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Abstract— This paper presents a new model of human attention
that allows salient areas to be extracted from video frames. As
automatic understanding of video semantic content is still far
from being achieved, attention model tends to mimic the focus of
the human visual system. Most existing approaches extract the
saliency of images in order to be used in multiple applications
but they are not compared to human perception.

The model described here is achieved by the fusion of a static
model inspired by the human system and a model of moving
object detection. The static model is divided into two steps: a
“retinal” filtering followed by a “cortical” decomposition. The
moving object detection is carried out by a compensation of
camera motion. Then we compare the attention model output
for different videos with human judgment. A psychophysical
experiment is proposed to compare the model with visual human
perception and to validate it. The experimental results indicate
that the model achieves about 88% of precision. This shows the
usefulness of the scheme and its potential in future applications.

I. INTRODUCTION

The quantity of audiovisual information has increased with
the arrival of Internet and digital television. The need to
analyze video semantic content has appeared to serve in
many applications: video summary, video browsing, and video
retrieval... Automatic understanding of semantic content is still
far from being achieved in spite of the significant advances of
computer vision and image processing.

Attention models have been introduced to solve the limits
of current algorithms. Without understanding the full video
content, attention models tend to capture the focus of the
visual human system. Attention is a neurobiological concept
that represents the capacity of humans to concentrate and focus
on things such as a single object, a landscape. . . Thus, the
understanding of attention processes should facilitate scene
analysis and help video content analysis by reducing the
number of objects or area to be analysed.

The first attention model was proposed by Koch and Ull-
man [1] in 1985. Then, Itti et al. [2] defined a visual attention
map, which is the combination of different maps dedicated to
different low level features (orientation, intensity and colour).
Other authors, inspired by the human visual system, created
more elaborated models. Chauvin et al. [3] proposed a model
inspired by the retina and the primary visual cortex cell

functionalities. Then, attention was introduced into videos to
try to fill the semantic gap. The methods also tried to exploit
the temporal component. Ma et al. [4] defined a user attention
model based on a motion vector field extracted from MPEG
stream. This approach was used for video skimming. New
systems appeared by combining maps of static and dynamic
visual attention. Bollmann et al. [5] introduced the detection
of moving objects to the static features (symmetry, orientation
and color analysis). Ho et al [6] presented an attention model
based on three levels of features: low level (intensity and
color), medium level (motion) and high level (face detection).
The attention model defined in [7] aimed at simulating eye
saccades. Two applications were considered: virtual humanoid
perception and automatic video surveillance. In [8], the authors
proposed an attention model based on many visual features
(color, orientation and intensity) but also on face and text
detection for adapting image size. In general, these models
are not compared to human perception. They are directly
used through various applications like video summarization,
encoding, watermarking or surveillance.

This article presents a new visual attention model. It relies
on the fusion of a static model inspired by the human system
and a model of moving object detection in a scene. The
static model is based on retinal filtering followed by a bank
of Gabor filters. The moving object detection is carried out
by compensation for camera motion. Once the visual spatio-
temporal attention model was built, a psychophysical exper-
iment allowed us to validate the proposed model. The main
contributions of our work are a new user attention model and
the building of an experiment to judge the effectiveness of the
method.

II. ATTENTION MODEL

In this section, we describe our attention model. This model
extracts the salient areas from videos. It is divided into two
parts: a static and a dynamic one.

A. Static part of the model

This part is inspired by biology and functionalities of
human visual system cells (from the retina to the primary
visual cortex). This part of the model concerns each frame of



the videos.

Retinal filtering
At the first level of information processing, the retinal
photoreceptors carry out an adaptive compression process
followed by high-pass filtering [9]. This results in contrast
equalization of the image, providing a relative insensitivity
to local illumination variations. This pre-processing is
interesting for extracting saliency because it is invariable to
some modifications, such as luminance variations between
images. Then, the parvocellular pathway provides a spatial
high-pass filter (known to whiten an image’s frequency
spectrum) that compensates for the 1/f image amplitude
spectrum.

Primary visual cortex
Primary visual cortex cells are sensitive to visual signal
orientations and spatial frequencies. Here, we chose to model
simple cell receptive fields. These cells are sensitive to stimuli
having a certain orientation and a certain frequency with a
specific position in the visual field, which is modelled by a
two-dimensional Gabor filter. A Gabor function is defined by
a gaussian with spatial extents σx and σy modulated by a
complex exponential with frequency f in a direction θ. We
carried out this filtering by directly multiplying the retina
output image with the Gabor filter in the Fourier domain.
Before achieving the Fourier transform, we multiplied the
image by a Hanning window to remove edge effects. We
chose here to decompose each image of the video using
thirty-two Gabor filters (four different spatial frequencies and
eight different orientations). So, we obtained thirty-two maps
(thirty-two images), depending on the frequency and the
orientation of the original image, for each frame of the video.

Interactions
A neuron is, by definition, a contact cell. Thus, the response
of a cell is always dependant on a neuronal environment.
Then, the neuron’s activity is modeled by the visual field
neighborhood and so is dependent on lateral connections.
With regard to the orientations, the computed interactions
preferentially connect neurons devoted to the same orienta-
tion. These interactions, which symbolize both excitatory and
inhibitory connections, are modeled by a linear combination
of the simple cells (fig 1):

Eint(fi, θj) =
∑
k,l

wk,l · E(fi+k, θj+l), w =

 0 -0.5 0
0.5 1 0.5
0 -0.5 0


(1)

Figure 1 illustrates the interactions. In this example, the
Gabor filter with weight 1 in direction π/4 interacts with its
neighbours. The Gabor filters with the same direction sym-
bolize excitatory and those with different directions represent
inhibitory.

The output of this stage is composed of 32 maps for each
image of a video. These maps put into relief the image energy
in function of the spatial frequency and the orientation of
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Fig. 1. Example of interactions. The Gabor filter with weight 1 in direction
π/4 interacts with its neighbours.

the signal in the original image and take into account the
interaction between the orientation maps.

Static saliency map
We extract a static saliency map for each image as the sum of
the 32 energy maps described above:

Ef =

∣∣∣∣∣∣
∑
i,j

Eint(fi, θj)

∣∣∣∣∣∣ (2)

The regions having the highest energy are considered to be
salient. Figure 2 shows examples of static saliency maps. The
content of the images is rather varied: a rugby match, a car
chase and a bicycle race. We can observe on the bottom row
that the energy is located on objects which seem to be salient.

Fig. 2. Examples of static attention maps. Top row: video frame. Bottom
row: the associated static attention map.

B. Dynamic part of the model

The dynamic part of the model detects the moving objects in
a scene. In fact, we assume that the location where something
moves is salient. Next, it is necessary to estimate camera
motion. We use the 2D motion estimation algorithm developed
in [10]. This algorithm provides the dominant motion between
two successive frames. A 2D parametric motion model be-
tween two successive frames is then defined and a robust
multiresolution estimation of parametric motion models is



carried out. We chose affine motion model to represent the
camera motion. {

vx = a1 + a2 · x + a3 · y
vy = a4 + a5 · x + a6 · y

(3)

Once we had the coefficients [a1, ..., a6], we computed the
motion compensated frame. Compensation of camera motion
was formed by bilinear interpolation Ic(x, y, t + 1) = I(x +
vx, y+vy, t+1). The previous frame was then subtracted from
the motion compensated frame to generate Displaced Frame
Difference (DFD):

DFD(x, y, t) = Ic(x, y, t + 1)− I(x, y, t) (4)

Finally, the absolute value of DFD informs about regions that
do not follow camera model and corresponds to displacement
of objects. Figure 3 shows examples of object detection. We
can see that the rugby players are correctly detected as well
as the cars and the cyclists.

Fig. 3. Examples of moving object detection. Images represent the absolute
value of Displaced Frame Difference.

C. Spatio-temporal attention model
Before dealing with map fusion, it is necessary to carry

out a temporal filtering of each map. Indeed, the maps are
computed locally, either on one frame (for the static model)
or on two successive frames (for dynamic model), and the
salient regions must be temporally coherent inside a window
of duration L. The temporal continuity of the video prevents
the appearance of salient areas on one or two images only (two
frames correspond to 2/25 = 0.08s). This is why a median
filtering of width L is carried out. In our experiment, the size of
window L equals five frames. Since the maps do not have the
same magnitude, a standardization stage is necessary before
carrying out the map fusion. This stage is carried out by the
following:

Sn =
{

S/Th if S < Th

1 if S ≥ Th
(5)

where S is a static or dynamic saliency map and Th is a
predefined threshold (25 in the two cases).

Once the maps have been normalized, a fusion stage is
achieved to combine all maps into a final saliency map. The
fusion is performed using the max operator which can be
interpreted as an “or” logical operator. Thus, the final map
contains static and dynamic information. Finally, the map
obtained is a gray image with a higher value for salient zones.

Thanks to image processing techniques, we detect the
regions of attention. The following steps are achieved: thresh-
olding, morphological operation (close and open), region se-
lection. In the last step, we determine the regions according

to 4-connected neighbourhood. The regions with area lower
than a threshold are removed. Finally, the remaining regions
are selected and defined as masks. If the number of masks is
greater than five, we keep only the five biggest masks. Figure 4
illustrates the fusion of maps and the selection of attention
masks: the cars, crowd and players, and the cyclists.

Fig. 4. Examples of spatio-temporal attention masks.

III. EXPERIMENTAL RESULTS

In order to test and to validate our model, we carried out
a psychophysical experiment. The goal of the experiment was
to know if the areas defined as salient by the model are indeed
salient. We tried to compare the model with human perception.

A. Method

Subjects
Sixteen naive subjects underwent the experiment. All subjects
had normal or corrected to normal vision.

Stimuli
The subjects saw nine different videos displayed in the middle
of the screen with a frequency of 25 images per second. Videos
were composed of 288x352 pixel-images in 256 gray-levels.
For one randomly selected image of one video, we associate to
it the spatio-temporal attention map using the presented model.
In order to test if the salient areas provided by the model
are in agreement with the human visual perception we take
exactly the same image and the same masks but we apply the
masks to random positions as shown in figure 5. The principle
is as follows: the mask of model having highest area is first
randomly moved in the image; the second mask having highest
area is then moved but without possible overlapping with the
other mask and so on... Finally the two images (fig 5) have
the same masks but at different places in the image.

Fig. 5. Example of the target images. The left image is the output of the
presented model. The right one is the same image with the same masks but
placed in random positions.

Procedure
The experiment was processed with a computer with a Pentium
III processor. The stimuli were presented on a 21” screen



(Mitsubishi Diamond Pro2020u) with a resolution of 1024 by
768 pixels and a frame rate of 100 Hz. Subjects were placed at
a distance of approximately 50 cm from the screen. Figure 6
describes the events for one trial: a fixation point appeared
(here a small black cross) in the middle of the screen for two
seconds, followed by a 1.2s video still in the middle of the
screen. Then, two images were presented symmetrically in the
middle of the screen. These images belonged to the previous
video and were masked in different ways: one following the
model and the other with random position masks. The subject
had to choose which one seemed to him to be the closest
to the video. The selected image should have represented the
best video content. His response and the reaction time were
measured with a response box and E-Prime software. His
answer had to be given as quickly as possible.

Each video appeared four times, with two different target
images in the two possible positions on the screen. So in two
cases the same images are used and in one case the image
provided by the model is on the right side of the screen and
in the other case is on the left. This allows us to have more
answers for one condition and to see if a subject gave his
answer randomly. The experiment is divided into three phases.
Each phase contains three videos and so twelve random trials.
During one experiment, each subject answered 36 trials.

video (1.2s)

target images time

screen

screen

screen

Fig. 6. Experimental design: one trial sequence is illustrated. First, a video
appeared for 1.2s, and then two images appeared in the middle of the screen.
The task was to choose the image that is closest to the video.

B. Results

For the analysis we only kept fourteen subjects (two subjects
had random responses). We measured the percentage of correct
responses per subject (the correct response is in the case where
the subject chose the model mask). Over all subjects the mean
correct response percentage is 88% with a mean standard
deviation of 5%. As we expected, for all subjects the model
masks correspond more to the video than the random masks.

We can refine these results. For some masks there is an
overlapping between the model masks and the random ones.
So we should find fewer correct answers when the model
masks are overlapped with random masks rather than when the
masks are separated. So we added a condition: when masks

had more than 50% of overlapping and when masks had less
than 50% of overlapping. We made an analysis of variance
(ANOVA) for the percentage of correct response as a function
of these two conditions. The overlapping influences the correct
response (F (1, 13) < 0.001). So the percentage of correct
responses is lower when the model masks and the random
masks are overlapped, which consolidates the model.

IV. CONCLUSION

We have presented a spatio-temporal attention model. It
relies on the fusion of a static model inspired by the hu-
man system with a model of moving object detection. A
psychophysical experiment was proposed to judge the effec-
tiveness of the model. The proposed model provides good
results with a precision of 88%. These results are promising.
In addition, the model can be used in many applications
such as video indexing, summarization, watermarking and
surveillance. One of the future works would be to use this
model to provide a video summary and to use an experimental
paradigm to test the efficiency of the method.
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