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ABSTRACT

Sharpness, one of the most effective factors in video quality assess-

ment, usually dominates the first impression of the representation of

the compressed video or image signals. In this paper, a new sharp-

ness metric is presented. Without the original video sequence, this

metric evaluates the level of sharpness of a compressed video se-

quence based on the presence of high frequency signals components.

Also, an attention module and several human visual factors are in-

cluded in order to make the measurement results more correlated

to human perception. Finally, psychovisual experiments show high

correlation between the metric prediction and subjective ranking of

video sharpness.

1. INTRODUCTION

In video compression, spatial information is quantized in order to

reduce the amount of data needed to be encoded based on the as-

sumption of low visibility of high texture information. However,

if the compression ratio is too high, many spatial details are disap-

pear and perceived quality is degraded. Among various factors for

video quality assessment, sharpness has been reported as one of most

important attributes. Therefore, how to accurately measurement of

the users’ perceived sharpness is a very critical task for balancing

the represented quality with the compression ratio. Several related

research has been done and can be categorized into spatial and fre-

quency domain approaches.

In a spatial approach, Zhang and Marziliano [1, 2] developed

several metrics that measure the sharpness by estimating spatial ac-

tivity around edges. The assumption is that a sharp image has larger

local pixel differences and edge slope but smaller edge width than a

blurred image. With the guidance of the edge profile, informative re-

gions for sharpness quantification can be defined. These algorithms

rely heavily on accurate edge detection and are designed for still im-

ages. In a frequency domain approach, Caviedes and N. Zhang[3, 4]

designed a sharpness metric based on measuring the skewness of lo-

cal Discrete Cosine Transform (DCT) coefficients around each edge

location.

In these related works, edge information supplies a very impor-

tant clue for locating the regions of noticeable sharpness. However,

edge detection can fail if some compression artifacts are too strong;

i.e., blurriness, blockiness and accurate edge location might not be

available. Also, most of the previous works assume that human per-

ception has the same sharpness sensitivity at all spatial locations.

However, the fact is that viewers care about the sharpness in the

foreground much more than in background. In addition, most of the

previous research focuses on the application to individual images

and treats a video sequence as a set of independent images. How-

ever, as video is being played, some dependency between frames

can make subjective observation far different from simply averaging

sharpness output through all frames. Therefore, a new approach -

Perceptual Sharpness Metric (PSM) is presented in this paper The

PSM can effectively extract the informative regions based on hu-

man sensitivity to sharpness in different frequency bands and spa-

tial locations. Moreover, several important Human Visual System

(HVS) phenomena, such as luminance and motion masking are emu-

lated, and the predicted sharpness results show high correlation with

subjective ranking. The main idea behind the proposed metric is

measuring the sharpness of each frame by estimating the energy of

high frequency signals in a block based DCT transformation. The

DCT coefficients are weighted based on their corresponding sharp-

ness perceptibility and each block is adjusted by an attention module

and lighting condition. Afterward, the sharpness of each frame is ad-

justed with respect to its global motion activity. Finally, a perceptual

sharpness score is obtained by taking an average through all frames

with various weights.

This paper is organized as followings. Section 2 gives a detailed

explanation of the proposed approach. Section 3 is the experiment

set up and simulation results, conclusions are summarized in Section

4.

2. THE PROPOSED METRIC

From a spatial quality point of view, sharp images usually have more

acute edges than blurred images. As a result, in the frequency do-

main, sharp images contain more high frequency energy than blurred

images. Based on this property, the correlation between energy of

the AC coefficients in the Discrete Fourier Transform(DCT) and

sharpness estimation will be employed as basis of the proposed met-

ric. Afterward, several important human visual factors will be con-

sidered. The block diagram is shown in Fig. 1.

2.1. Channel Decomposition

Let the nth frame of one video sequence to be denoted as f (n)(x, y)
where x ∈ 1, 2, ...Width, y ∈ 1, 2, ...Height and Width, Height
are the horizontal and vertical length of this image. After non-overlapped

8 × 8 block-based DCT, each block is denoted as B
(n)
ij where i, j

are the indices of each block. Fig. 2 shows the DCT basis function

for an 8×8 block. The first column and row represent the frequency

response to horizontal and vertical edge structures. With some inves-

tigation, we found these two orientations are sufficient for sharpness

estimation. Hence, only these two sets of coefficients will be taken

into account, and are denoted as H
(n)
i,j , V

(n)
i,j respectively.
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Fig. 1. Block diagram of PSM.
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Fig. 2. Basis function of DCT.

2.2. Sharpness Sensitivity Function

Not all DCT coefficients are informative for perceptual sharpness.

The energy of some coefficients may come from compression arti-

facts or uncorrelated signal, i.e. spurious edges from compression

artifacts or flat regions. Hence, different weightings should be ap-

plied for each frequency channel, several related works have been

detail investigated at [5]. A similar approach-Sharpness Sensitivity
Function (SSF) is adopted and revised to fit the system designing.

The SSF is described by Equation(1) and its response is shown in

Fig. 4(a)

SSF (d) = (a1 + b1 · d) · exp(−c1 · d) · de1 (1)

where d is denoted as index of DCT coefficients and d ∈ 1, 2...8.

In Fig. 4(a), the third and forth coefficients are given the higher

weights - because most of the noticeable sharpness information is

located in these channels. For the same reason, very low weights

are assigned to the lowest frequency channel(i.e. DC) and the very

high frequency coefficients to reduce the influence of flat regions

and noise. Associated parameters, a1 = −3.533, b1 = 3.533, c1 =
0.548 and e1 = 0.269, have been obtained experimentally. The

sharpness of block (i, j) of the nth frame is obtained by summing

up the products of the SSF with the ratio of horizontal and vertical

DCT coefficients to the DC, as in Equation(2).

S
(n)
ij =

8�

d=1

SSF (d)

B
(n)
ij (1, 1)

· [H(n)
ij (d) + V

(n)
ij (d)] (2)

2.3. Attention Model and Background Subtraction

When evaluating the sharpness of an image, observers are usually

more sensitive to foreground than background. Therefore, the sharp-

ness of an image should be estimated by taking the average through

all the blocks that belong to foreground only. In order to know

which part of an image belongs to the foreground, a well known

background subtraction approach[6] has been adopted. It is robust

against moving backgrounds and has low computational complexity.

In this approach, every background pixel in a time series is modeled

(a) (b)

Fig. 3. Examples of background subtraction of (a) Foreman and (b)

Carphone.

by a Gaussian distribution. However, a single Gaussian model is not

sufficient to model the background accurately since it might be con-

fused by some small movement or the scene changing. In order to

make the model more generic and adaptive to various video content,

the mixture Gaussian model at Equation(3) is used to compensate

the shortcoming of the single Gaussian model.

P (x(n)) =
1

T

T�

t=1

C�

c

1√
2πσ2

c

e
− 1

2
(x

(n)
c −x

(n−t)
c )2

σ2
c (3)

where x(n) is a pixel value of nth frame and T is the number of

look-back frames. The variable C is the dimension of feature vec-

tor of each pixel point. The feature vector here is comprised by

three-dimension chromatic values. When the output of Equation(3)

for a pixel at frame n is larger than a threshold, then this pixel will

be classified as background. By this mechanism, we can separate

foreground and background blocks and construct an attention mask.

Some examples are shown in Fig. 3.

2.4. Luminance Masking Function

Luminance masking is a phenomenon by which human eyes have

less discriminating ability under too bright or too dark lighting con-

ditions. As masking occurs, sharpness will be less noticeable or in-

correctly judged. In order to make the proposed metric closer to

perceptual estimation, this phenomenon is emulated by the Lumi-
nance Masking Function (LMF) in Equation(4), and Fig. 4(b) is its

response.

LMF (l) =
1

10 · l · (a2 + exp(−b2 · l)) (4)

where l is the average luminance value that ranges from 10 to 255

and parameters a2 = 0.001, b2 = 0.1 are obtained experimentally.

In Fig. 4(b), it is interesting to note that the LMF provides larger

weights when the average luminance value lies between 80 and 90.

Based on some subjective observations and previous research[7], im-

age content can be most correctly distinguished under those light-

ing conditions. Therefore, the LMF gives higher weight to 8 × 8
blocks whose average luminance lies within this interval. The ad-

justed sharpness score is the product of the LMF and the sharpness

output for the foreground at nth frame, as expressed in Equation(5).

S
(n)
1 =

1

B′
W B′

H

M′/8�

i′=1

N′/8�

j′=1

S
(n)

i′j′ · LMF (f
(n)

i′j′) (5)
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(b) LMF

Fig. 4. Response of (a)Sharpness Sensitivity Function(SSF),

(b)Luminance Masking Function(LMF).

where i′, j′ ∈ foreground, B′
W B′

H is the total number of fore-

ground blocks and f
(n)

i′j′ is the average luminance value for 8 × 8

block at location (i′, j′) of nth frame.

2.5. Motion Masking Function

Video playing is a process of showing a set of images with a very

short time interval. The motion activity of the shown objects can be

estimated by the amplitude of their corresponding motion vectors.

In addition, motion activity can be separated into three types, which

are global, local and ambiguous motion activities. Global motion is

usually introduced by camera shifting and most of the motion vectors

are pointed in a similar direction. Local motion is the related motion

between objects and the camera that usually happens as camera is

static but object is moving. Ambiguous motion usually occurs in flat

regions, which causes the motion estimator to fail to find the right

prediction; information of this type of motion is less reliable.

As global motion activity increases, spatial content will be less

visible, equivalent to a low pass spatial filter mechanism[8]. Since

sharpness features belong to the high frequency bands, their visibil-

ity will be decreased as global motion increases. To imitate this hu-

man visual effect, the Motion Masking Function (MMF) in Equation(6)is

introduced, where gma(n) is the global motion activity between the

nth and nth + 1 frame, w(i) is the weight of ith frame and fr
is the playing frame rate. Finally, MMF (n) is truncated so that

MMF (n) ∈ [0, 1]. In order to distinguish reliable motion ac-

tivities from unreliable ones, only the motion vectors belonging to

the blocks with high texture and small Sum of Absolute Differences

(SAD) will be taken into account. Since most reliable motion vec-

tors are pointed in a similar direction when global motion activity

occurs, the distribution of all reliable motion vectors concentrates

around some interval as shown in Fig. 5. Therefore, the Global

Motion Activity (GMA) is the summation of the amplitude of mo-

tion vectors that have the highest frequency of occurrence in reliable

motion vectors.

MMF (n) =

�fr/2
i=1 w(i)

�round(fr/2)
i=1 w(i) · gma(n − i)

(6)

Since video playing is a continuous and causal process, motion mask-

ing of the current frame is only related to previous frames. Thus

MMF looks backward a certain number of frames and fr/2 is

chosen as an appropriate number. Moreover, because the video se-

quence is synthesized from a group of still images, some dependent

relationship exists between each pair of consecutive frames. This

(b) Motion Vectors

−20

0

20

−20

0

20
0

20

40

60

 X−axis Y−axis 

 O
cc

ur
re

nc
e 

(b) Distribution of motion vectors

Fig. 5. Example of distribution of motion vectors.
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Fig. 6. Example of Global motion activity vs. Motion masking func-

tion(MMF) of Foreman sequences at frame rate 15fps.

relationship fades as temporal distance increases because of the cog-

nitive limitation. Therefore, w(i) decreases monotonically as tem-

poral distance between the look-back frame and the current frame

increases. Fig. 6 shows one example of global motion activity vs.

MMF output for the Foreman sequence. The output of MMF is mul-

tiplied by 10 for illustration purpose. In Foreman, as strong global

motion activity occurred within frame index 90 → 120, response of

the MMF decreased to a very low value, meaning the sharpness is

least visible. On the contrary, for scenes at rest, the camera motion

is more static, and the output of the MMF increases to a large value

which means sharpness is most visible.

The final perceptual sharpness of a whole sequence is obtained

by taking the average of the weighted sharpness output through each

frame as expressed in Equation(7), where N is the number of frames.

SPSM =

N�

n=1

S
(n)
1 · MMF (n) (7)

3. EXPERIMENTAL RESULTS

3.1. Experiment Setup

In our experiments, two standard video sequences, Foreman and

Carphone have been used for evaluating the performance of our

sharpness estimation. The video sequences are sampled in 4:2:0,

176 × 144 per frame and 15 frames per second.

When video is compressed, the blurriness increases and sharp-

ness decreases as the quantization parameter (QP) becomes larger.

In order to simulate different levels of sharpness, the original video

sequences have been encoded under various QP values ranging from

2 to 30 with the MPEG4 reference encoder.
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The subjective experiment was carried out by Double Stimu-
lus Continuous Quality Evaluation (DSCQE) method. Twenty-three

viewers comprised by 5 females an 18 males participated in this ex-

periment, age ranges from 25 to 33.

3.2. Simulation Results

Fig. 7 and Table 1 provide a comparison of carphone sequence with

various QP values and the corresponding sharpness measurement

from different metrics . Higher scoring means a sharper image. All

the predicted results are mapped to 1 → 10 by a linear transforma-

tion. As shown in Fig. 7, the perceived sharpness decreases as QP

increases. With shown in Table 1, only PSM and Kurtosis match this

trend. In addition, Table 2 and 3 show the correlation between the

MOS data and the output of different metrics of foreman and car-
phone sequences. Higher correlation means better prediction per-

formance. In both sequences, we can see that the PSM has better

performance than other metrics.

QP = 2 QP = 12 QP = 17 QP = 20

PSM 9.50 5.97 4.45 3.45

Zhang-AETS [1] 7.96 9.24 6.57 6.70

Zhang-AETW [1] 9.27 8.20 4.52 5.32

Zhang-DSS [1] 8.30 8.70 8.00 7.70

Caviedes-Kurtosis [3] 9.00 5.72 4.37 4.00

Table 1. Sharpness from different metrics for Carphone sequence.

Pearson Spearman Kendall

PSM 0.98 0.98 0.93

Zhang-AETS [1] 0.86 0.88 0.71

Zhang-AETW [1] 0.96 0.95 0.87

Zhang-DSS [1] 0.85 0.90 0.77

Caviedes-Kurtosis [3] 0.98 0.98 0.93

Table 2. Correlation between the output of different metrics and the

MOS data of Carphone sequence.

Pearson Spearman Kendall

PSM 0.98 0.99 0.96

Zhang-AETS [1] 0.97 0.98 0.96

Zhang-AETW [1] 0.96 0.98 0.96

Zhang-DSS [1] 0.96 0.98 0.96

Caviedes-Kurtosis [3] 0.97 0.99 0.96

Table 3. Correlation between the output of different metrics and the

MOS data of Foreman sequence.

4. CONCLUSION

A non-reference HVS-based sharpness metric for compressed video

has been proposed in this paper. It employs a sharpness sensitiv-

ity function and attention module to extract useful information for

image-based sharpness prediction. Several important human visual

factors have been included to ensure agreement of the measurement

with subjective experiments.

Without guidance from any edge information, the metric pro-

vides results consistent with the subjective data and has robust per-

formance when artifacts are apparent. A close-loop video quality

(a) QP = 2 (b) QP = 12

(c) QP = 17 (d) QP = 20

Fig. 7. Compressed Carphone with different QP.

enhancement system based on this metric will be included in the fu-

ture development.
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