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ABSTRACT

Cross-modal learning of video and text plays a key role in
Video Question Answering (VideoQA). In this paper, we
propose a visual-text attention mechanism to utilize the Con-
trastive Language-Image Pre-training (CLIP) trained on lots
of general domain language-image pairs to guide the cross-
modal learning for VideoQA. Specifically, we first extract
video features using a TimeSformer and text features using a
BERT from the target application domain, and utilize CLIP
to extract a pair of visual-text features from the general-
knowledge domain through the domain-specific learning. We
then propose a Cross-domain Learning to extract the attention
information between visual and linguistic features across the
target domain and general domain. The set of CLIP-guided
visual-text features are integrated to predict the answer. The
proposed method is evaluated on MSVD-QA and MSRVTT-
QA datasets, and outperforms state-of-the-art methods.

Index Terms— Video Question Answering, CLIP, Cross-
modal Learning, Cross-domain Learning

1. INTRODUCTION

Video Question Answering (VideoQA) has become increas-
ingly popular in vision-language navigation [1], multimedia
recommendation [2], and communication systems [3]. The
target is to correctly answer questions about a video, which
requires a deep understanding of video scenes, question se-
mantics, and fine-grained vision-language alignment. Many
methods have been developed for cross-modality learning [4–
7]. But due to limited training data, some linguistic con-
cepts in the answer space have no corresponding video sam-
ples, resulting in the lack of linguistic supervision. Such a
problem hinders accurate pairing between linguistic features
and corresponding visual features, and hence limits the cross-
modality learning ability of the existing models [8–14].
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There are two main directions for improving VideoQA
models. 1) Exploit deeper correlations from annotated video-
text pairs using recurrent neural network [9, 10], graph neu-
ral network [11, 14, 15], conditional relation network [13],
or attention-based models [8, 12]. 2) Overcome the chal-
lenge of insufficient linguistic supervision by importing gen-
eral domain knowledge from large-scale pre-trained vision-
language models, e.g., HERO [16], ClipBert [6], and JustAsk
[17]. Benefiting from the additional general domain knowl-
edge that can describe unseen answers in the target applica-
tion domain, pre-trained models significantly boost the per-
formance of downstream VideoQA tasks and achieve state-
of-the-art results on many VideoQA datasets [4, 8, 18].

It should be noted there may be a knowledge discrepancy
between the target domain and the general domain. Failing
to bridge the discrepancy may bring conflicts in the cross-
modal knowledge representation. To address this problem,
we propose a two-stage cross-domain cross-modal learning
framework under the guidance of CLIP model [19]. CLIP
is pre-trained from large-scale image-text pairs so that more
unseen answers can be described. It provides a bidirectional
transform of features from the salient contents in video frames
and text captions. In the first stage, vision-language features
are extracted in a domain-specific way. In the target domain,
the video features are extracted via a TimeSformer [20] and
the question and answer texts are encoded using transformers
[21, 22]. To incorporate the general domain knowledge from
the large-scale pre-trained CLIP, the key video frames are ex-
tracted as the salient contents and fed into the CLIP to gen-
erate the CLIP-guided visual features, and the question and
answers are fed into the CLIP to generate the CLIP-guided
linguistic features. In the second stage of cross-domain learn-
ing, to bridge the knowledge discrepancy, four CLIP-guided
visual-text encoders are designed to exploit the cross-modal
cross-domain attention information. Finally, the four sets of
visual-text features are fused to predict the answer.

Our contributions are three-fold: 1) The proposed method
effectively extracts the visual and linguistic features from the
general domain knowledge using the pre-trained CLIP and
from the target domain using TimeSformer and transformer.

ar
X

iv
:2

30
3.

03
13

1v
2 

 [
cs

.C
V

] 
 8

 M
ar

 2
02

3



2) The proposed CLIP-guided visual-text attention mecha-
nism effectively integrates the general domain knowledge into
the target domain for cross-modal cross-domain learning in
VideoQA. 3) Experimental results on two large benchmark
datasets demonstrate that the proposed method significantly
outperforms state-of-the-art VideoQA models.

2. PROPOSED METHOD

2.1. Overview of Proposed Method

The block diagram of the proposed CLIP-guided Cross-
domain Video Question Answering (CCVQA) model is
shown in Fig 1. It consists of two main modules. 1) Domain-
specific Learning. The vision and language features are first
extracted in a domain-specific way. More specifically, a
TimeSformer [20] is utilized to extract the visual features
from the video sequences in the target VideoQA domain. To
incorporate the general domain knowledge, the key frames
of the video are first selected and fed into the image stream
of CLIP [19] to extract visual features that are compati-
ble with language supervision. Similarly, the transformer
[21, 22] and the text stream of CLIP [19] take question sen-
tences and prompts as the input to extract text features in the
target domain and general domain, respectively. 2) Cross-
domain Learning. After extracting the visual and language
features separately in the target domain or in the general
domain, these four sets of features are integrated through
cross-domain learning. Four CLIP-guided visual-text en-
coders are designed for cross-domain cross-modal learning
through the attention mechanism. Finally, the four sets of
extracted features are fused through a multi-layer perceptron
(MLP), and the answer decoder [10, 13] is adopted to derive
the correct answer.

2.2. Domain-specific Learning

Given a video with a question to answer, the vision feature
extraction, language feature extraction, and vision-language
alignment are three critical steps for answering the question
[8–14], while lack of general domain knowledge often makes
the open-ended VideoQA very challenging [6, 23, 24]. To
address this challenge, CLIP [19] is integrated into the pro-
posed method to incorporate the general domain knowledge.
The proposed CCVQA model consists of two visual encoders
and two language encoders.

In the target domain, a 12-layer TimeSformer [20] is used
to encode the spatial-temporal information embedded in each
video frame. 16 frames are randomly sampled from a video to
preserve as much information as possible while keeping a low
computational load. The TimeSformer partitions each frame
into Nv patches and generates patch tokens using a linear pro-
jection layer. After learnable positional embedding is added,
the tokens are fed into the attention blocks to perform self-
attention across the temporal and spatial dimensions. A tem-

poral fusion layer aggregates the outputs from the attention
blocks along the temporal dimension to obtain the sequenced
features Hv = [vcls,v1, ...,vNv

], with vi ∈ Rd. d is the
dimension of video features. vcls is the classification token.

In the target domain, a 6-layer BERT-base model [25] is
used to encode the language features Hq . Given the input
question of Nq tokens, the BERT sequentially performs self-
attention on the input and outputs an embedding sequence
Hq =

[
qcls, q1, ..., qNq

]
∈ RNq×d, qi ∈ Rd and qcls is the

[CLS] token. d is the dimension of question features, the same
as that of video features. Learnable positional embeddings are
added to the text tokens, similar to the video encoder.

To incorporate general domain knowledge, a CLIP-guided
visual encoder is designed. As it is time-consuming to encode
the whole video sequence using CLIP, only key frames are se-
lected according to the color histogram contrast1 and encoded
using the CLIP ViT-B/32 model [22]. The CLIP is pre-trained
on 400 million image-text pairs collected from the Internet, to
map visual-text features into a joint embedding space, which
can catch the similarity between encoded image features and
linguistic features, and serve as additional language super-
vision to guide the subsequent text-image alignment. The
CLIP firstly transforms a key frame into Nk patches using
linear projections. After adding the positional embedding,
self-attentions are performed on the patches together with the
[CLS] token to output the sequence features of the key frame
Hk = [kcls,k1, ...,kNk

], ki ∈ Rd.
The CLIP-guided text encoder is designed to extract the

linguistic features using the general domain knowledge. The
given question is used to generate the prompt, with the key
information extracted from the question and the possible an-
swer from the given answer space. Note that we are deal-
ing with open-ended QA and hence there is no answer op-
tion but a very large space of C possible answers. Similar to
the CLIP-guided visual encoder, the CLIP language encoder
tokenizes the prompt sentences, linearly projects them into
the embedding space, and adds position embeddings with a
layer normalization operation. The self-attention is then per-
formed on the sentence embedding and produces a batch of
feature vectors Ht ∈ RC×Nt×w, where Nt is the sequence
length for each of the encoded prompt features [t1, ..., tNt ],
with ti ∈ Rw, w is the prompt feature dimensionality.

2.3. Cross-domain Learning

After deriving the visual features Hv , Hk and linguistic fea-
tures Hq , Ht in a domain-specific way, four cross-domain
cross-modal visual-text encoders are designed to capture
the attentional information among these features. A 6-layer
shared-weight transformer T is designed to model the atten-
tional information between Hq and Hv , and between Hq and
Hk. It directly takes the concatenated multi-modal features
as the input, performs self-attention on paired visual features

1Code is available at https://github.com/keplerlab/katna

https://github.com/keplerlab/katna
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Fig. 1. Overview of the proposed CCVQA. It consists of two main modules. 1) Domain-specific Learning, including a video
encoder to extract spatial-temporal features Hv , a text encoder to encode question descriptions Hq from the target domain, a
CLIP-guided video key frame encoder to encode object representations Hk with language supervision, and a CLIP-guided can-
didate answer encoder to generate linguistic features Ht with vision supervision in the general domain. 2) Cross-domain Learn-
ing, including four sets of CLIP-guided visual-text encoders to model cross-domain cross-modal feature interaction through the
attention mechanism. Finally, the features are fused using an MLP and fed to a decoder to predict the answer.

and linguistic features, and produces the class tokens with a
MLP as formatted in Eqn. (1) and (2).

Hqv = WqvT (Hq;Hv) + bqv, (1)
Hqk = WqkT (Hq;Hk) + bqk, (2)

where the class tokens Hqv,Hqk ∈ Ra. Wqv , bqv , Wqk, and
bqk are trainable parameters.

The size of CLIP encoded prompts Ht ∈ Ra×Nk×w is
much larger than that of the question features Hq ∈ RNq×d.
The concatenation of Ht and Hv or Hk will result in large
sequences and computing such sequences in transformer can
take up to some GPU years [19]. Therefore, to simplify the
extraction of attentional information using self-attention via a
transformer, we perform dot product for the interactions be-
tween the prompt text features Ht and the visual features Hv

or Hk. The [CLS] tokens of Ht, Hv and Hk are linearly
projected to vectors with the size of Ra×w, Rw and Rw, re-
spectively. Then the two vectors are projected and multiplied
to produce another two class tokens,

Htv = P (Ht)� P (Hv), (3)
Htk = P (Ht)� P (Hk), (4)

where Htv,Htk ∈ Ra, � denotes the dot product, and P (·)
denotes the projection.

A weighted multi-head fusion is then utilized to integrate
the four tokens Hqv , Hqk, Htv , and Hqk. For each token, a

linear layer is utilized for feature alignment so that each item
on the token represents the confidence level for one class from
the answer space. The final fused cross-domain cross-modal
features H are derived as in Eqn. (5),

H = W1Hqv +W2Hqk +W3Htv +W4Htk + b (5)

where W1, W2, W3, W4, and b are trainable fusion weights.

3. EXPERIMENTAL RESULTS

3.1. Experimental Settings

The proposed CCVQA is evaluated on two public datasets for
open-ended VideoQA: MSVD-QA [8] and MSRVTT-QA [8],
which are generated using videos from the original datasets,
MSVD [26] and MSRVTT [27], respectively, combined with
auto-generated question answer annotation pairs. MSVD-QA
contains 1.9K videos and 50k question-answer pairs in total
and MSRVTT-QA has 10K videos and 243k question-answer
pairs in total. The questions are categorized into five types:
”what”, ”who”, ”when”, ”where”, and ”how” based on the
starting words of the questions. The answers are all one-
word nouns or verbs describing concrete objects or abstract
concepts in the video. The standard dataset partition is fol-
lowed [8]. On the MSVD-QA dataset, 61% of the data are
used for training, 13% for validation, and 26% for testing. On
the MSRVTT-QA dataset, the train-validation-test data split



is 65%, 5%, and 30%. As for open-ended question answers,
2, 423 answer candidates are used for MSVD-QA and 1, 500
for MSRVTT-QA. The proposed method is compared with
state-of-the-art models. AMU [8], Co-mem [9], HME [10],
HGA [11], SSML [28], QUEST [12], HCRN [13], STN [29],
DualVGR [15], and HQGA [14] are selected as representative
cross-modal learning methods. ClipBERT [6], CoMVT [23],
SSRea [24], and VQA-T [17] are selected as typical pre-train
model-enhanced methods.

The CLIP ViT-B/32 architecture with pre-trained weights
is obtained from the OpenAI’s official release2. All video
frames are resized to 224× 224. On language feature encod-
ing, the question is converted to the statement form at a size
of 1, 500 sentences on MSRVTT-QA dataset and 2, 423 sen-
tences on MSVD-QA dataset which are the same as the num-
ber of answer candidates. All experiments were performed on
a single NVIDIA V100 GPU. The initial learning rate is set to
5 × 10−5 and linearly decayed in the following epochs. The
batch size is 24 for the training processes on both datasets.
The AdamW optimizer with a weight decay of 1 × 10−3 is
employed. The model converges within 15 training epochs
on MSVD-QA and 10 epochs on MSRVTT-QA, consuming
120 GPU hours and 400 GPU hours respectively.

3.2. Comparisons to State-of-the-art Models

Methods MSVD-QA MSRVTT-QA

AMU [8] 32.0 32.5
Co-mem [9] 31.7 32.0
HME [10] 33.7 33.0
HGA [11] 34.7 35.5
SSML [28] 35.13 35.06
QUEST [12] 36.1 34.6
HCRN [13] 36.1 35.6
TSN [29] 36.7 35.4
DualVGR [15] 39.03 35.52
HQGA [14] 41.2 38.6

ClipBERT [6] - 37.4
CoMVT [23] 42.6 39.5
SSRea [24] 45.5 41.6

Ours 46.6 42.4

Table 1. Comparisons with state-of-the-art methods on
MSRVTT-QA and MSVD-QA datasets in top-1 accuracy (%).

The comparisons with state-of-the-art methods are listed
in Table 1. The results confirm that our model outperforms
all the compared methods by a considerable margin. The
proposed method improves the top-1 accuracy from 45.5%
achieved by SSRea [24] to 46.6% on the MSVD-QA dataset
and from 41.6% to 42.4% on the MSRVTT-QA dataset, re-

2CLIP model is available at https://github.com/openai/CLIP

spectively. Compared with the VideoQA methods such as
HQGA [14] and DualVGR [15] that do not use pre-trained
models, the proposed model can significantly outperform
them by nearly 5.4% in accuracy on the MSVD-QA dataset
and 3.8% on the MSRVTT-QA dataset, which validates the
effectiveness of using additional general domain knowledge.
Compared to other pre-trained models such as SSRea [24]
and CoMVT [23], the proposed model further boosts the ac-
curacy by around 1.1% on the MSVD-QA dataset and 0.8%
on the MSRVTT-QA dataset, which demonstrates the effec-
tiveness of our visual and linguistic features encoders and
CLIP-guided visual-text attention mechanism.

3.3. Ablation Studies

To show the performance gain brought about by each con-
tribution, an ablation study is conducted. The proposed
CCVQA is compared with two baselines: 1) CCVQA w/o
CLIP, where the linguistic and visual clues from CLIP are not
used, and 2) CCVQA w/o Cross-domain Learning, where
only visual-text learning within the target/general domain is
applied. As shown in Table 2, CCVQA achieves a significant
performance gain of 1.9% and 1.1% over CCVQA w/o CLIP
on the MSVD-QA and MSVRTT-QA datasets, respectively,
which demonstrates the effectiveness of our CLIP-guided
design. CCVQA also achieves a performance gain of 0.7%
and 0.3% through the proposed Cross-domain Learning on
the MSVD-QA and MSVRTT-QA datasets, respectively.

Method MSVD-QA MSVRTT-QA

CCVQA w/o CLIP 44.7 41.3
CCVQA w/o Cross-domain Learning 45.9 42.1

CCVQA 46.6 42.4

Table 2. Ablation studies on the MSRVTT-QA and MSVD-
QA datasets in terms of top-1 accuracy(%).

4. CONCLUSION

To tackle the challenge of insufficient language supervision in
VideoQA, a CLIP-guided cross-domain video-text encoder is
proposed to transform CLIP’s general domain knowledge into
the application domain. Specifically, the pre-trained CLIP
encodes key video frames and prompt texts using general
domain knowledge. Together with video features extracted
by the TimeSformer and question text features encoded by
the BERT in the application domain, the attentional informa-
tion across visual and text features are extracted using dot
product and shared-weight transformer through cross-domain
learning. Finally, the answer is decoded from the answer
space. The proposed CCVQA is evaluated on two open-
ended VideoQA datasets, MSVD-QA and MSRVTT-QA,
which demonstrates a consistent and significant performance
gain over the state-of-the-art models.

https://github.com/openai/CLIP
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