.5 trace(At). (6)

The entry associated to this measurement in the covariance matrix
Rt of the observation model (2) is set to a small constant (1 in the
experiments).

2.3. Target model update

Updating the target model is one of the crucial issues in tracking.
The performance of the mean-shift algorithm decreases consider-
ably when the global appearance of the objects changes with time.
In this case, the color histogram obtained from the target defini-
tion from the first frame correlates less with the current view of
the tracked object. In order to maintain the effectiveness of the
mean-shift tracker in this scenario, it is essential to update the tar-
get model while tracking. This model update helps the tracker
to perform well in a cluttered background condition and appear-
ance changes. In our system the Bhattacharyya distance, which
measures the distance between target model and model at current
location estimate provided by the Kalman filter, is used to update
the reference. This model update is a trade-off between adaptation
to rapid changes and robustness to changes due to occlusion. In or-
der to be on safer side, in our system candidate models close to the
target contributes more than farther ones. The update procedure
used is defined as:

qt+1 ∝ qt + e
−α[1−ρ(qt,p(x̂t,ŝt))]p(x̂t, ŝt), (7)

whereα is a real positive scalar, which determines the model up-
date rate. Typical value ofα used in our experiments is set to 10.

2.4. Algorithm summary

The complete algorithm is summarized below. Given previous ref-
erence color modelqt−1 and previous state estimate(x̂t−1, ŝt−1)
with error covariancePt−1:

1. Obtain SSD-based displacement measurementussd
t accord-

ing to (3).

2. Correct this measurement with MS iterative search, initial-
ized atussd

t and with reference color modelqt−1, to obtain
final measurementut.

3. Estimate global affine motion over the image and derive
new scale measurementξt according to (6).

4. Using displacement and scale measurementut andξt, up-
date state estimate with Kalman filter, providing(x̂t, ŝt)
and associated error covariancePt.

5. Update target color model according to (7) to getqt.

Initial state(x̂1, ŝ1 = 1) in frame 1 is obtained either by manual
interaction or by detection, depending on the scenario of interest.
Initial reference color model is thenq1 = p(x̂1, ŝ1).

3. RESULTS AND DISCUSSION

The proposed algorithm has been tested on several videos and the
proposed tracking system, which uses both SSD and mean-shift
tracker, works better than individual SSD or mean-shift tracker.

Fig. 2. Tracking result of proposed system (magenta) against SSD
(green) and MS (blue) tracker for ‘train’ sequence. Frames shown
20, 50, 200, 270, 620 and 1150.

Tracking results for three personal videos of low quality taken by
a hand-held camera are presented in Figs. 2, 3 and 4.

In the first sequence, there is a lot of shaking which was chal-
lenging for the trackers to follow the objects. The proposed algo-
rithm was able to track the toy train throughout the sequence. It is
observed that the mean-shift tracker just oscillates about the object
whenever there is a heavy shake and gets lost later, whereas the
SSD performs well approximately till 600th frame and collapses
after a heavy shake. It can be seen that the toy train turns around
almost 180 degrees from starting to end, and experiences substan-
tial scale changes due to camera zooming in and out. The model
update helps here to learn the object while tracking.

In the second sequence, the fast movements of the camera and
of the racing go-carts result in large displacements in the image
and dramatic motion blur. In addition, go-carts get briefly occlud-
ed. Despite all these difficulties, the combined tracker manages to
track successfully one go-cart, whereas the SSD and MS trackers
get lost.

In the third sequence, the results were presented for the frames
that are temporally subsampled by 3. In this sequence, the rapid
camera movement makes the MS and SSD tracker fail. The com-
bined tracker tracks the object correctly with proper zooming.

4. CONCLUSION

In this paper, we have proposed an efficient visual tracker by cou-
pling SSD and mean-shift algorithms, which have complemen-
tary properties. The approach also includes scale adaptation ac-



Fig. 3. Tracking result of proposed system (red) against SSD
(green) and MS (blue) tracker for ‘go-carts’ sequence. Frames
shown 35, 42, 45, 46, 47, 48, 50, 58.

counting for camera zoom operations and ego-motion, and on-line
adaptation of the kernel-based reference color model. The result-
ing tracker performs well even for objects that move fast in clut-
tered background, get occluded, change appearance over time and
change scale due to camera operations. Since both SSD and M-
S trackers have real-time computational complexity, the proposed
compound tracker is suitable for real time tracking of objects.
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