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ABSTRACT
We apply social `-norms for the first time to the problem of
hyperspectral unmixing while modeling spectral variability.
These norms are built with inter-group penalties which are
combined in a global intra-group penalization that can enforce
selection of entire endmember bundles; this results in the se-
lection of a few representative materials even in the presence
of large endmembers bundles capturing each material’s vari-
ability. We demonstrate improvements quantitatively on syn-
thetic data and qualitatively on real data for three cases of
social norms: group, elitist, and a fractional social norm, re-
spectively. We find that the greatest improvements arise from
using either the group or fractional flavor.

Index Terms— Remote sensing, hyperspectral imaging,
endmember variability, unmixing, endmember bundles

1. INTRODUCTION

Spectral variability [1, 2] arises during hyperspectral unmix-
ing due to each material having potentially multiple associ-
ated spectral signatures. As an example, lighting variation
can cause the spectral signature to be scaled by a factor. To
compensate for this, it is necessary to develop methods that
allow for material endmember variability.

Vertex component analysis (VCA) [3], a technique for
hyperspectral endmember extraction, can be used to capture
spectral variability found in hyperspectal imagery (HSI) [4].
By extracting the endmembers as learned with VCA, from
random subsets of pixels in the image, one produces end-
members that capture variability in the imaged materials. The
selection of pixels is related to material variability – sam-
pling small subsets can capture more variability while sam-
pling large percentages of the data captures only slight vari-
ation. VCA must have pure pixels to discover endmembers,
an assumption which some methods do not assume [5]. This
means too small of a sampling subset risks missing desired
pure endmembers.

With extracted endmembers, each ideally representing a
pure signature resulting from one state of one material, a stan-
dard constrained fit to these endmembers for each pixel pro-
duces an unmixing result. What remains is to identify which

endmembers correspond to the same material by clustering
the endmembers into material groups. The final abundance
map for each material is then the sum of contributions from
each endmember in that material’s cluster.

This is made concrete in the following way: Let H be the
hyperspectral data matrix which is s-by-n, for s the number
of spectral bands and n the number of image pixels. Each of
k times, for some input k, we use VCA to extractm endmem-
bers from a random sampling of x% of the columns of H for
some x. This produces vectors which form the columns of a
matrix M , the s-by-km endmember matrix.

Next, a clustering technique is applied to the columns of
M to producem clusters resulting in a partitionG1, G2, ..., Gm
of the endmembers such that {M:,j ∀ j ∈ Gi} forms sig-
natures corresponding to the ith material. In the work of
[4] endmembers are clustered with k-means, however in this
work we use instead the more robust technique of spectral
clustering 1 [6]. We consider the case of scaling first studied
by [7] which can be a large source of variability e.g. due to
illumination differences caused by terrain slope. The spectral
angle measure naturally identifies signatures with this type of
variability and is often applied to signature similarity [8, 9].
Let || · ||F denote the Frobenius matrix norm. The second part
of the problem assumes a linear mixture model and solves the
optimization problem

min
X
||H −MX||2F (1)

subject to X non-negative with unit-sum columns, a tech-
nique known as fully constrained linear spectral unmixing
(FCLSU) [10]. This provides the abundance matrix X that
contains the abundance of each endmember for each mate-
rial in each pixel. Summing the rows of X corresponding
to like-partitioned elements of G results in the abundance of
the materials at each pixel. The matrix M has km columns,
which means even for small k there are considerably more
columns than materials. The presence of many representa-
tives for each material means the fit (1) frequently produces

1By spectral clustering, it is meant the grouping of the extracted end-
members into several subsets that are spectrally homogeneous, assuming that
a given subset will correspond to all the different instances of the extracted
endmembeers corresponding to one given material.



a mixture of nearly every material in each pixel. A natural
way to prevent this is for example using sparsity [11, 12]. We
generalize the technique of [13] to enforce this sparsity across
bundles with social norms.

2. PROPOSED METHOD

We propose for the first time incorporating the material clus-
tering information into (1) by using social norms described
in [14]. Because G is known prior to solving (1), the as-
sumption of each pixel being a mixture of a few materials
can be enforced through penalty. Let x ∈ Rs be some vec-
tor and partition the set {1, 2, ..., km} into m groups Gi for
i = 1, 2, ...,m, as was done in the previous section using
spectral clustering with the spectral angle measure. The vec-
tor `p norm of x is given by

||x||p =

(
s∑
i=1

|xi|p
) 1

p

with the cases of p = 1 and p = 2 very common, and
limiting behaviors of p → 0 and p → ∞ approaching the
number of non-zero entries of x and the maximum absolute
value of all entries, respectively. The group pq-norm given
the partition G is given by

||x||G,p,q =

(
m∑
i=1

||xGi
||qp

) 1
q

. (2)

This can be generalized to matrices by summing the ap-
plication of (2) to each column which, for a penalty parameter
λ, results in the proposed model

min
X

1

2
||H −MX||2F + λ

n∑
i=1

||X:,i||G,p,q. (3)

The cases we consider are the group lasso (p, q) = (2, 1),
elitist lasso (p, q) = (1, 2), and a fractional case (p, q) =
(1, 9

10 ). Group lasso tends to select a few groups, in our
case materials, and within groups it prefers a dense mixture
of members. The elitist lasso selects a dense mixture over
the groups and within each group selects a few representa-
tive “elites”. The final fractional lasso selects a few groups,
similar to the group lasso, but it does so without preferring a
dense mixture over groups. Because (3) is subject to unit-sum
columns, the addition of these penalties can appear contradic-
tory. For example, if each material has a single endmember
the group lasso has no influence. This constraint also makes
the traditional sparsity-enforcing lasso penalty nonsensical; a
fraction of 9/10 can enforce sparsity even with constrained
abundance at the expense of non-convexity.

3. ALGORITHM

In this section we solve (3) using the alternating direction
method of multipliers, or ADMM [15], that allows the con-
straints and complex penalty term to be split into distinct and
easily calculable stages. To solve (3), first write the problem
in a slightly different way. Consider the optimization problem

min
X,Y,Z

1

2
||H −MX||2F + λ||Y ||G,p,q (4)

subject to the constraints that X = Z, X = Y , X has
unit-sum columns and Z is non-negative. This equivalent
problem is a ready form for ADMM with multiplier variable
matrices α and β that produce the augmented Lagrangian for-
mulation

min
X,Y,Z

1

2
||H −MX||2F+λ||Y ||G,p,q

+〈α,X − Z〉+ ρ

2
||X − Z||2F

+〈β,X − Y 〉+ ρ

2
||X − Y ||2F

(5)

subject to the constraints ofX with unit-sum columns and
Z non-negative.

Z Subproblem – Minimization with respect to Z is trivial
as the problem is separable for each coordinate of the matrix,
hence Z is updated by

Z ←
(
X +

α

ρ

)
+

with (·)+ indicating the coordinate-wise positive part.
X Subproblem – The update for X is slightly more diffi-

cult due to the unit-sum constraint, however this only requires
adding n multipliers µi

min
X,Y,Z

1

2
||H −MX||2F+λ||Y ||G,p,q

+〈α,X − Z〉+ ρ

2
||X − Z||2F

+〈β,X − Y 〉+ ρ

2
||X − Y ||2F

+
∑
j

µj

((∑
i

Xi,j

)
− 1

) (6)

which results in a linear system of equations given by

(MTM + 2ρI)

(
X
µ

)
=

(
−MTH + α+ β − ρ(Z + Y )

1

)
(7)

where µ indicates the row vector of entries µi and 1 in-
dicates a matrix of ones with the same shape as µ. This sys-
tem is easily invertible and, conveniently, the system matrix
is state-independent.



Y Subproblem – The last closed-form subproblem is that
of Y which requires the use of a group shrinkage opera-
tion SG,p,q , described in [14] with approximate fractional
p-shrinkage as used in [16], denoted by

Y = SG,p,q
(
X +

1

ρ
β,
λ

ρ

)
. (8)

3.1. Final Iterative Scheme

We have described the solution to each subproblem. The full
iterative scheme, along with dual updates, is given by:

• Initialize α← 0, β ← 0.

• Randomly initialize X then set Y ← X , Z ← X .

• Repeat to convergence:

– Z ←
(
X + α

ρ

)
+

.

– X ← the solution of (7).

– Y ← SG,p,q
(
X + 1

ρβ,
λ
ρ

)
.

– α← α+ ρ(X − Z).
– β ← β + ρ(X − Y ).

For our data sets we use ρ = 10 with the iteration requir-
ing on the order of 1000 iterations. The scheme is relatively
quick, taking only minutes to unmix data of size 100-by-100-
by-56. The major challenge is the sum constraint which con-
flicts with the sparsifying penalties resulting in slower con-
vergence.

4. EXPERIMENTAL STUDY

4.1. Data Sets

Set Group Elitist Fractional (0.9) Batchless
Cuprite 88.2% 96.4% 93.2% 203.5%
Islands 94.9% *94.4% 97.8% 565.0%

Table 1. Mean pixel errors for each of three types of sparsity
enforcement algorithms and FCLSU without bundles applied
to two synthetic data sets. Shown is the error as a percent
of the unpenalized bundle model. (*) performance achieved
with a negative value of λ.

We applied our methods to three data sets, two synthetic
with known abundances and one real data set with unknown
abundances. In figure 1 we show example true abundance
maps. The first set is “cuprite” that was generated using the
AVIRIS cuprite data set via the method proposed in [17] with
artificial spectral variability as described in [18]. This tech-
nique uses real spectral signatures and abundance maps based

(a) Synthetic Cuprite.

(b) Synthetic Islands.

Fig. 1. Synthetic abundance maps: the (a) cuprite synthetic
data has a 100-by-100-by-47 data cube and the (b) islands
synthetic data has a 100-by-100-by-56 hyperspectral cube.
Shown are the known exact abundance maps for four materi-
als out of a respective total of 14 and 15 simulated materials.

Fig. 2. Real data set: the third data we evaluate the proposed
models with is a 105-by-128-by-144 hyperspectral cube taken
of the since demolished Robertson stadium at the University
of Houston. Shown is the approximate color image using
three bands near red, green, and blue.

on real data to generate a hyperspectral image with synthetic
variability. For both synthetic data sets there are approxi-
mately three materials in each image pixel, and the data cube
has been reduced by a factor of two due to large performance
costs in optimizing λ for the experiments. The third data set,
shown in figure 3, is an aerial image taken of a stadium with
surrounding parking lots, a parking structure, and trees among
other features. For these data sets we use k = 5 and learn m
endmembers from k randomly selected subsets of 80% of the
data. For each subset VCA is run for 100 iterations.

4.2. Results

To quantify performance we compute, for each method, a
mean pixel error

EModel =
1

# Pixels

∑
Pixels i

√
1

# Materials
||ai − ãi||22

with ai and ãi the actual and approximate abundance maps
for each pixel i. For each method we use the error ratio



Fig. 3. Material abundance maps corresponding to (top row) asphalt, (middle row) a painted structure, and (bottom row) metal
roofing. Shown is the result for each of unpenalized FCLSU, group lasso, elitist lasso, and fractional lasso.

EModel/EFCLSU to quantify improvement over the unpenalized
bundle method (1). Table 1 shows this improvement opti-
mized for each method over λ. As a control we include the
“batchless” model – the model produced by extracting a sin-
gle endmember for each material using VCA on the entire
data set. Quite evidently, the group lasso performs consis-
tently the best, followed by fractional and lastly elitist, with
all new models outperforming batch FCLSU and all models
outperforming the batchless control. In the case of the elitist
lasso, the beneficial value for λ was negative for the islands
data. The effect of a negative λ acts similarly to the fractional
lasso by preferring abundance concentrated in a few material
groups, as opposed to the dense mixture of the elitist lasso. In
the synthetic cases the error is quite low with a value on the
order of 10−3 with most improvements resulting from intra-
material confusion caused by noise.

Qualitatively, results on the stadium are promising. We
selected values of λ for each method which appear to im-
prove the unmixing result without heavy distortion. Here we
demonstrate the differences for three materials: paint on two
buildings, metal roofing, and asphalt as shown in figure 3.

For the two painted buildings and the metal roofing the
group and fractional penalties produce clearly distinct regions
of the image that are consistent with local structure, a promis-
ing result given that no spatial information is used by the
model. The elitist lasso does not follow this trend as it appears
to prefer spreading information across material bundles. The
asphalt is a less clear result, though we note that noise present
in the grass field is reduced and removed by both the group
and fractional penalties.

5. CONCLUSIONS AND PERSPECTIVES

We have shown that using the material clustering informa-
tion in the unmixing step is improved by using social norms.
We presented an efficient method for accomplishing this that
is based on ADMM which breaks the optimization task into
fast and approachable subproblems. In all experiments the
use of group, elitist, or fractional lassos was able to improve
on the baseline model with no penalty term which indicates
that these reflect the desired assumption of material selection
when using bundles to capture spectral variability. The group
and fractional lasso had the best performance while the eli-
tist lasso showed the relatively smallest improvement and un-
clear results. Questions remain as to the relative effective-
ness of the different penalties, for example the use of a neg-
ative elitist lasso or other fractional lassos than p = 9/10.
Furthermore, combinations of these norms would potentially
improve the model further by more delicately capturing the
intra-bundle abundance statistics at the cost of an additional
model parameter. We note, however, that the study of these
many variations becomes dependent on the validity of labeled
data, which is itself a challenge to come by. A further lim-
itation of these methods is endmember selection based on
VCA applied to random subsets of pixels. Because material
variability is spatially correlated, using a spatially correlated
technique for subset selection such as [19, 20] could improve
endmember quality.

6. ACKNOWLEDGEMENTS

This work was partially funded by the European Research
Council (ERC) under grant ERC AdG-2012-320684 CHESS,
NSF grant DMS-1118971, NSF grant DMS-1417674, ONR
grant N000141210838, UC Lab Fees Research grant 12-LR-
236660, and by DGA under grant 2015 60 0012 00.470.75.01.



7. REFERENCES

[1] Alina Zare and KC Ho, “Endmember variability in
hyperspectral analysis: Addressing spectral variability
during spectral unmixing,” Signal Processing Maga-
zine, IEEE, vol. 31, no. 1, pp. 95–104, 2014.

[2] Abderrahim Halimi, Nicolas Dobigeon, and Jean-Yves
Tourneret, “Unsupervised unmixing of hyperspectral
images accounting for endmember variability,” arXiv
preprint arXiv:1406.5071, 2014.
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