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ABSTRACT

This paper presents a novel framework for visual content
classification using jointly local mean vectors and covari-
ance matrices of pixel level input features. We consider local
mean and covariance as realizations of a bivariate Riemannian
Gaussian density lying on a product of submanifolds. We first
introduce the generalized Mahalanobis distance and then we
propose a formal definition of our product-spaces Gaussian
distribution on Rm × SPD(m). This definition enables us to
provide a mixture model from a mixture of a finite number
of Riemannian Gaussian distributions to obtain a tractable
descriptor. Mixture parameters are estimated from training
data by exploiting an iterative Expectation-Maximization
(EM) algorithm. Experiments in a texture classification task
are conducted to evaluate this extended modeling on several
color texture databases, namely popular Vistex, 167-Vistex
and CUReT. These experiments show that our new mixture
model competes with state-of-the-art on the experimented
datasets.

Index Terms— Classification, image local descriptors,
generalized Mahalanobis distance, Product-spaces Rieman-
nian Gaussian Mixture density.

1. INTRODUCTION

To solve various problems in image processing, multivariate
Gaussian measures, or Gaussian laws, are often assumed to
provide efficient solutions. Moreover, mixtures of Gaussian
laws are considered as universal approximators of densities
as long as there are enough Gaussian components. In the con-
text of image or video indexing scheme, multivariate Gaus-
sian probability distributions are widely used. Parametrized
by mean vectors and covariance matrices, mixtures from ran-
dom feature vectors associated to Fisher kernels have demon-
strated significantly better performance in comparison to the
Bag-of-Words approach [1]. Recent works have proposed to

This study has been carried out with financial support from the French
State, managed by the French National Research Agency (ANR) in the frame
of the “Investments for the future” Programme IdEx Bordeaux-CPU (ANR-
10-IDEX-03-02).

mix efficiently Fisher Vectors and Convolutional Neural Net-
works [2].

Beyond direct Gaussian measures, a trend in image pro-
cessing over the years has emerged. It consists in model-
ing the image content with localized structured descriptors
in the form of region covariances, i.e. symmetric positive
definite (SPD) matrices or local covariance matrices (LCM).
Various authors have shown the interest of the second-order
statistical structure i.e covariance matrices. This approach
has been proven to provide powerful representations for var-
ious image processing task including object or texture recog-
nition [3]-[4], face recognition [5]-[6], human detection and
tracking [7], visual surveillance [8]-[9]. In all these works, the
main issue is how to take into account in intrinsic geometry of
LCM space, i.e. the Riemannian manifold of SPD, to provide
geometric means, k-means clustering or dictionary learning to
classify the visual information. In [10], authors propose the
intrinsic definition of the Riemannian Gaussian distributions
for SPD matrices. The well-founded definition of the Rie-
mannian probability density function enables the derivation
and implementation of an expectation-maximization (EM) al-
gorithm for the parameter estimation of mixture of Rieman-
nian Gaussian distributions. The availability of the Rieman-
nian Gaussian mixture model has led to an extension of Fisher
vectors to the Riemannian case for texture and image classifi-
cations or indexing based on LCM descriptors [11].

The above works are mainly focused on the statistical
analysis of LCM set for modeling the second order moment
variability from local centered descriptors of the visual con-
tent. The considered descriptors are usually defined from de-
tail wavelet coefficients or spatial derivative components for
which, by construction, the multivariate mean is zero. In
the context of full local Gaussian descriptors, some works
consider jointly the LCM and local mean vector (LMV) de-
scriptors to increase the capability of the image representation
within the classification task [12]-[13]. For instance, LMV
descriptors allow us to take into account the color mean to dis-
criminate the visual content. In referenced works, some au-
thors have proposed to transform local Gaussian model to an
augmented SPD matrix based on the formal work described
in [14]-[15]. This structured compact form, storing both the
LMV and LCM descriptors in a unique SPD matrix, gives the



opportunity to exploit directly the manifold geometry of SPD
matrices to performe the classification task. Considering the
fusion approach using the approach proposed in [14]–[15],
the main limitation of this compact representation consists in
the ability to describe the variability of the visual content to a
unique space, i.e. the SPD Riemannian manifold. In fact, if
we consider the LMV and LCM descriptors as a pair of two
random variables, the classification task can be viewed as an
inference issue within a product of manifolds. Each manifold
is geometrically specified by the underlying random variable,
i.e. Euclidean and SPD matrix manifolds in the case of the
localized structured descriptors based on the mean vector and
covariance matrix.

In the present paper, we propose to exploit the joint proba-
bilistic modeling of the LMV and LCM descriptors for super-
vised classification task of image databases. The main contri-
bution here deals with the extension of the Riemannian Gaus-
sian distribution considering the random pair defined jointly
by the mean vector and a covariance matrix. The random
pair relies on the concept of product of spaces which corre-
spond respectively to the Euclidean one for the mean vectors
and to the space of SPD matrices for the covariance matrices.
Moreover, based on this new joint Gaussian modeling for the
augmented Riemannian space, we derive mixture models in
order to develop dictionary learning method for classification
task.

The paper is structured as follows. Section 2 gives a brief
introduction on the concept of metric in the case of product
of submanifolds. We introduce the generalized Mahalanobis
distance leading to the definition of our product-spaces Gaus-
sian distribution. Section 3 provides the definition of the cor-
responding mixture models. An expectation-maximization
(EM) algorithm is presented to estimate the distribution pa-
rameters. Section 4 presents an application to image classi-
fication on various databases. We provide some comparisons
with previous models in order to evaluate the potential of the
proposed model in the context of texture image classification.
Conclusions and future works are finally discussed in Sec-
tion 5.

2. PRODUCT OF SUBMANIFOLDS AND GAUSSIAN
MODEL

In this section, we state the definition of the Riemannian
Gaussian density for a set of several random variables. We
consider the case of independent variables for which each
variable belongs to a specific manifold.

2.1. Random Variables on the Riemannian ManifoldHm

Let Hm be a complete and simply connected m-dimensional
Riemannian manifold. Let Y ∈ Hm be a random variable

with probability density function p(y). We have∫
Hm

p(y) dv(y) = 1 (1)

where v(y) is the volume measure induced by the Riemannian
metric of Hm. For some smooth functions F(Y ) and if the
density function exists, the expected value is defined as

E [F (Y )] =

∫
Hm

F(y) p(y) dv(y). (2)

Numerous works have considered the question of moment es-
timation for different metrics such as Fisher-Rao or the Log-
Euclidean one for the space of the SPD matrices SPD(m)
[16]-[17]-[18]. More specifically, in [19]-[10], the Rieman-
nian Gaussian distribution based on the Fisher-Rao metric is
defined by

pΣ(Σ| Σ̄, σ) =
1

Z(σ)
exp

[
−d

2
FR(Σ, Σ̄)

2σ2

]
(3)

where Σ̄ ∈ SPD(m) and σ > 0 define respectively the mean
and the dispersion. In this definition, Z(σ) is the normalizing
factor given by

Z(σ) =

∫
SPD(m)

exp

[
−d

2
FR(Σ, Σ̄)

2σ2

]
dv(Σ). (4)

The Riemannian distance associated to the Fisher-Rao metric
is the following

dFR(Σ, Σ̄) =

√
tr
[
log
(
Σ−1/2Σ̄Σ−1/2

)]2
(5)

2.2. Product of spaces and Generalized Mahalanobis Dis-
tance

Let Y = (Y1, Y2) ∈ Hm be a variable composed of two
independent terms Y1 and Y2. In the Riemannian geome-
try, some well-known results concern the product of spaces
and the associated metric. In [20], the twisted product man-
ifolds is defined as follows: let (H1

n, g1) and (H2
p, g2) be

two irreducible simply connected manifolds specified respec-
tively by two Riemannian metrics with m = n + p. Let π1 :
(H1

n ×H2
p)→ H1

n and π2 : (H1
n ×H2

p)→ H2
p be the canon-

ical projections and let ρ1 : (H1
n × H2

p) → [0,+∞) and
ρ2 : (H1

n × H2
p) → [0,+∞) be positive differentiable func-

tions. The product manifold Hm = H1
n × H2

p is equipped
with the metric tensor g given by

g = ρ2
1π
∗
1g1 + ρ2

2π
∗
2g2. (6)

The definition (6) underlines a direct analogy to the generic
Mahalanobis distance. The quantities ρ1 and ρ2 can be seen
as functions of the dispersion parameters of the random vari-
ables Y1 and Y2 away from their mode ȳ1 and ȳ2 respectively



within their submanifold. Due to their independence, the Rie-
mannian generic Mahalanobis distance is expressed as

d2(y, ȳ) = ρ2
1(σ1)d2

H1
n
(y1, ȳ1) + ρ2

2(σ2)d2
H2

p
(y2, ȳ2) (7)

where the quantity d2
Hi

(., .) depends directly on the metric
considered onHi.

Remark. In the deterministic case, it is noticeable that
if we consider the pair (Y1, Y2) = (µ,Σ), we can observe
that the Wasserstein distance between two multivariate Gaus-
sian laws, N1(µ1,Σ1) and N2(µ2,Σ2) is clearly a Rieman-
nian distance within the general class of distance associated
to the equation (7). In [21] from the optimal transport theory,
the Wasserstein distance is given by the following formula

W 2 (N1,N2)) =‖ µ1 − µ2 ‖22 + ‖ Σ
1/2
1 − Σ

1/2
2 ‖2F (8)

where ‖ A ‖2F= trace(AAT ) is the Frobenius norm.

2.3. Product-spaces Gaussian Distribution from Gaus-
sian Measures

Let us now pay attention to the random pair Y = (µ,Σ)
which corresponds to Rm × SPD(m) of dimension m +
m(m+ 1)/2. This section provides definition of the product-
spaces Riemannian Gaussian distributions. We choose the
following form

(µ,Σ) ∼ p(µ| µ̄,Γ)× p(Σ| Σ̄, σ) (9)

• For the variable µ

The conventional Euclidean multivariate Gaussian law is se-
lected
p(µ| µ̄,Γ) = 1

(2π)m/2|Γ|1/2 exp
[
− 1

2 (µ− µ̄)TΓ−1(µ− µ̄)
]

• For the variable Σ

We propose to use the Riemannian Gaussian distribution
based on the Fisher-Rao metric given by (3). As shown
in [10], the term Z(σ) can be expressed as follows

Z(σ) = C ×
∫
Rm

e−|r|
2/2σ2 ∏

i<j

sinh2 (|ri − rj |/2) dr

where |r| is the Euclidean norm of r, C is a constant and dr =
dr1 · · · drm. Let the spectral decomposition of Σ be given by
Σ = U diag(er1 , · · · , erm)U∗, where U is an unitary matrix
and er1 , · · · , erm are the eigenvalues of Σ. In practice, the
function Z(σ) can be computed by Monte Carlo integration,
as reported in [10].

Remark. In this paper, we select the Fisher-Rao metric.
However, any metric (or distance) can be used provided that
the corresponding normalizing constant does not depend on
Σ̄. This property is guaranteed if the selected distance is in-
variant by affine transformation [10].

3. MIXTURES OF PRODUCT-SPACES GAUSSIAN
DISTRIBUTIONS

In the context of visual content classification or indexation,
various works have focused on dictionary learning in the de-
scriptor space which can be Euclidean or a more constrained
Riemannian manifolds [2, 3, 4, 11, 12, 13]. For this, mixture
models have shown nice performance as tool for statistical
learning.

3.1. Definition

From the definition of our product-spaces Gaussian distribu-
tions versus Rm × SPD(m), the mixture is defined as:

p(µ,Σ|($k, µ̄k,Γk, Σ̄k, σk)1≤k≤K) =
K∑
k=1

$k × p(µ| µ̄k,Γk)× p(Σ| Σ̄k, σk)
(10)

where $µ ∈ (0, 1) are the weights with sum one and where
each Gaussian law is given by (9).

3.2. EM algorithm for mixture parameter estimation

Let (µ1,Σ1), . . . , (µN ,ΣN) be independent samples from (9).
Based on these samples, the maximum likelihood estimate
(MLE) of ϑ = (ϑ1≤k≤K) = ({$k, µ̄k,Γk, Σ̄k, σk}1≤k≤K)
can be computed using an EM algorithm. For this, let us con-
sider for ϑ,

ωn,k(ϑ) = $k×p(µn,Σn|ϑk)∑K
s=1$s×p(µn,Σn|ϑs)

Nk(ϑ) =
∑N

n=1 ωn,k(ϑ)

The EM algorithm iteratively updates ϑ̂ = (ϑ̂1≤k≤K),
which is an approximation of the MLE of ϑ as follows. Based
on the current value of ϑ̂, it updates ϑ̂newk as follows:

I Assign to $̂k the value $̂new
k = Nk(ϑ̂)/N

I Assign to ˆ̄µk the value ˆ̄µnewk = 1/Nk(ϑ̂)
∑N

n=1 ωn,k(ϑ̂)µn

I Assign to Γ̂k the value

Γ̂newk = 1/Nk(ϑ̂)

N∑
n=1

ωn,k(ϑ̂)(µn− ˆ̄µnewk )(µn− ˆ̄µnewk )t

I Assign to Σ̄k the value as defined in [10]

Σ̄newk = arg min
Σ

(
1/Nk(ϑ̂)

N∑
n=1

ωn,k(ϑ̂) d2
FR(Σn,Σ)

)

I Assign to σ̂k the value as defined in [10]

σ̂newk = Φ
(
N−1

k (ϑ̂)×
∑N

n=1 ωn,k(ϑ̂) d2
FR(Σ̄newk ,Σn)

)
where the function Φ is the inverse of σ 7→ σ3 ×
d
dσ logZ(σ).



4. APPLICATION TO TEXTURE IMAGE
CLASSIFICATION

In this section, the product-spaces Riemannian Gaussian
model we have proposed is exercised for the classification
of texture images. For this experiment, three databases are
considered, namely the VisTex, the VisTex complete and the
CUReT database composed respectively of 40, 167 and 62
classes.

For the two Vistex databases, each image is first split into
169 patches of 128×128 pixels, with an overlap of 32 pixels.
For the CUReT database, each class is composed by a set of
92 patches of 200× 200 pixels.

For the classification algorithm, each patch is represented
by a set of F mean vectors µf and covariance matrices Σf
describing the color dependence in the wavelet domain. Each
color channel is first filtered with the Daubechies db4 wavelet,
with 2 scales and 3 orientations. The color information is then
modeled for each wavelet subband by a multivariate Gaussian
distribution. For each wavelet subband (detail and approxi-
mation), the sample mean vector and the sample covariance
matrix are computed resulting in a feature space of F = 13
features.

In this first experiment, the considered databases are first
split in order to obtain the training and the testing sets. In or-
der to model the within-class diversity of textures, each class
in the training set is considered as a realization of a mixture
of product-spaces Gaussian distributions. But, since we es-
timate one sample mean vector and one sample covariance
matrix per subband, the mixture model defined in (10) is gen-
eralized to :

p
(
(µf ,Σf )1≤f≤F ) | ($k, µ̄k,Γk, Σ̄k, σk

)
1≤k≤K,1≤f≤F ) =

K∑
k=1

$k ×
F∏
f=1

p(µf | µ̄k,f ,Γk,f ) p(Σf | Σ̄k,f , σk,f )

(11)

Next, for each class, an EM algorithm is run to estimate the
MLE of ϑ =

(
$k, µ̄k,Γk, Σ̄k, σk

)
1≤k≤K,1≤f≤F . In the end,

each test patch, in the testing set, is assigned to the class of
the closest cluster k, i.e. the one maximizing the conditional
probability. In the following, classification performances are
averaged on 10 Monte Carlo runs.

Table. 1 shows the average classification rate on the Vis-
Tex, VisTex complete and CUReT databases. Here half of the
samples are used for learning while the other half is used for
testing. Classification results are computed for K = 1 and
K = 3 in (10). Column ”Mu” (respectively ”Sigma”) cor-
responds to a model where only the mean µ (respectively on
the covariance matrix ”Sigma”) is used for modeling the color
wavelet coefficients. In column ”Mu Sigma”, the results with
the proposed mixtures of product-spaces Gaussian distribu-
tions. Finally, the column ”Sigma augmented” corresponds
to a model used in [12]-[13] where the mean is embedded in a

Database Number Mu Sigma Mu Sigma Sigma augmentedof modes

VisTex K=1 89.27 99.30 99.48 98.25
K=3 88.22 99.96 99.96 99.68

VisTex complete K=1 64.72 83.75 86.88 80.98
K=3 67.20 92.20 93.75 90.52

CUReT K=1 64.51 45.03 67.90 37.93
K=3 66.15 68.90 87.82 57.56

Table 1. Classification results on the VisTex, VisTex com-
plete and CUReT databases.

Fig. 1. Influence of the number of training samples on classi-
fication accuracy for the CUReT database.

larger covariance matrix of dimension (m+1)×(m+1) [14] :

Σaugmented = |Σ|−
1

m+1

[
Σ + µµT µ
µT 1

]
(12)

As observed, the proposed product-spaces Gaussian
model offers the best performance on these three databases.

A second experiment is carried out to evaluate the in-
fluence of the number of training samples on classification
accuracy for the CUReT database. As observed in Fig. 1,
the best performance are retrieved for the proposed product-
spaces Gaussian model. A significant gain of about 30% is
observed compared to [14] who considers an augmented co-
variance matrix.

5. CONCLUSION

In this paper, we introduce the product-spaces Gaussian prob-
ability distribution: a novel parametric modeling of the ran-
dom pair defined by a mean vector and a covariance matrix.
We show that the mixture Riemaniann Gaussian probability
distribution on Rm×SPD(m) is a serious competitor with the
state of the art in terms on modeling image from local mul-
tiple input-features. The product-spaces Gaussian probability
distribution tackles supervised learning for content textured
image classification.
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