
HAL Id: hal-00283770
https://hal.science/hal-00283770v1

Submitted on 30 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive pixel neighborhood definition for the
classification of hyperspectral images with support

vector machines and composite kernel
Mathieu Fauvel, Jocelyn Chanussot, Jon Atli Benediktsson

To cite this version:
Mathieu Fauvel, Jocelyn Chanussot, Jon Atli Benediktsson. Adaptive pixel neighborhood definition for
the classification of hyperspectral images with support vector machines and composite kernel. ICIP
2008 - 15th IEEE International Conference on Image Processing, Oct 2008, San Diego, Californie,
United States. pp.1-4. �hal-00283770�

https://hal.science/hal-00283770v1
https://hal.archives-ouvertes.fr


ADAPTIVE PIXEL NEIGHBORHOOD DEFINITION FOR THE CLASSIFICATION OF
HYPERSPECTRAL IMAGES WITH SUPPORT VECTOR MACHINES AND

COMPOSITE KERNEL

Mathieu Fauvel ∗⋄ , Jocelyn Chanussot ∗

∗GIPSA-lab, Signal and Image Dept.
Grenoble Institute of Technology

BP 46 - 38402 St Martin d’Heres - FRANCE

Jon Atli Benediktsson ⋄

⋄University of Iceland
Dept. of Electrical and Computer Eng.

Hjardarhagi 2-6, 107 Reykjavik-ICELAND

ABSTRACT

The pixel-wise classification of hyperspectral images with a reduced

training set is addressed. The joint use of the spectral and the spatial

information is investigated. The spectral information simply consists

of the spectral value of each pixel. For the spatial information, we

use an area filter to simplify the image and extract consistent con-

nected components. These components are used to define an adap-

tive neighborhood for each pixel of the image. The vector median

value of each component is defined as a spatial feature for the classi-

fication. Support Vector Machines are used for the classification and

a composite kernel is used to combine both the spatial and the spec-

tral information. Experiments are conducted on AVIRIS hyperspec-

tral data. The proposed approach provides significant improvements

in terms of classification accuracy when compared with a standard

statistical method (maximum likelihood) and with a SVM classifier

using the spectral information alone. Robustness with respect to the

size of the training set is also investigated.

Index Terms— Support vectors machines, spatial information,

hyperspectral data, kernel function, area self-complementary filter.

1. INTRODUCTION

The pixel-wise classification of hyperspectral data using both spec-

tral and contextual information is investigated in this paper. It is well

known that contextual information is useful for the classification of

hyperspectral images [1]. Such information is usually modeled in

a statistical framework using Markov Random Field theory (MRF).

For instance, a recursive Bayesian classifier is proposed in [2], where

the joint prior probabilities of the classes of each pixel and its spatial

neighbors being modeled by MRF. Improved classification perfor-

mances are obtained, the gain over standard methods being signif-

icant when the training set remains limited. Advance approaches

can be found in [3], for the regularization of remote sensing images.

These approaches are based on a statistical modelling of the inter-

pixel dependency, where the neighborhood of every pixel is defined

by a fixed set such as a 3 × 3 square. This strategy fails when con-

sidering pixels that are close to the border of a structure: The fixed

shape neighborhood then includes pixels from different structures.

For example, as shown in Fig. 1.(a), the classification of the marked

pixel (roof) may be biased by the neighboring pixels that actually
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belong to the street. To overcome this problem, an adaptive neigh-

borhood should be defined for each pixel. Furthermore, assuming

that relevant structures have a sufficient area, this adaptive neigh-

borhood should include a large number of pixels. In this paper, we

thus propose to define the neighborhood of one given pixel as the

connected zone resulting of a self-complementary area filtering. For

each pixel, the spatial feature used for the classification is extracted

from the neighborhood of pixels.

Another problem usually appears with MRF based methods and

hyperspectral data: the problem of parameters estimation. When

dealing with hyperspectral data, each pixel-vector x is composed of

several components (dim(x) > 100). In such a high dimensional

space, the statistical estimation becomes a difficult task [4]. For in-

stance, the required number of training pixels for a reliable estima-

tion is related to the square of the dimensionality for a quadratic clas-

sifier (e.g., the Gaussian Maximum Likelihood) [5]. In remote sens-

ing applications, only limited ground-truth information is usually

available. As a consequence, algorithms based on statistical mod-

elling may not perform well in classification of hyperspectral data in

full feature space [6]. On the contrary, among the machine learning

algorithms, Support Vectors Machine (SVM) [7] have demonstrated

outstanding abilities to deal with hyperspectral data [8], even in the

situation of very small training sets [9]. However, standard SVM

are pixel-based classifiers and no spatial information is used in the

classification process. Recent studies have investigated different ap-

proaches to deal conjointly with the spatial and spectral information

using SVM. For instance, Camps-Valls proposes to estimate the local

mean and variance for each pixel using a fixed square neighborhood.

These statistical parameters are included in the classification process

using a composite kernel [10]. In [11], Mercier uses the same kernel

formulation but the spatial information is estimated by a wavelets

decomposition of the image. In this paper, we have adopted the

same kernel strategy: a linear combination of two kernels is used,

one acting the spectral information and one acting on the spatial in-

formation.

The originally of our proposed method is the definition of an

adaptive neighborhood. This methodology is detailed in Section 2.1.

Then, following [10, 11], we present the classification using the spa-

tial and the spectral information with the SVM based on a mixture of

kernels, Section 3. Experimental results are presented and discussed

in Section 4. Finally, conclusions are drawn in Section 5.

2. CONTEXTUAL INFORMATION

In this section, we present how neighbors-sets are defined and how

the contextual information is estimated.



(a) (b) (c)

Fig. 1. Inter-pixel dependency estimation. (a) Original image and fixed square neighborhood. (b) Filtered image and neighbors-set defined

using flat zones. (c) Original image with the defined neighbors-set Ωx.

2.1. Self-complementary area filters

Self-complementarity is a very important property: the operator is

its own complement (Ψ = CΨ), which is stronger than self-duality

(Ψ = CΨC) [12]. A self-complementarity filter treats structures

in the image that have different local contrast equally, which is not

possible with the self-duality property only. Thus, they analyze all

the structures of an image at once, local extrema (be they minima or

maxima) as well as regions with intermediate grey levels.

Self-complementary area filters have been introduced to extend

area opening and closing to all the structures of the image, not only

its local extrema [12]. This is of the utmost interest for the analysis of

very high resolution remote sensing images: these connected filters

enable to remove small meaningless structures (e.g. cars on the road)

while preserving borders of interest with a very high accuracy and

independently of the structures’ contrast. P. Soille has proposed a

two steps algorithm, which consists of:

1. Labelling all the flat zones that satisfy the area criterion λ,

2. Growing the labelled flat zones until a partition of the image

is reached.

A better preservation of the image structures is achieved by iterating

the algorithm until the desired minimal size is obtained, e.g., let I

be the image to process, then Ψλ(I) = Ψλ(Ψλ−1(. . . (Ψ2(I)))),

where λ is the minimal size of the remaining flat structures.

As stated in the introduction, we define the neighborhood of

each pixel as the connected zone resulting from the application of

a self-complementary area filter. This is illustrated in Fig. 1 where

Fig. 1.(b) is the area filtering of Fig. 1.(a). The image is partitioned

into flat zones. Each flat zone is consistent and hence belongs to

one single structure in the original image. Furthermore, the smallest

structures have been removed and only the main structure of interest

remain. All the pixels belonging to one given flat zone are con-

sidered as neighbors. The neighborhoods defined in this way are

applied on the original image. Fig. 1.(c) shows the morphological

neighborhood Ωx associated with the spotted pixel x. It is obviously

more homogeneous and spectrally consistent than the fixed square

featured on Fig. 1.(a).

The direct use of the area filter to hyperspectral remote sensing

images is not possible, because of the lack of ordering relation. In

order to overcome this shortcoming, several approaches can be con-

sidered. Using marginal ordering, one can apply the area filter on

each band independently, but considering the high inter-band cor-

relation, this is not appropriate [13, 14]. In this article, we adopt

the same strategy than in [15], where a Principal Component Anal-

ysis (PCA) [5] is applied to reduce the dimensionality and project

data onto vector space where ordering relation exist. Then we com-

pute the area filtering on the first principal component to extract the

neighborhood of each pixel. The neighbors mask is applied on each

band of the data and spatial information are extracted. The following

scheme sum up the methodology:
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where v
1
p is the first eigenvector corresponding to the largest eigen-

value.

2.2. Extracting spatial feature

Once the neighborhood of each pixel has been adaptively defined,

spatial information is extracted. Considering the small average size

of the neighbors set, a description using order statistics would not

be reliable. Shape descriptors are not appropriate either as one given

structure might be split into several consistent regions. (see Fig. 1.(b):

The roof is divided into several triangles). As a conclusion, we pro-

pose to compute the vector median value of the neighbors set Ωx,

for every pixel x:

Υx = med(Ωx) (1)

where dim(x) = dim(Υx) = n, the number of spectral bands.

Unlike the mean vector, the median vector is a vector from the initial

set, which ensures a certain spectral consistency.

As a conclusion, every pixel now has two features: The spectral

feature x which is the original value of each pixel and the spatial fea-

ture Υx which is the median value computed on each pixel’s adap-

tive neighborhood. The easiest way to use both information would

be to build a stack vector. In this paper, we propose to exploit the

kernel trick [16] of the SVM and design a composite kernel that al-

lows to tune the relative influence of the extracted features. This is

detailed in the next section.



3. SUPPORT VECTORS MACHINES (SVM)

The SVM classifier is surely one of the most popular kernel learn-

ing algorithms. It performs robust non-linear classification using the

kernel trick. The idea is to find a separating hyperplane in some

feature space induced by the kernel function while all the compu-

tations are done in the original space [16]. Given a training set

S = {(x1, y1), . . . , (x
ℓ, yℓ)} ∈ R

n × {−1; 1}, the decision func-

tion is found by solving the convex optimization problem:

max
α

g(α) =

ℓ
X

i=1

αi −
1

2

ℓ
X

i,j=1

αiαjyiyjk(xi
,x

j)

subject to 0 ≤ αi ≤ C and
Pℓ

i=1
αiyi = 0

(2)

where α are the Lagrange coefficients, C a positive constant that is

used to penalize the training errors, and k the kernel. To be an ac-

ceptable kernel, k should be a positive semi-definite function [17]. A

short comparison of kernels for remotely sensed image classification

can be found in [9].

When the optimal solution of (2) is found, i.e. the αi, the clas-

sification of a sample x is achieved by looking to which side of the

hyperplane it belongs:

y = sgn

 

ℓ
X

i=1

αiyik(xi
,x) + b

!

. (3)

To construct the kernel that works with both the spatial and the

spectral information at the same time, we use the positive linear com-

bination of two kernels, namely the spectro-spatial kernel:

Kλ
σ,µ(xi

,x
j) = µk

spect
σ (xi

,x
j) + (1 − µ)kspat

σ (xi
,x

j) (4)

where λ is the area filtering parameter and µ a weighting parameter

which controls the relative influence of each kernel. The latter pa-

rameter µ has to be tuned during the training process. The spectral

kernel kspect
σ is chosen as the standard Gaussian kernel:

k
spect
σ (xi

,x
j) = exp

„

−
‖xi − x

j‖2

2σ2

«

(5)

where the norm is the Euclidean-norm and σ ∈ R
+ tunes the flex-

ibility of the kernel. The spatial kernel kspat
σ is also Gaussian but

uses the extracted spatial features Υx:

k
spat
σ (xi

,x
j) = exp

„

−
‖Υ

x
i − Υ

x
j‖2

2σ2

«

. (6)

The one versus all strategy was chosen for the multi-class classifica-

tion problem [7]. It allows us to tune the parameter µ for each class

independently.

4. EXPERIMENTAL RESULTS

Hyperspectral data from the optical AVIRIS sensor were used in the

experiments. The data contains 220 data channels and is 145×145

pixels. It was collected in June 1992 over the Indian Pine Test site.

Sixteen classes of interest are defined (see Table 1). The reference

data consist of 10366 pixels that are not uniformly distributed; class

9 has only 20 labelled pixels while class 11 has 2468 labelled pixels.

All the spectral bands were used, even though some of them were

known to be noisy. No pre-processing were done.

Different training sets were randomly constructed from the ref-

erence data with 5, 10, 15, and 20 pixels by class, respectively. Each

Fig. 2. Kappa coefficient of agreement. The horizontal axis rep-

resents the number of training samples use for each class and the

vertical axis represents the κ values in percentage (+ : Classical

SVM using the spectral information only; ∗ : proposed approach

with λ = 5; × : Proposed approach with λ = 9; ◦ : Proposed

approach with λ = 13; △ : Proposed approach with λ = 17).

experiment is repeated five times and the averaged results are re-

ported. The validation was done using the whole reference data.

The accuracy is assessed using the Kappa coefficient of agree-

ment κ, i.e., the percentage of agreement corrected by the amount of

agreement that could be expected due to chance alone [18].

Several sizes of the area filtering parameter λ were tested. Ac-

cording to the low spatial resolution, we have used relatively low

spatial parameter: from 3 to 20 pixels. The SVM parameters were

tuned for each binary sub-problem by cross-validation: σ2 = {0.5, 1, 2, 4},

µ ∈ {0.1, 0.2, . . . , 0.9} and C = 200. The optimization prob-

lem was solved using a modified version of the LIBSVM library

(http://www.csie.ntu.edu.tw/˜cjlin/libsvm).

Experimental results are given in Fig. 2. With 5 pixels by classes,

corresponding to less than 1% of the available reference data, the κ

is as low as 31.4 using the spectral information only. On the contrary,

a significant increase of κ is obtained when using the additional spa-

tial information with the proposed method (typically around 50%

increase), for instance κ = 47.30 for λ = 17. Naturally, better clas-

sification accuracies are obtained using the larger training sets. For

instance, when 20 training samples are used for each class, κ reaches

over 70 whatever the value of λ, while using only the spectral bands

leads to κ = 46.6.

Note that when considering larger area thresholds (λ > 20), the

classification accuracy decreases since the area filter is too strong

and structures of interest start to disappear. Consequently, one should

set λ according to the spatial resolution of the data and the minimal

size of the structures one is interested in.

Table 1 sums up the kernel parameters found during the training

process for each binary sub-problem. The value of µ differs for the

different classes. This tends to prove that the amount of each kind of

information actually needs to be tuned carefully during the training

process and should not be fixed a priori to the same value for every

classe.

The obtained results are very promising. They clearly outper-

http://www.csie.ntu.edu.tw/~cjlin/libsvm


Table 1. Kernel parameters found for λ = 17 and 20 training samples by classes. κ= 75.80, Overall Accuracy: 78.78%, Average Accu-

racy: 85.57%.

Classes 1 2 3 4 5 6 7 8

Name Alfalfa Corn-notill Corn-min Corn Grass/Pasture Grass/Tress Grass/Pasture-mowed Hay-windrowed

µ 0.6 0.4 0.5 0.4 0.4 0.1 0.9 0.4

σ
2 0.5 0.5 0.1 4 0.5 2 4 2

Classes 9 10 11 12 13 14 15 16

Name Oats Soybeans-notill Soybeans-min Soybeans-clean Wheats Woods Bldg-Grass-Tree-Drives Stone-steel Towers

µ 0.7 0.1 0.1 0.2 0.7 0.3 0.3 0.8

σ
2 4 2 2 1 0.5 0.5 4 0.5

form results obtained on the same data set and presented in [1], pages

334-346. With supervised feature reduction (Decision Boundary

Feature Extraction [1]) and a Gaussian Maximum Likelihood classi-

fier, the overall accuracy was only 63.3% for a training set made of

688 samples and 72.4% for a training set made of 1490 samples. Us-

ing the same reference set, we achieved 78.78% of overall accuracy,

with only 320 training samples see Table 1. Also, substantial im-

provement over the classical SVM is obtained, as can be seen from

Fig. 2.

5. CONCLUSION

The classification of hyperspectral data with a spectro-spatial SVM

classifier is investigated. Influence of a very small training set is

studied in an empirical way. In order to include spatial information

in the analysis, an adaptive definition of every pixel’s neighborhood

is proposed. Using an area self-complementary filter, the image is

simplified to remove irrelevant structures. The remaining flat zones

are considered as sets of neighbors. For each flat zone, the vector

median value is extracted to take spatial neighborhood into account.

The classification is performed using support vector machines and a

spectro-spatial kernel. Comparisons with state of the art algorithms,

a Gaussian ML and a SVM, showed a clear increased of the classifi-

cation accuracy.

Some open questions remain to be addressed. The parameter

λ in the area filtering has to be tuned. It does not seem critical, as

there is a large range of values for which the classification accuracy

remains almost equal. Furthermore, prior knowledge on the data

resolution and the size of the structures of interest can be used. The

kernel parameter has also to be tuned properly, some a priori infor-

mation on the physical nature of the class should help to reduce the

range of tested values and thus reduce the global training time. Our

ongoing works include the definition of additional spatial informa-

tion, such as textural information.
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