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ABSTRACT

De-fencing is to eliminate the captured fence on an image or a
video, providing a clear view of the scene. It has been applied
for many purposes including assisting photographers and im-
proving the performance of computer vision algorithms such
as object detection and recognition. However, the state-of-
the-art de-fencing methods have limited performance caused
by the difficulty of fence segmentation and also suffer from
the motion of the camera or objects. To overcome these
problems, we propose a novel method consisting of segmen-
tation using convolutional neural networks and a fast/robust
recovery algorithm. The segmentation algorithm using con-
volutional neural network achieves significant improvement
in the accuracy of fence segmentation. The recovery algo-
rithm using optical flow produces plausible de-fenced im-
ages and videos. The proposed method is experimented on
both our diverse and complex dataset and publicly available
datasets. The experimental results demonstrate that the pro-
posed method achieves the state-of-the-art performance for
both segmentation and content recovery.

Index Terms— De-fencing, deep learning, segmentation

1. INTRODUCTION

With the popularity of smartphones and affordable cameras,
photography has become a universal method to record and
share memorable moments. However, in many places such
as a zoo, a playground, or a construction site, the views of
cameras are obstructed by fences that secure people from po-
tential risks. The obstructed view by a fence often destroys
the aesthetic experience of photographers and limits the accu-
rate recognition of objects behind the fence. Hence, an effi-
cient de-fencing method is demanded not only to assist pho-
tographers but also to improve the ability of computer vision
algorithms such as object detection and recognition.

The general pipeline for the state-of-the-art de-fencing
methods includes two main steps: fence segmentation and
content recovery. In fence segmentation, the fence is detected,
segmented, and removed from an image. In content recovery,
the eliminated area is recovered with plausible content.

Fig. 1. Video de-fencing. Left image and right image show
the input and the output of the de-fencing system. Red arrows
on the left image show the recovery of content from neigh-
boring frames to a target frame.

1.1. Related Work

Fence segmentation. Several fence segmentation methods
have been proposed in recent years. Park et al. proposed
a near-regular texture detection method [1] for fence seg-
mentation. This method performs well for regular fence with
uniform background. However, near-regular texture detection
is still challenging in real-world scenes with various lighting
conditions and complex background. Khasare er al. applied
image matting [2] to segment a fence from background [3].
This method requires scribbles along the fence from a user,
limiting its efficiency. To avoid scribbles from humans, Jonna
et al. proposed a deep learning-based method for fence seg-
mentation [4-6]. The main idea is detecting the joints of
fences using convolutional neural networks (CNN) and sup-
port vector machine (SVM) and then connecting the joints to
obtain scribbles for image matting. Although this method has
relatively better efficiency and robustness, it has limitations in
segmenting fences with irregular patterns.

For the segmentation of arbitrarily shaped fences, a
motion-based approach was proposed in [7] with the hypothe-
sis of a static background. Yi et al. proposed a fence segmen-
tation method using optical flow and graph-cut with a spa-
tiotemporal refinement [8]. This method performs well for
a moving camera and irregular fences using both motion and
color information. However, this method cannot detect fences
using a single frame and has high computational complex-
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Fig. 2. Overview of the proposed de-fencing system.

ity. In [9], Jonna et al. segmented fence based on disparity
estimation. The disparity was estimated using a pre-trained
CNN [10] that processes stereo matching on image pairs. Al-
though this method can handle irregular fences, it requires
stereo image pairs and hence, is inconvenient.

Content recovery. Given fence segmentation, the next
step is recovering the content of the eliminated areas. Con-
ventionally, content recovery methods employed image in-
painting methods [8, 11]. However, these methods have limi-
tations in recovering high-frequency details and in applying
for video de-fencing because of the potential discontinuity
around edges between adjacent frames.

For video de-fencing, the occluded content in a frame can
be recovered from neighboring frames as shown in Fig. 1.
It is processed by estimating the relative motion between a
target frame and adjacent frames and by recovering content
using the motion and the backgrounds in contiguous frames.
To simplify the motion estimation, Khasare et al. [3] and Mu
et al. [12] assumed that the background pixels in the frames
shift equally. However, it is barely valid in complex scenes
with objects at various distances. In [6], Jonna et al. proposed
a robust method for background motion estimation by intro-
ducing occlusion-aware optical flow. Along with the robust
motion estimation, they fused multiple frames with L1-norm
regularization. This method efficiently preserves the back-
ground details. However, it requires users to manually select
the frames and suffers from over-smoothing.

In this paper, we propose a fence segmentation method us-
ing the fully convolutional neural networks and temporal re-
finement. The segmentation method achieves significant im-
provements in both accuracy and efficiency. It also does not
require any manual labeling and is able to handle irregular
fences and challenging scenes such as having similar color
for both background and fences. Moreover, we propose a
fast and robust recovery method using occlusion-aware op-
tical flow [6]. The recovery method produces more plausi-
ble de-fenced images and videos. Lastly, we demonstrate the
proposed method achieves the state-of-the-art performance on
both publicly available dataset and our novel dataset which
contains diverse and complex scenes with accurate ground
truths for fence segmentation. Fig. 2 shows the structure of
the proposed de-fencing system.

This paper is organized as follows. We outline the details
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Fig. 3. Architecture of the FCN-8s [13].

of the proposed fence segmentation method in Section 2. In
Section 3, we introduce the content recovery method. The
experiment results are presented in Section 4. Conclusion is
described in Section 5.

2. FENCE SEGMENTATION

Fence segmentation is required in de-fencing to eliminate the
pixels of fences so that the pixels can be recovered with the
occluded content. Assuming content recovery algorithm can
recover the eliminated pixels with plausible content, minimiz-
ing false negative errors is more important than minimizing
false positive errors. Especially for video de-fencing, since
backgrounds are mostly consistent in a short period, the hy-
pothesis is valid in general. Still, minimizing false positive
errors is also important since content recovery algorithm is
not ideally precise because of the noises from motion estima-
tion, light condition variation, etc.

2.1. Fully Convolutional Neural Network

To achieve accurate fence segmentation for high-quality de-
fencing results, we approach this task using the fully convo-
lutional neural network (FCN) [13]. We employ this network
since it has demonstrated the state-of-the-art performance in
semantic segmentation task. The network replaces fully con-
nected layers in VGG-16 network [14] by convolutional lay-
ers to preserve spatial information. Also, the network attaches
deconvolution layers to compensate pooling layers and to ob-
tain the output with the same resolution of the input. More-
over, the network adds skip connections to achieve refinement
and denser predictions. The architecture is shown in Fig. 3.

In training, we randomly sample images and augment
them by cropping, scaling, rotating, flipping, adding noise,
and distorting HSV value to improve the robustness of
the trained model. We initialize FCN-32s network using
the VGG-16 model which is pre-trained on PASCAL VOC
dataset [15]. Then, we sequentially train FCN-32s, FCN-16s,
and FCN-8s using the fixed learning rate of 10719, the mo-
mentum of 0.99, and the weight decay of 5 x 10=%. The
maximum number of iterations is 1.5 x 10 for FCN-32s and
FCN-16s, and 9 x 10° for FCN-8s. The trained FCN-8s is
used to segment fences. Sample predictions using the trained
network are shown in Fig. 4 (b).
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Fig. 4. Results of the proposed fence segmentation method.

2.2. Temporal Refinement

We propose a temporal refinement method to correct misclas-
sified pixels using temporal information. The purpose is to
remove fences completely at every frame. To get the refined
fence prediction P; on a target frame o, we first estimate the
geometric transformation Ty, from the neighboring frame &
to the target frame using phase correlation method [16]. We,
then, warp the neighboring frame to the target frame. This is
repeated for m adjacent frames, and we average the warped
predictions Ty, Py,. To prevent the accumulation of false pos-
itive errors, only the pixels whose averaged prediction score
is higher than the preset threshold (x) are determined as valid
fence pixels. Finally, we process logical OR operation (||)
between the prediction P, on the target frame and the thresh-
olded prediction of neighboring frames (see (1)).
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Minor refinements are further processed using morphological
closing operations. Fig. 4 (c) shows that the temporal refine-
ment can efficiently reduce false negative errors.

3. CONTENT RECOVERY

3.1. Background Motion Estimation

To recover the occluded background by a fence, we use the
occlusion-aware optical flow [6] which is improved from the
coarse-to-fine optical flow framework [17]. Let Y, and Y,

refer to the target image and the k*" neighboring image, re-
spectively. The increment of the optical flow is computed as
follows:

E(du, dv) = argmin HﬁP’(MFﬂlFY;C - YO)H1
+AMIV(u+du)ll + V(v + dv)ly)

where F' = [u,v] is the currently estimated optical flow;
M g qF is the warp matrix with increment dF'; V is the gra-
dient operator; A is the weight between data cost term and
regularization loss term; P’ = P.||M g qr P}, is the out-
put of logical OR operation between fence predictions in the
target frame o and the warped k' frame; P is a boolean ma-
trix that true value represents fence, and negating it switches
between true and false. By ignoring the data cost term, the
increment of the optical flow of occluded pixels is computed
only based on the regularization term. Hence, it provides the
motion estimation of the fenced pixels. We apply successive-
over-relaxation (SOR) algorithm using iterative re-weighted
least squares (IRLS) method to solve for dF'.

3.2. Data Fusion

Given the estimated optical flow of background, we need to
recover plausible contents from adjacent frames. This pro-
cess consists of selecting meaningful frames and determining
the content at each pixel. For selecting frames, [6] manually
selected the frames for simplicity. However, it is not feasi-
ble for video de-fencing. Hence, we use n contiguous frames
with weights. When deciding n, incorporating more frames
has the advantage of obtaining abundant background informa-
tion. However, it could also increase noises because of acquir-
ing information from distant frames. To suppress the noises,
we estimate contents using the weighted mean X, of selected
n frames. For determining the content, we recover the con-
tent with the RGB value in a specific frame where the value
is the closest value among n adjacent frames to the weighted
mean X,. This is to avoid over-smoothing and to preserve
high-frequency details.

To compute the weighted mean X ,,, we use the total vari-
ance (TV)-L1 de-noising model [18] as follows:

2
+AIVX],

2

3)
where wy, and M i, represent the weight and the warp matrix
for the adjacent frame Yy, respectively. The weight parame-
ter wy, is negatively correlated with the temporal distance be-
tween Y, and the target frame Y. Also, wy, is normalized to
ensure ZZ=1 wg = 1. The warp matrix M, from Y toY,
is obtained by the occlusion-aware optical flow. By multiply-
ing the negative of fence prediction P}, only the non-fence
pixels are taken into account in the L2-loss term.

X, = argmin || X — Z wp M o= PLY
X

k=1
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Fig. 5. Fence segmentation dataset.

Since directly recovering using the weighted mean X,
causes an over-smoothing problem such as blurred boundaries
because of averaging over multiple frames, we recover the
content with the nearest RGB value in a specific frame among
all candidate frames. For each pixel (x, y), We first search the
index I of the warped frame that has the non-fence pixel at
(z,y) with nearest RGB value as follows:

2

Io(m7y) :argminHXo(w7y)_MioYi(x7y)H2 (4)

sit. M;,Pj(z,y) = false

Then, the real RGB value are used to get the plausible content
X'

X;(J),y) = MIo(w,y)oYIO(m,y)(xay) (5)
Finally, we substitute the fence pixels in the target frame with
the mapped RGB values to get the de-fenced result X .

X,=-PY,+P X (6)

The solution of the TV-L1 problem can be efficiently ap-
proximated using the proximal TV method [19]. For those
rare pixels that are occluded in all selected frames, the in-
painting [20] is used to predict the content.

4. EXPERIMENT RESULTS

We first introduce our novel fence segmentation dataset con-
taining diverse and complex scenes in Section 4.1. Then, we
evaluate the proposed fence segmentation method on both
publicly available datasets and our dataset, comparing to
the other state-of-art methods [1, 9] in Section 4.2. Lastly,
we demonstrate the performance of the proposed de-fencing
method on videos in Section 4.3. We also compare the re-
sults with [6] on different datasets. For hyperparameters, we
choose m = 5 for temporal refinement, n = 4-8 for con-
tent recovery, and A = 0.0005 for regularization. All the ex-
periments are performed using a machine with Intel Core i7
4.20GHz processor and Nvidia GTX 1080 graphics card. The
proposed de-fencing method with n = 4 takes less than 10
seconds to process a frame with the resolution of 960 x 540.

Fig. 6. Comparison of fence segmentation. (a) input images;
(b) estimated disparity by [9] for the row 1-3 and detection
results by [1] for the row 4-5; (c) results by the proposed
method. Input images are from [1, 8,9, 12] and our test set.

4.1. Fence Segmentation Dataset

We collected a novel dataset containing diverse and complex
scenes with fences. Although several large datasets exist for
semantic segmentation [15,21,22], most of the fences in these
datasets are treated as a single blob or are labeled roughly.
Thus, the datasets cannot be used in de-fencing which needs
precise ground truth labels in pixel-level. Therefore, we col-
lected our own dataset for real-world fence segmentation’.

The dataset consists of 645 fence images captured at var-
ious locations and in diverse light conditions. The resolution
of each image is 3264 x 1840. To obtain highly precise ground
truth labels, we stabilize the camera and capture two images.
One image is captured as usual. The other image is captured
while we put a green curtain behind the fence. Then, we use
color-based segmentation on the image with the green curtain
to obtain the ground truth label. Several samples of the dataset
are shown in Fig. 5.

4.2. Fence Segmentation Evaluation

We compare the proposed fence segmentation algorithm to
the other state-of-the-art methods [1, 9] on both our test
dataset and the datasets from [1, 8,9, 12]. The qualitative

I'The dataset is available at https:/github.com/chen-du/De-fencing



Table 1. Quantitative evaluation of fence segmentation

Method Precision | Recall | F-measure
Park et al. [1] 0.500 0.163 0.246
Proposed 0.910 0.959 0.934

results and the quantitative results are shown in Fig. 6 and
Table 1. Since [9] requires stereo image pairs to estimate dis-
parity and then to segment fences, we show their results on
the datasets [8, 9, 12] that have image pairs. On the row 1-3
in Fig. 6, (a), (b), and (c) show one of the stereo pairs, the re-
sults of [9], and those of our method. As observed in all three
images, the proposed method achieves more accurate results.
The comparison with [1] is shown on the row 4-5. The results
demonstrate that the proposed method is more robust to irreg-
ular pattern and complex background while [1] suffers from
them. The quantitative evaluation on our test dataset is shown
in Table 1, which confirms that our method has outstanding
accuracy on real-world fence segmentation.

4.3. De-fencing evaluation

Visual de-fenced results on phone captured videos are shown
in Fig. 7. The results show that our de-fencing method is able
to remove the fence pixels accurately and recover the content
clearly with high-frequency details. We compare our content
recovery method to the FISTA optimization method [6] using
the same fence segmentation in Fig. 8 (a), and compare the
whole de-fencing system to [6] in Fig. 8 (b). The first row
and the second row in Fig. 8 show their results and our re-
sults, respectively. In the third row, we enlarge a small region
of their results and our results on the left and on the right, re-
spectively. The overall results demonstrate that the proposed
method outperforms other methods by recovering results with
high-frequency details and sharper boundaries. The improve-
ments are due to the weighted mean on neighboring frames
and the use of real RGB values.

Fig. 8. Comparison of de-fencing results. Images in the first
row and in the second row are the results by [6] and by the
proposed algorithm, respectively. The left and right images in
the third row show the zoom-in patches of the first row and
the second row, respectively.

S. CONCLUSION

In this paper, we propose a novel de-fencing system consist-
ing of deep learning-based segmentation and a fast/robust re-
covery algorithm for real-world images and videos. In seg-
mentation, we propose an automatic fence segmentation algo-
rithm using the fully convolutional neural network and tem-
poral refinement. For content recovery, we estimate motion
using the occlusion-aware optical flow and formulate data fu-
sion using the framework which can be solved using the prox-
imal TV. We evaluate the proposed method on both publicly
available datasets and our diverse and complex fence seg-
mentation dataset. The results demonstrate that the proposed
method outperforms the other state-of-the-art methods in both
fence segmentation and content recovery.
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