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Abstract—Stress is prevalent in many aspects of everyday life
including work, healthcare, and social interactions. Many works
have studied handcrafted features from various bio-signals that
are indicators of stress. Recently, deep learning models have also
been proposed to detect stress. Typically, stress models are trained
and validated on the same dataset, often involving one stressful
scenario. However, it is not practical to collect stress data for
every scenario. So, it is crucial to study the generalizability of
these models and determine to what extent they can be used
in other scenarios. In this paper, we explore the generalization
capabilities of Electrocardiogram (ECG)-based deep learning
models and models based on handcrafted ECG features, i.e.,
Heart Rate Variability (HRV) features. To this end, we train three
HRV models and two deep learning models that use ECG signals
as input. We use ECG signals from two popular stress datasets -
WESAD and SWELL-KW - differing in terms of stressors and
recording devices. First, we evaluate the models using leave-one-
subject-out (LOSO) cross-validation using training and validation
samples from the same dataset. Next, we perform a cross-dataset
validation of the models, that is, LOSO models trained on the
WESAD dataset are validated using SWELL-KW samples and
vice versa. While deep learning models achieve the best results
on the same dataset, models based on HRV features considerably
outperform them on data from a different dataset. This trend is
observed for all the models on both datasets. Therefore, HRV
models are a better choice for stress recognition in applications
that are different from the dataset scenario. To the best of our
knowledge, this is the first work to compare the cross-dataset
generalizability between ECG-based deep learning models and
HRV models.

Index Terms—Stress, Deep learning, Convolutional neural
networks, Recurrent neural networks, Machine learning, Support
vector machines, Physiology, Heart rate variability, Electrocar-
diography

I. INTRODUCTION

Stress recognition research has become an important part
of affective computing, especially in applications involving
human-computer interaction [1]. Long-term stress has severe
consequences and hence, there is a need for automatic stress
recognition to detect stress early [1], [2]. Stress stimuli or
stressors trigger physiological responses in people which can
be detected through different bio-signals such as Electrocar-
diogram (ECG) and Electrodermal Activity (EDA) [1]–[3].
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So, stress recognition research is further facilitated by the in-
creasing popularity of wearable sensors that can unobtrusively
collect real-time bio-signal data [4], [5].

ECG is one of the most common bio-signal used in stress
and affect recognition [5], [6]. There are two popular ap-
proaches to detect stress from ECG - models based on hand-
crafted Heart Rate Variability (HRV) features [1], [2], [4],
[7] and deep learning models [5], [6], [8]. HRV features and
their relationship with stress have been studied thoroughly [9],
[10]. They have also been validated as indicators of stress in
different stressful conditions [1], [4], [11]. However, cleaning
the ECG signal and computing the HRV features often require
specific domain knowledge [5]. This paved the way for deep
learning models, which typically have convolution layers for
automatic feature extraction.

We say an ECG-based stress recognition model has good
generalization capability if it performs well on samples col-
lected using different sensor devices under different stress
conditions. It is crucial to evaluate the generalizability of a
model as it is not possible to collect stress data and train
specialized models in every scenario. In some cases, the
models have to be trained on an available dataset and deployed
in a scenario different from the training dataset. For example,
a neuro-rehabilitation use-case described in [12] employs
an agent which adapts exercises by taking into account the
stress level of the patient. Due to ethical considerations, it is
difficult to collect a dataset by stressing the patients during a
rehabilitation session. Another example to consider is stress
recognition for special groups of people, like people with
autism spectrum disorder (ASD), dementia, etc. Often, there is
a lack of stress datasets that includes data collected from these
groups of people. Moreover, there could be differences in the
intensity or the characteristics of stress responses of the people
belonging to these groups. For instance, one of the datasets
we consider in this study is the WESAD dataset [1], which
uses social evaluation as a stressor. But, in [13], the authors
found that children with ASD had blunted physiological stress
response to social evaluation stressor.

In this work, we investigate if the models trained on one
stress dataset can detect stress in another dataset. Specifically,
among ECG deep learning models and HRV models, we
determine if one group outperforms the other in detecting
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stress samples from another scenario.

II. RELATED WORK

Due to the health consequences of stress, there is extensive
research on stress recognition. It is beyond the scope of this
work to summarize the numerous works that improve stress
recognition. So, we focus on works that compare various
models or stress datasets to gain insights into trends pertaining
to their performance.

There are multiple feature-based models proposed for stress
recognition in various works. Bobade and Vani [2] compare
the stress recognition performance of various machine learning
models trained on hand-crafted features from various physi-
ological signals. They use the WESAD dataset [1] to train
K-Nearest Neighbour (KNN), Linear Discriminant Analysis
(LDA), Random Forest Classifier (RFC), Support Vector Ma-
chine (SVM), etc. They also propose a simple feed-forward
Artificial Neural Network (ANN) trained on the same input.
Their comparison shows that ANN achieves higher accuracy
than other models.

As mentioned before, there are two main types of stress
recognition models - deep neural networks and feature-
based machine learning models. Naturally, questions arise on
whether one type is better than the other. Zhang et al. [11]
address this question by studying the performance of a deep
neural network and feature-based models on a dataset they
collected. They propose a stress recognition model consisting
of both convolutional neural networks (CNN) and bidirectional
long short-term memory (BiLSTM). For comparison, they
extract HRV features and train popular machine learning
models like SVMs, RFC, Ada Boost, etc. The CNN-LSTM
model takes 10 s of raw ECG signal, whereas the other
machine learning models use HRV features extracted from
60 s of ECG data. Zhang et al. demonstrate that deep neural
networks significantly outperform HRV-based models.

Dzieżyc et al. [14] compare various deep learning models
on their performance in emotion recognition tasks (including
stressful condition). An extensive study is performed on four
different datasets, separately. They chose an input signal length
of 50− 60 s, which is longer than the typical input length for
deep learning models. They note that CNN-based models tend
to perform better than LSTM-based models.

All the above works train and test the stress recognition
models on the same dataset. Cho et al. [15] consider two
datasets differing in size and train ECG-based deep learning
models to detect stress. They propose a transfer learning ap-
proach, which involves training a model on the bigger dataset
and then fine-tuning it on the smaller dataset. They observe
that the stress recognition on the smaller dataset improves
through transfer learning. Other than the size, the datasets were
very similar (e.g. same ECG sensor and configuration). The
authors note that when data from other datasets are used, their
model shows high bias to the type of stressor and a dependency
on the sensor used. In line with this observation, Liapis et
al. [16] demonstrate that a high stress recognition accuracy on
one dataset does not necessarily translate to high accuracy in

another dataset. To this end, they extract Skin Conductance
(SC) features from the WESAD dataset [1] and train four
machine learning models for stress recognition. These models
achieve high accuracy while testing on the WESAD dataset.
However, they did not achieve good results on input signals
from a different dataset (UX evaluation dataset). Since the UX
evaluation dataset is annotated primarily for emotion and not
stress, it is difficult to conclude about the generalizability of
the models. Nevertheless, their observation highlights the need
for cross-dataset evaluations and assessing the generalizability
of the stress recognition models.

As a first step towards combining stress datasets for devel-
oping generic models, Baird et al. [17] evaluate three datasets
on their ability to predict cortisol values. Cortisol values are
considered the ground truth for stress response. As they note,
the scales of cortisol values of the datasets are incompatible
and thus, a cross-dataset evaluation is not feasible. However,
all three datasets were collected through similar Trier Social
Stress Test (TSST) procedures. So, the responses in each
condition of the test are expected to be similar and therefore,
the trends in predicted cortisol values can be compared. To
this end, they extract features from the speech signals in the
datasets and train models for each dataset. They highlight
the feasibility of using speech signals from one dataset as
predictors of stress in another dataset.

III. APPROACH

Deep learning models trained directly on the ECG signal
typically outperform hand-crafted HRV features on a given
dataset [11]. However, it remains unexplored if these deep
learning models perform equally well in cross-dataset evalua-
tions. To investigate this, we train 5 stress recognition models
- two deep learning models using ECG signals as input, and
three models based on hand-crafted HRV features. First, we
train and evaluate the stress models on the same dataset using
leave-one-subject-out (LOSO) cross-validation. We perform
this evaluation on two different datasets. Then, we evaluate
the LOSO models trained on dataset A using samples from
the other dataset B (cross-dataset evaluation) to assess their
generalization capabilities. Baird et al. [17] note that machine
learning models can benefit from combining stress datasets
as it increases the data available for training. It has not been
investigated if this holds true if the datasets are vastly different,
especially in terms of the stressors, the intensity of stress
experienced, and the brand of sensors used. So additionally, we
train the models on a combined dataset (merging samples from
the two datasets) and evaluate them using LOSO validation.

A. Datasets

1) WESAD: WESAD [1] is a multimodal dataset that
contains motion (ACC) and physiological (ECG, EDA, etc.)
signals, which were collected using chest-worn RespiBan and
wrist-worn Empatica E4 devices. The data was collected from
15 participants under three conditions: baseline, stress, and
amusement. Stress was elicited using the Trier Social Stress
Test (TSST) involving public speaking and mental arithmetic



(counting down from 2023 by steps of 17) tasks. The stress
condition lasted for about 10 minutes. The amusement con-
dition was around 6.5 minutes long, where the participants
watched funny video clips. In this work, we use the ECG
data from the chest-worn device, sampled at 700 Hz. To be
consistent with the labels used by the authors, we consider
baseline and amusement conditions as the no-stress class.

2) SWELL-KW: SWELL knowledge work dataset [3] con-
tains data collected from 25 participants who did typical
office tasks (writing reports and making a presentation) under
three conditions - neutral, email interruptions, time pressure.
During the email interruption session, 8 emails were sent -
many were irrelevant, and some required a reply. In the time
pressure session, the participants had to complete their tasks in
2/3rd of the time allotted for the neutral session. The neutral
and email interruption sessions lasted for around 45 minutes
each, whereas the time pressure session lasted for around 30
minutes. We use the ECG signals (sampled at 2048Hz), which
were collected using a TMSI Mobi device. The participants did
not report feeling stressed in any of the conditions. However,
they indicated higher temporal demand (they felt time pressure
due to the pace of the task) during the time pressure session.
In a subsequent study [4], the authors labelled the data from
email interruptions and time pressure sessions as stress and the
neutral session as no-stress for a binary stress classification
task. Hence, we also consider the data belonging to email
interruptions and time pressure sessions as stress samples.

B. Classification Models

We describe our stress detection models and their training
parameters below:

1) Deep ECGNet: This is a CNN-LSTM stress detection
model proposed in [8]. The idea of CNN-LSTM networks
is to use the CNN layers as feature extractors and train
the LSTM layers to learn temporal patterns in the extracted
features. The model has an initial convolution block containing
a 1D convolutional layer, a pooling layer, a dropout layer, and
a batch normalization layer. The activation function for the
convolution layer is rectified linear unit (ReLU). The 1D con-
volution layer has 50 filters with a kernel size corresponding
to 0.6 s. The pooling layer has a size equivalent to 0.8 s of
data. For a 256 Hz input, kernel size is 154, and pooling size
is 205. The convolution block is followed by two LSTM layers
and a final prediction layer. The first LSTM layer has 32 units
and the second one has 16 units. We add a dropout layer and a
batch normalization layer between the two LSTM layers. The
activation function for the LSTM layers is Tanh, and for the
prediction layer is Softmax. We use a dropout rate of 0.2 for
both dropout layers.

2) ECG Emotion Recognition Model: This CNN model is
proposed in [6] for emotion recognition on various datasets,
including WESAD and SWELL-KW. The model has three
convolution blocks, each block consisting of two 1D con-
volution layers and a pooling layer. The convolution layers
belonging to a block have identical parameters such as kernel
size and the number of filters. From block 1 to block 3, the

number of filters are 32, 64, and 128, whereas the kernel
sizes are 32, 16, and 8. The pooling layers are of size 8
with strides of 2. The convolution blocks are followed by two
fully connected layers with 128 nodes each. We add a dropout
layer (dropout rate = 0.6) after each fully connected layer.
Finally, the model is connected to a stress prediction layer
with Softmax activation. All the convolution layers and the
fully connected layers have ReLU activation.

3) Multi-Layer Perceptron: This is a simple neural network
with an input layer, two hidden layers, and a prediction layer.
The hidden layers have 12 and 6 nodes. The activation function
for hidden layers is ReLU and for the prediction layer is
Sigmoid. To prevent over-fitting, we add a dropout layer
(dropout rate = 0.2) after the input layer.

4) RFC: This is an ensemble classifier that trains a certain
number of decision trees on various subsets of the training set
and uses their output to make a final prediction. This reduces
over-fitting and improves the overall performance, even if
individual classifiers are weak. Similar to [1], the number of
decision trees (or estimators) is set to 100 and the minimum
number of samples for splitting a node is set to 20.

5) SVM: This is a commonly used supervised learning
model. Similar to [4], we use SVM with Radial basis function
(Rbf) kernel.

We use Tensorflow to train neural networks and Scikit-learn
to train other machine learning models. For all the models, we
use a weighted loss to tackle class imbalance in the training
dataset. For the neural network models, we use the Adadelta
optimizer (learning rate = 1.0) and cross-entropy loss. We
train them for 200 epochs with a batch size of 128.

C. Evaluation metrics

We use F1-score and Accuracy metrics for evaluation.
Accuracy is the ratio of number of correctly predicted samples
to total number of samples in the test set. F1-score is computed
as the harmonic mean of precision and recall. Precision is the
number of correctly predicted samples of a class out of all
the samples predicted to belong to the class. Recall is the
number of correctly predicted samples of a class out of all the
samples belonging to the class. To tackle the class imbalances
in the datasets, we compute macro f1-score, i.e., compute f1-
score for each class and average them. We perform within-
dataset LOSO evaluation as it determines the generalizability
of a model on data from unseen users. However, this is
not an indicator of generalizability of the models on data
collected using a different sensor or a different stressor. Hence,
we evaluate the models using cross-dataset validation. This
validation involves training a model on a dataset A and
evaluating it using samples from another dataset B.

D. Pre-processing

The data collected in the two datasets have different sam-
pling rates. This is not a concern for HRV features, but the
ECG-based deep learning models require the input lengths to
be the same. To keep the data consistent for all models, we
down-sample the ECG signals in both datasets to 256 Hz.



There are various sources of noise in an ECG signal,
including baseline wander, powerline interference, and EMG
noise [18], [19]. Baseline wander is a low-frequency noise
(0.5 − 0.6 Hz) that causes the signal to drift up and down.
It is typically removed using a high-pass filter [6], [18],
[19]. Powerline interference is caused by the electromagnetic
interference of the power source of the sensor device. A
common technique to remove this noise is using a band-stop or
notch filter with a notch frequency of 50 or 60 Hz (depending
on the device) [18], [19]. EMG noise is a high-frequency noise
due to muscle contractions and the subject’s movement. This
noise can be reduced by using moving average [18].

Fig. 1. An example ECG signal with P-wave, QRS complex, and T-wave.

As illustrated in Figure 1, a beat of ECG signal consists of
P-wave, QRS complex, and T-wave. For stress recognition, we
are mostly interested in the QRS complex. Elgendi et al. [20]
propose a frequency band of 8 − 20 Hz for the best signal-
to-noise ratio on QRS components. We apply a second-order
Butterworth band-pass filter with the proposed frequency band.
We note that this filter removes most of the noises described
above as their frequencies are outside the chosen band.

The next steps in pre-processing are choosing input lengths
and normalization. These steps differ depending on whether
we use the filtered ECG signal as input or perform HRV
feature extraction. Many studies have demonstrated that deep
learning stress models can achieve good performance even on
ultra-short-term ECG signals [6], [8], [11], [15]. Deep ECGNet
and ECG Emotion models were designed and validated on
10 s segments of ECG signals [6], [8]. On the other hand,
studies typically use 60 s of ECG data to extract reliable
HRV features [1], [7], [9]. We use 10 s long filtered ECG
data (without overlap) as input to the deep learning models.
For HRV feature extraction, we use 60 s windows of data with
50 s overlap. We use this overlap to balance the number of
training samples available for all the models.

Since the ECG devices used in the two datasets are different,
the values would be recorded on different scales. Moreover,
the individual stress responses could be different for different
participants [6]. To circumvent these issues, we perform a
user-specific Min-Max normalization. However, normalization
will not eliminate the impact of using different sensor devices
for recording ECG. For deep learning models, we perform
normalization on the filtered ECG data. Whereas, for HRV

features, we perform normalization for every feature. In real-
time stress recognition applications, the entire data would not
be available for normalization. Hence, we adapt the approach
from [21] and use 5 minutes of baseline data to compute the
normalization parameters (i.e. min and max values).

E. HRV features

To calculate HRV, we first have to find the peaks in the
ECG signal. We use the algorithm proposed in [20] for finding
the peaks, i.e., maximum amplitude in the QRS complex
(see Figure 1). The algorithm utilizes the knowledge that for
healthy adults (1) a beat has only one QRS complex and
(2) the duration of QRS is 80 − 120 ms. We compute the
interval between successive R-R peaks of an ECG signal to
obtain the HRV signal. We calculate a total of 22 known
HRV features from the time domain, frequency domain, and
poincaré plots [1], [7], [9], [10], [22]. These features are listed
in Table I along with their descriptions. We use NeuroKit2 [23]
python library for computing these features.

TABLE I
LIST OF EXTRACTED HRV FEATURES

Feature Description
HR Number of R peaks in 1 minute
MeanNN Mean of R-R intervals
MedianNN Median of R-R intervals
MadNN Median Absolute Deviation of R-R intervals
StdNN Standard deviation of R-R intervals
CVNN Ratio of StdNN to MeanNN
IQRNN Inter-Quartile Range of R-R intervals
RMSSD Root Mean Square of successive differences of R-R

intervals
StdSD Standard deviation of successive differences of R-R

intervals
pNN50 % of successive differences of R-R intervals > 50 ms
pNN20 % of successive differences of R-R intervals > 20 ms
TINN Triangular Interpolation of R-R intervals histogram
HTI HRV Triangular Index
LF Power of low frequency band (0.04 Hz − 0.15 Hz)

in HRV spectrum
HF Power of high frequency band (0.15 Hz−0.4 Hz) in

HRV spectrum
LF/HF Ratio of LF to HF power
LFn Normalized low frequency power, LF/total power
HFn Normalized high frequency power, HF/total power
SD1 Spread of HRV on Poincaré plot perpendicular to the

identity line
SD2 Spread of HRV on Poincaré plot along the identity line
SD1/SD2 Ratio of SD1 to SD2
S Area of ellipse formed in the HRV Poincaré plot

IV. RESULTS AND DISCUSSIONS

In this section, we present the results of our evaluations.
First, we evaluate the models using LOSO validation. We
also compare their performance with other works on the
same dataset. The results of LOSO evaluation on WESAD
and SWELL-KW datasets are tabulated in Tables II and III,
respectively.

As we expected, the deep learning models perform better
than the other models in within-dataset evaluations. On the
WESAD dataset, the performance difference is relatively small



TABLE II
LOSO EVALUATION OF ECG-BASED STRESS MODELS ON WESAD

DATASET

Model F1-score Accuracy
LDA [1] 0.813 0.854
LDA [24] - 0.887

CNN (Spectrogram) [25] 0.794 0.824
Transformer [5] (without fine-tuning) 0.697 0.804

Our RFC 0.813 0.863
Our SVM 0.832 0.871
Our MLP 0.859 0.895

Our ECG Emotion model 0.858 0.897
Our Deep ECGNet 0.857 0.908

TABLE III
LOSO EVALUATION OF ECG-BASED STRESS MODELS ON SWELL-KW

DATASET

Model F1-score Accuracy
SVM [4] - 0.589

Transformer [5] (without fine-tuning) 0.588 0.581
Our RFC 0.644 0.670
Our SVM 0.609 0.639
Our MLP 0.668 0.689

Our ECG Emotion model 0.627 0.709
Our Deep ECGNet 0.688 0.755

(< 5%), whereas it is higher on the SWELL-KW dataset. The
authors of [11] had a similar observation between machine
learning models and a CNN-LSTM model, both trained on a
stress dataset they acquired. We also note that, among the mod-
els based on HRV features, the MLP model performs the best.
This is in line with [2], where a simple feed-forward network
is shown to perform better than machine learning methods
(e.g., SVM, RFC) in a multimodal stress recognition task.
Considering both F1-score and Accuracy, Deep ECGNet has
the overall best performance in both WESAD and SWELL-
KW within-dataset LOSO evaluations.

Next, we evaluate our models using cross-database valida-
tion. That is, models trained on the WESAD dataset are tested
on SWELL-KW data and vice versa. The results of cross-
dataset evaluations are presented in Tables IV and V.

TABLE IV
CROSS-DATASET EVALUATION OF WESAD MODELS ON SWELL-KW

DATASET

Model F1-score Accuracy
Our RFC 0.467 0.483
Our SVM 0.535 0.538
Our MLP 0.478 0.49

Our ECG Emotion model 0.395 0.411
Our Deep ECGNet 0.391 0.418

The results of cross-dataset evaluations are the opposite of
within-dataset evaluations. The deep learning models perform
much worse than models trained on the HRV features. In
cross-dataset validation of WESAD models, SVM achieves the
best F1-score and Accuracy. Among SWELL-KW models, the
RFC model has the overall best performance in cross-dataset
evaluation, considering both F1-score and Accuracy.

TABLE V
CROSS-DATASET EVALUATION OF SWELL-KW MODELS ON WESAD

DATASET

Model F1-score Accuracy
Our RFC 0.581 0.637
Our SVM 0.509 0.647
Our MLP 0.49 0.621

Our ECG Emotion model 0.342 0.385
Our Deep ECGNet 0.392 0.415

From Tables IV and V, it is clear that HRV-based models
outperform deep learning models in predicting stress from a
different dataset. This could be attributed to deep learning
models learning dataset-specific features and not generic stress
features. We note that stressors in the two datasets are different
and thus, the stress responses may be different. Additionally,
the sensors used for collecting ECG data are also different.
All these factors could influence the low generalization ca-
pabilities of the deep learning models. More focused studies
and datasets are required to improve the generalizability of the
deep learning models. On the other hand, HRV features have
been studied thoroughly and validated as indicators of stress
across multiple datasets with different stressors. Moreover,
HRV is computed based on the QRS peak position and thus,
is not influenced by the difference in sensors.

Based on our observations, we suggest employing HRV
models when the application scenario is different from the
dataset. The deep learning models perform better than HRV
models on both WESAD and SWELL-KW within-dataset
evaluations. So, deep learning models are preferred when the
input to the model is similar to its training data.

Finally, we investigate if combining the stress datasets
lead to better stress recognition. Combining the WESAD and
SWELL-KW datasets results in ECG data of 37 participants.
We train and evaluate our models using the data from the
combined dataset using LOSO validation.

The results of LOSO validation on the combined dataset
is shown are Table VI. The F1-score and Accuracy of every
model are significantly worse than the corresponding WE-
SAD models (see Table II). All the models achieve slightly
lower F1-score and Accuracy than the corresponding SWELL
models (see Table III). Despite the increase in training data,
combining these two datasets does not improve the individual
dataset or overall stress recognition. So, combining the datasets
is not beneficial for either of the datasets; even detrimental in
the case of the WESAD dataset.

V. CONCLUSION

Due to the health benefits of detecting and mitigating stress
early, there is a need for accurate and robust stress recognition
models. The stressor and intensity of stress experienced by
people are different for different stressful conditions. This
coupled with the ethical challenges of collecting stress data,
especially for special groups like people with autism, escalates
the need for stress models with good generalization capabili-
ties. Using two publicly available stress datasets (WESAD and



TABLE VI
LOSO EVALUATION OF MODELS ON COMBINED WESAD AND SWELL-KW DATASETS

Model WESAD subjects SWELL-KW subjects All subjects
F1-score Accuracy F1-score Accuracy F1-score Accuracy

Our RFC 0.758 0.793 0.647 0.671 0.692 0.720
Our SVM 0.732 0.796 0.605 0.633 0.657 0.699
Our MLP 0.758 0.813 0.657 0.677 0.698 0.732

Our ECG Emotion model 0.609 0.677 0.593 0.683 0.599 0.681
Our Deep ECGNet 0.692 0.711 0.695 0.739 0.694 0.728

SWELL-KW), we assessed the generalizability of five stress
recognition models - two ECG-based deep learning models
and three HRV feature-based models. We first evaluated the
models using within-dataset LOSO validation, followed by
a cross-dataset evaluation. We found that ECG-based deep
learning models outperform the HRV-based models on both
stress datasets. However, HRV-based models were significantly
better at recognizing stress in cross-dataset evaluations. So,
the HRV-based stress recognition models seem to be the
better option when the model is deployed in a scenario that
is considerably different than the training data acquisition.
We also investigate if the stress recognition improves when
the models are trained on a combined dataset. The stress
recognition on SWELL-KW subjects did not improve by
combining datasets. On the other hand, this led to significantly
lower performance of all five models on the WESAD dataset.

The datasets we considered in this paper differ in many
aspects including the type of stressor, the intensity of stress
experienced, and the brand of the ECG sensor. In the future,
we plan to extend our work by considering more datasets and
comparing them by controlling some of the aspects (e.g. sensor
device). This will help us gain insights into the impact of
specific factors on the generalizability of stress models.
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and M. Malosio, “Employing socially interactive agents for robotic
neurorehabilitation training,” arXiv preprint arXiv:2206.01587, 2022.

[13] B. A. Corbett, R. A. Muscatello, and C. Baldinger, “Comparing stress
and arousal systems in response to different social contexts in children
with asd,” Biological psychology, vol. 140, pp. 119–130, 2019.
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