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Adresse électronique : lip�ens�lyon�fr



Alignment and distribution is NOT �always� NP�hard

Vincent BOUDET

Fabrice RASTELLO

Yves ROBERT

Juillet ����

Abstract

In this paper� an e�cient algorithm to simultaneously implement array
alignment and data�computation distribution is introduced and evalu�
ated� We re�visit previous work of Li and Chen 	��� �
�� and we show
that their alignment step should not be conducted without preserv�
ing the potential parallelism� In other words� the optimal alignment
may well sequentialize computations� whatever the distribution after�
wards� We provide an e�cient algorithm that handles alignment and
data�computation distribution simultaneously� The good news is that
several important instances of the whole alignment�distribution problem
have polynomial complexity� while alignment itself is NP�complete 	����

Keywords� compilation techniques� parallel loops� alignment�
distribution� the owner computes� rule�

R�esum�e

Dans ce rapport� un algorithme e�cace est pr�esent�e et �evalu�e pour
r�esoudre simultan�ement l�alignement des tableaux et la distribution des
donn�ees et des calculs� Nous revisitons les travaux pr�ec�edents de Li
et Chen 	��� �
�� et nous montrons que leur recherche d�un aligne�
ment ne doit pas �etre conduite sans pr�eserver le parall�elisme potentiel�
En d�autres termes� l�alignement optimal peut s�equentialiser les calculs
quelle que soit la distribution choisie ensuite� Nous pr�esentons un al�
gorithme e�cace qui tient compte simultan�ement de l�alignement et de
la distribution des donn�ees et des calculs� La bonne nouvelle est que
plusieurs instances du probl�eme d�alignement�distribution ont une com�
plexit�e polynomiale alors que l�alignement lui�m�eme est NP�complet 	����

Mots�cl�es� techniques de compilation� boucles parall�eles� alignement�
distrib ution� r�egle du the owner computes��
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� Introduction

Compile�time techniques for mapping arrays and computations onto distributed memory machines
have focused a large research e�ort recently� as illustrated by the survey paper of Ayguad�e� Garcia
and Kremer 	��� Several methods and tools have been presented since the reference paper of Li and
Chen 	��� �
�� who have studied the problem of aligning arrays so as to minimize communications�
Because Li and Chen have shown the alignment problem to be NP�complete �in the number of data
arrays and statements within the loop nest�� heuristics or costly �exponential� algorithms� such
as Integer Linear Programming� have been introduced� We brie�y survey the related literature in
Section ��

In this paper we re�visit previous work of Li and Chen 	��� �
�� and we show that their align�
ment step should not be conducted without preserving the potential parallelism� In other words�
the optimal alignment may well sequentialize computations� whatever the distribution afterwards�
We provide an e�cient algorithm that handles alignment and data�computation distribution simul�
taneously� The good news is that several important instances of the whole alignment�distribution
problem have polynomial complexity� while alignment itself is NP�complete 	����

We take as input a loop nest� possibly non perfect� where parallelism has been made explicit�
e�g� after applying the Allen and Kennedy parallelization algorithm 	��� We construct a new graph�
the alignment�distribution graph� which replaces Li and Chen�s component a�nity graph� Using
this graph� we are able to determine which parallel loop�s� and which array dimension�s� should be
distributed to the processors so as to preserve parallelism while minimizing communications� Our
alignment�distribution graph is weighted� and the weights represent estimates of the communication
costs� it is a very �exible approach� and we are able to take advantage of recent results on modeling
such communication costs accurately 	�� 
� �� ���� Because the choice of the distributed loops
provides kind of a reference� pattern� the alignment step is conducted according to this choice�
and the complexity to �nding the optimal solution reduces to a fast �polynomial� path algorithm
on the alignment�distribution graph� This is a very nice result for the practical applicability of our
approach �again� previous techniques aimed at solving a NP�complete problem��

The paper is organized as follows� we start with a motivating example in Section �� We use
the example to summarize the approach of Li and Chen 	��� �
� and to point out its limitations�
We brie�y review the existing literature in Section �� We describe our new algorithm� and we state
complexity results� in Section 
� We give some �nal remarks in Section ��

� Motivation

We use a simple example to explain why aligning arrays and distributing parallel loops should be
dealt with simultaneously�

Example �

for i � � to n do

for �� j � i � � to n do
S�� a�i� j� � b�i� j� � a�i� �� j�
S�� b�j� i� � a�j� j� � �

end for ��

end for
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To check that the second loop on j is indeed parallel� we can use a dependence analysis tool like
Tiny 	���� Using such a tool� we check that there is only one �ow dependence of level � from S� to
itself� which is due to a� The reduced dependence graph for Example � is depicted in Figure ��
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1

Figure �� The reduced dependence graph �using dependence levels� for Example ��

First we review Li and Chen�s approach 	��� �
� through Example �� Then we explain why their
technique may kill the potential parallelism�

��� Li and Chen�s component a�nity graph

We represent in Figure � the component a�nity graph �CAG� that Li and Chen 	�
� ��� would
derive for Example �� We informally explain how the CAG is built using the example� The CAG
contains � columns of � nodes� because they are � arrays a and b �hence � columns� of dimension �
each �hence two nodes in each column�� Node a� represents the �rst dimension of array a� and so
on� There is an edge between two nodes� i�e� between two dimensions of di�erent arrays� if� roughly
speaking� the subscripts of these dimensions are the same up to a translation by a constant� and if
these arrays appear on both sides of the same assignment� The CAG is undirected� Self references
are not taken into account� In our example� there is an edge between nodes a� and b� because of
statement S�� the same subscript i appears in the �rst dimension of a and b� In general� when
the same subscript� up to a translation by a constant� appears in dimension ix of array x and in
dimension iy of array y� these two dimensions are said to have an a�nity relationship� and we draw
an edge between the corresponding nodes� Similarly� due to S� again� there is an edge between
b� and a�� Because self references are not taken into account� the occurrence of a�i � �� j� in the
right hand side has no impact on the graph� The intuitive idea is that edges imply an alignment
preference between the corresponding arrays� The term alignment may well be understood here
as an HPF ALIGN directive 	��� onto a virtual template� Aligning arrays according to the edges
will reduce� or even suppress �as in statement S��� the possible communications induced by the
distribution of the arrays onto parallel processors�

Statement S� introduces some complication� because the same index j appears in the �rst
dimension of a on the left hand side� and in both dimensions of b on the right hand side� The two
edges �a�� b�� and �a�� b�� are said to be competing�

The CAG is weighted� edges are valued according to the strength of preference� A competing
edge has weight �� a value much smaller than �� The weight of an edge between nodes indexed
by a spatial variable �a subscript of a parallel loop� like j in Example �� is �� Finally� the weight
of an edge between nodes indexed by a temporal variable �a subscript of a sequential loop� like i

in Example �� is �� We are led to the graph of Figure �� If there are several edges between two
nodes� we only keep one� whose weight is the sum of all edge weights between the two nodes�

Li and Chen 	�
� ��� state the alignment problem as follows� partition the nodes of all columns
into disjoint subsets that represent aligned dimensions� The rule of the game is that no two nodes
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Figure �� The component a�nity graph for Example ��

of the same column are in the same subset� The objective is to minimize the sum of the edge
weights between subsets� Unfortunately� the problem is NP�complete in the size of the CAG �Li
and Chen use a reduction from MAX�CUT 	���� To compute a satisfactory alignment� Li and Chen
use a greedy heuristic based upon bipartite matching 	�
�� For Example �� their heuristic leads to
the optimal �minimal�weight� solution� namely aligning a� with b� and a� with b�� In other words
arrays a and b are directly superimposed onto the same template�

��� Distributing parallel loops

The previous alignment� however� causes all the potential parallelism to be lost when it comes to
distributing array elements onto processors To see why� consider the following two possible data
distributions�

Distributing the �rst dimension This means that rows of arrays a and b are distributed to
processors� elements a�i� j� and b�i� j�� for � � j � n� are stored in �virtual� processor Pi�
This causes statement S� to be executed sequentially� given a value of the �rst loop index i�
all iterations of the second loop index j are computed by the same processor Pi�

Distributing the second dimension Quite similarly� distributing columns of a and b to proces�
sors will lead statement S� to be executed sequentially�

To summarize� the best alignment� as computed by Li and Chen� turns out to kill the parallelism�
We claim that the alignment step should be conducted while having parallelism in mind� dis�
tributing parallel loops to processors is the true priority� A good alignment can reduce or suppress
communications� but what if it leads to gather all parallel computations onto the same processor�
as in our example!

We informally explain our approach using Example �� See Section 
 for a complete description
of our algorithm� Assume we target a one�dimensional processor grid� The highest priority is to
distribute parallel computations� i�e� instances of the parallel loop j� on processors� In the example
there is not much freedom� we distribute columns of a and rows of b to processors� processor Pj
receives a�i� j� and b�j� i� for all � � i � n� Owing to this distribution� for each instance of the
external loop i� we distribute the parallel computations of loop j to processors� There remains
some communications� for each instance i of the external loop� because of statement S�� the i�th






row of b must be scattered from processor Pi to all processors� But parallelism has been preserved�
Our approach does lead to this solution� based upon an alignment�distribution graph that privileges
parallel loops� The alignment�distribution graph for Example � is represented in Figure �� It is
built as follows� there are 
 array dimension nodes� one per array and per dimension� as in Li and
Chen�s CAG� plus an additional loop node for the parallel j loop� There is an edge between the
loop node and an array dimension node if distributing both of them onto the processors induces
communications� Edge weigh correspond to �estimated� communication costs� In Figure �� Ga
stands for Gather� and Sc for Scatter�

j
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b2

N*Ga(N/P)+N*Sc(N/P)

N*Br(N)

N*Sc(N/P)

Figure �� The alignment�distribution graph for Example ��

The detailed construction of the graph as well as our solution to the problem are described in
Section 
� We conclude our study of Example � with a few important remarks�

Remark �� �the owner�computes� rule� There is no major reason to obey the owner�computes�
rule� The true objective is to distribute the parallel computations S��i� j� and S��i� j� to pro�
cessor Pj � for � � i � n� To this purpose� we might distribute columns of a and b to processors�
which corresponds to Li and Chen�s alignment� But we would insist that S��i� j� is executed
by processor Pj � at the price of a communication after the computation� to store the written
value b�j� i� into the memory of processor Pi� For each value of i� statement S� would then
induce a gather operation �Pj owns a�j� j�� writes into b�j� i� and sends it to Pi��

Remark �� computations versus communications� Example � is a toy example and should
be considered as such� In this example� our solution may not be signi�cantly better than
a solution that sequentializes the parallel loop� because of the cost of the communications�
Still� we can easily modify the example Also� we can take bene�t of the many papers in
the literature to derive the best physical distribution� i�e� deciding whether rows of a and
columns of b will be distributed in a pure cyclic� pure block or block�cyclic fashion over p
physical processors� where p is likely to be much smaller than n� the array size� In fact� our
approach is quite �exible and can bene�t from any precise modeling of the computation and
communication costs� our alignment�distribution graph is vertex�weighted and edge�weighted�
and the more precise the weights� the more accurate the solution� See the literature survey
in Section ��

Remark 	� loop parallelization algorithms and redistribution� An experienced program�
mer may have decided to apply loop distribution 	��� p� ����� on Example � before con�
sidering alignment and distribution� Such a transformation is perfectly legal and leads to the
following loop nest�

�A confusing terminology� Loop distribution here amounts to distribute statements inside the same loop so that

they appear in separate loops� It is not related to distributing loop instances to processors�
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Distributing loops

for i � � to n do
for �� j � i � � to n do

S�� a�i� j� � b�i� j� � a�i� �� j�
end for ��

end for
for �� i � � to n do

for �� j � i � � to n do
S�� b�j� i� � a�j� j� � �

end for ��
end for

We could then perform the alignment step separately on the two nests� and eventually re�
distribute some data array �say b� in between� If the modi�ed loop nest �having distributed
the loop� is given as input to our alignment�distribution graph� and if the redistribution of
one array �say b� is optimal� our algorithm will �nd it� But given the original loop nest of
Example �� we do not deal with ANY loop transformation�

Consider the following modi�cation of Example ��

Example �

for i � � to n do
for �� j � i � � to n do

for k � � to n do
S�� a�i� j� k� � b�i� j� k� � b�i� �� i� k� �� � a�i� �� j� k�
S�� b�j� i� k� � a�j� j� k� � a�i� i� �� k�

end for
end for ��

end for

The reduced dependence graph is shown in Figure 
� loop distribution is no longer valid�
We represent Li and Chen�s CAG in Figure �� solid arrows correspond to statement S�� and
dashed arrows to S�� Again� the optimal solution for the CAG is to superimpose arrays a
and b� i�e� align each dimension of a with the same dimension of b� Again� this would lead to
a sequential execution� whatever the distribution chosen� However� as before� our alignment�
distribution graph� represented in Figure �� gives priority to the parallel loop j and distribute
the �rst dimension of a and the second dimension of b to processors�

To summarize� our approach starts from a �parallelized� loop nest� i�e�a loop nest for which
dependence analysis and loop parallelization have already been carried out� The most popular
tools for these two steps are dependence levels 	�� �� and the Allen�Kennedy algorithm 	��� Given a
parallelized loop nest� we determine which parallel loops should be distributed to processors� and
the best alignment and distribution of arrays to minimize communications� This is done through
the alignment�distribution graph�

Our main contribution is for a single loop nest� possibly non perfectly nested� When there
are several consecutive loop nests� or an iterative loop surrounding several loop nests� we use the
approach of Lee 	���� which we brie�y summarize in Section 
�� when dealing with multiple nests�
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Figure 
� The reduced dependence graphs �using dependence levels� for Example ��
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� Related work

There are numerous papers on the alignment and distribution problem� We refer the reader to
the survey 	�� and the references therein� In this section� we summarize a few selected papers� In
addition to Li and Chen�s alignment method 	��� �
� �already described in Section ����� we describe
three papers by Tandri and Abdelrahman 	���� Kelly and Pugh 	��� and Ayguad�e et al� 	
� ��� whose
goal is similar to ours� Next we present results by Gupta and Banerjee 	�� and Li and Chen 	��� on
identifying structured communications and estimating their weight�

Our algorithm also uses the dynamic programming algorithm of Lee 	��� when dealing with
several loop nests� Indeed� redistributing some arrays between two consecutive nests may well
prove more e�cient� We describe Lee�s technique in Section 
���

��� Tandri and Abdelrahman

Given a loop nest� Tandri and Abdelrahman 	��� construct an undirected graph where each node
represents either a parallel loop� or an array dimension� There is an edge between a loop node and
an array node if the dimension considered is indexed by the loop variable�

Attributes are assigned to the nodes � "� Cyclic or CyclicRCyclic for loop nodes� to favor load
balancing� and "� Block or BlockCyclic for array node� to favor local access� For example� if X is
referred to as X�a� i�b�j� where j �outer� is parallel and i �inner� is sequential� then the attribute
will be BlockCyclic�

There is a con�ict when an edge connects two nodes whose attributes are di�erent� To solve
such a con�ict� we replace the attributes by an intermediary� Thus� Cyclic and Block resolve to
BlockCyclic�

Once all con�icts are solved� we have to assign dimensions of the processor geometry to the
nodes� The algorithm is a greedy one� We consider �rst the outer loop� We assign to them and
to the array nodes connected to them a dimension of processors� We pursue then with the other
nodes� A distribution scheme is then found�

Tandri and Abdelrahman�s method is somewhat crude� in that communication costs are not
taken into account precisely� Also� their selection of the best array dimension to be distributed
is not clear� Still� they give priority to distributing parallel lops� and next they align the array
dimensions onto those loops� we believe this is the right way to go� and we use a similar �but
re�ned� scheme in our algorithm�

��� Ayguad�e et al�

Ayguad�e et al� 	
� �� consider programs constituted of several consecutive perfect loop nests L�L� � � �Ln�
All arrays are assumed to have the same dimension d� They describe their method for �D� and
�D�grids� but we only deal with �D�grids in this short survey� We start with the construction of a
graph called the Communication�Parallelism Graph� Nodes are organized in columns� Each column
represents an array in a nest and it contains d nodes�

There are two types of edges� Data movement edges show possible alignment alternatives
between the dimension of two arrays in a nest Li� The assigned weight re�ects the data movement
cost to be paid if these two dimensions are aligned and distributed� We add other data movement
edges to show possible realignment in a sequence of nests� If the array A in Li is used in Lj � then
d� d edges connect each node of array A in Li to each node of A in Lj � If the edge connects the
same dimension� its weight is null� otherwise its weight is the cost of a realignment�
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Parallelism hyper�edges show possible parallelization strategies for the loops in Li� An hyper�
edge connects the nodes corresponding to the array dimensions that have to be distributed to
parallelize the loop according to the owner computes rule� Its weight is the time that is saved when
the loop is parallelized�

We have to �nd a path in the CPG that includes exactly one node of each column so that the
sum of weights of the edges minus the sum of weights of the hyper�edges that connect nodes in the
chosen path is minimized� This problem is formulated as a linear ��� programming problem� The
variables are YPQ�i� j� which corresponds to the edge between the ith dimension of P and the jth

dimension of Q and Zk which corresponds to the kth hyper�edge�
The constraints are the following�

�
X
j

YPQ�i� j� �
X
j

YQR�i� j� �i� P�Q�R

�
X
i

X
j

YPQ�i� j� � � �P�Q

� If Zk connects the nodes XP ��i��� � � � � XPh�ih� which are connected by the edges YP �Q� � � � � � YPhQh �

we need
X
j

YP lQl�il� j� � Zk �l 	 	���h�

The approach of Ayguad�e et al� 	
� �� is interesting because of their precise estimation of edge
weights� Also they can handle redistribution between consecutive nests� However� the requirement
that all nests are perfect and that all arrays have same dimension is very restrictive� In addition�
the integer linear programming solution may prove too expensive in practice�

��� Kelly and Pugh

The title of Kelly and Pugh�s paper 	�� is Minimizing communication while preserving parallelism�
This title exactly corresponds to our goal However Kelly and Pugh consider a framework quite
di�erent from ours� they study all the possible transformations �loop permutations� of the pro�
gram to determine which one induces the maximum of parallelism and the best mapping of the
computations�

To determine valid loop permutations� Kelly and Pugh use a dependence analysis more sophis�
ticated than the dependence levels� The direct dependences are computed by the Omega software
and the indirect dependences are computed by transitive closure�

For each legal permutation� they determine the parallelism level which is allowed and they
estimate the number of required synchronizations �they use a sophisticated model which allows
to take pipelining into account�� Finally� for each statement pair� they compute the number of
data written in the �rst statement and read in the second one� using value�based �ow dependence
analysis�

To summarize� in the case where a precise dependence analysis is possible �e�g� when all
dependences are a�ne�� Kelly and Pugh�s method is quite powerful� However� it cannot be applied
to general loop nests where only limited information �such as dependence levels� is available�

��� Communication patterns

Li and Chen 	��� present interesting results on communication routines� They consider already
parallelized programs with sequential and parallel loops� They assume that each array element
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can be assigned only once� that left�hand side subscripts are index variables� and that arrays are
aligned to have a common index domain within each loop nest� We have a distribution scheme over
a template and we want to recognize communication routines�

Each assignment a���� � � � � �n� � � � �b���� � � � � �n� � � �may generate communications� If the tuples
di�er in only one corresponding pair of elements� the communication is either a Spread or a Reduce
or a Copy or a Shift or a Multi�spread� The routine can be found with a pattern matching on these
elements�

If the tuples are strongly di�erent� we try by pattern matching on the tuples to recognize one of
these routines � One�All�Broadcast� All�One�Reduce� Single�Send�Receive� Uniform�Shift or A�ne�
Transform� When a pattern cannot be matched with a routine� we decompose it into sub�patterns�
Indeed� a pattern over an n�dimensional index domain can be thought of as a composition of n
simple patterns� For example� send a�c�i� j�� j � �� to �i� j� can be decomposed into two simple
communications� send a�c�i� j�� j� �� to �i� j � ���which is a Multi�spread� and then send �the

data� from �i� j � �� to �i� j�� which is a Shift�
Gupta and Banerjee 	�� improve Li and Chen�s alignment method to estimate communication

costs� Their method is based on pattern�matching� applied upon the di�erent assignments which
could generate communications in the program� Their communication primitives are Transfer�
OneToManyMulticast� ManyToManyMulticast� Scatter� Gather� Shift and Reduction�

They allow operations on the structure of the program to decrease the communications costs
by founding a better placement of communication� For instance they use loop distribution over
two components to enable any communication placed between those components to be aggregated
with respect to that loop� They try to permute loops when there is a parallel loop outside a loop
in which communication takes place� To control the size of communication bu�ers required� they
propose to strip�mine the loops�

Sometimes� the compiler may generate more communication than necessary� for example when
there are conditionals� Information about the frequency of execution of statements can help the
compiler decide between carrying out potentially extra communication and using a large number
of messages� Since the primitives corresponding to di�erent terms implement the data movement
in distinct grid dimensions� they can legally be composed in any order� So another optimization is
to permute the communications in favor of reducing the message sizes handled by processors�

� Solving the alignment�distribution problem

Al already stated� we start from a parallelized program� i�e� a program for which dependence analysis
and loop parallelization have already been carried out� we are using the same hypotheses as Li and
Chen 	�
�� Our goal is to preserve the potential parallelism while conducting the alignment step� We
�rst describe our algorithm for a unidimensional processor grid� Next we move to a bidimensional
grid� In both cases� we target a single �possibly non perfectly nested� loop nest� For several
consecutive loop nests� we simply use the approach of Lee 	���� who uses a dynamic�programming
algorithm to determine whether some data redistribution is needed between two successive loop
nests�

��� Unidimensional grids


���� Construction of the alignment�communication graph

We have two kinds of nodes in the graph� array dimension nodes and loop nodes�

��



� For each array� each dimension of this array is represented by a node �like for Li # Chen
graph�� The weight of such a node is zero�

� Each loop is also represented by a node� We give a weight to this node which represents
the �approximated� execution time of the loop� For parallel loops� we divide the sequential
execution time by the number of processors� as in Ayguad�e et al 	
� ���

Edges link array dimension nodes to loop nodes� There is an edge between two such vertices
if there is a reference to the corresponding array dimension in the corresponding loop$ the edge
weight represents the �estimated� communication costs induced by the distribution of both the
array dimension and the loop instances to the processors�

Finally� we add dashed arrows to illustrate the loop nesting� This is only for convenience� We
refer to loop nodes and dashed arrows as the loop subgraph of the alignment�communication graph�

Consider the Cholesky factorization algorithm showed in Example �� We use this example to
describe our algorithm because it is a classical in compilation literature� Data dependence analysis
can be conducted exactly on this example because all references are a�ne� but this is by no means
a requirement for our algorithm�

Example 	

for k � � to n do

S� � a�k� k��
p
a�k� k�

for �� j � k � � to n do

S� � a�k� j� � a�k�j�
a�k�k�

end for ��
for �� i � k � � to n� �

for �� j � i to n� �
S� � a�i� j� � a�i� j�� a�k� i� � a�k� j�

end for ��
end for ��

end for

Note that Li and Chen�s CAG for Cholesky has no edge� because there is a single array in the
nest� and they do not take self references into account� We represent the alignment�distribution
graph in Figure �� Boxed nodes are the loop nodes� we use a circle for a parallel loop and a square
for a sequential loop� The other nodes are the array dimension nodes� We use the following routines
for the edge weights�

Br�N��Broadcast�N� a processor sends the same N data items�
Sc�N��Scatter�N� a processor sends N di�erent data items�
Ga�N��Gather�N� a processor receives N di�erent data items�

Aap�N��All to all personalized�N� each processor sends N di�erent data items�
Aa�N��All to all�N� each processor sends the same N data items�

For example� the edge between a� and the left parallel node j comes from statement S�� It means
that if we distribute this j loop and the second dimension of a� each processor j which computes
a�k� j� has to receive from the same processor k the value of a�k� k�$ hence the label Br����
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Figure �� The alignment�distribution graph for Example ��


���� The algorithm

The goal is to �nd exactly one parallel loop node to distribute� along each path of the loop subgraph�
We also need to distribute a dimension of each array� The optimization criteria is to minimize
residual communications costs�

The optimal solution is to consider all di�erent possibilities to distribute the parallel loops�
Once a given distribution is chosen� we compare for each array the communication costs generated
by this distribution� and we select the dimension which minimizes the communications� We sum
the costs over all arrays and we obtain the total cost of the selected loop distribution� We keep the
loop distribution scheme of minimal cost�

Coming back to Example �� there are two di�erent paths� We have to choose j in the left
path� and either i or j in the right path� In the case of the distribution scheme �j� i�� we have
for a� the weight N � Br��� � �N � Sc�N�P � � N � Ga�N�P � � N � Br�N� and N � Br��� �
�N � Aap�N�P � � N � Sc�N�P � � N � Br�N�P � for a�� The weight of a� is lower� hence we
distribute a�� For the other distribution scheme �j� j�� the weight is N � Br��� � N � Sc�N�P � �
N �Ga�N�P � � �N �Aap�N�P � � N �Aa�N�P � for a� and N � Br��� � N � aa�N�P � for a�� In
this case� we choose a�� Then we have to compare the two solutions� The cost of the �rst solution
is N � Br��� � �N � Sc�N�P � � N � Ga�N�P � � N � Br�N�� and the cost of the second solution
is N �Br��� � N � aa�N�P �� Since a personalized all�to�all is expensive� we would most certainly
select the �rst solution�


���	 Complexity

Consider �rst the case of a perfect loop nest� Let s be the number of parallel loops� T be the
number of arrays and di the dimension of the i�th array Ti� The complexity of our algorithm is
O�s�

PT
i�� di� because for each parallel loop and for each array� we search for the best dimension

to distribute� Letting d � maxi�di� be the largest array dimension� the complexity of our algorithm
is O�d� T � s��

It is important to understand why this result does not contradict the NP�completeness result
of Li and Chen� who show that the alignment problem is NP�complete in the size of the CAG� i�e�
the number of arrays T multiplied by the largest array dimension d� The intuitive explanation is
the following� Li and Chen have no template reference for the alignment problem� so they have to
explore the possibility of aligning each dimension of each array with every dimension of every other
array� hence the combinatorial swell� On the contrary in our approach� because we aim at preserving
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the potential parallelism� each loop distribution scheme constitutes a reference pattern for which we
search the best distribution for each array� Because we have few possible loop distribution schemes�
the overall complexity is kept small�

Theorem � The alignment�distribution problem can be solved in time O�d � T � s� for a perfect
loop nest with s parallel loops and T arrays with largest dimension d�

In the case of a non�perfect nest� on a given path labeled i in the loop nodes of the alignment�
distribution graph� there are si parallel loops� For instance in Example �refprog�choles� we have two
paths in the loop subgraph� s� � � and s� � �� The complexity of the algorithm is O�d�T�

Qp
i�� si�

because
Qp

i�� si represents the number of distribution scheme� In the worst case� the complexity is
O�d� T � es��

The exponential term is not important� Indeed� the number of parallel loops in a nest is not
higher than � in practice�


���
 Remarks

Remark � In the above version of the algorithm� we always distribute exactly one parallel loop
along each path of the loop subgraph� In certain cases� it may well be more e�cient to execute a
parallel loop in sequential mode on a single processor� We can implement this modi�cation� which
amounts to select at most one �instead of exactly one parallel loop along each path of the loop
subgraph� we make a copy of each parallel node� One copy indicates a sequential execution and the
other a parallel execution� So� there are twice as many loop nodes� hence more loop distribution
schemes to evaluate�

Similarly� we always distribute one dimension of each array� Sometimes� it will be better to
allocate a whole array to an unique processor� To that purpose� we can add a node for each array
which indicates that we do not want to distribute this array�

Remark � The problem �and of course the alignment�communication graph� is symmetric�
between loop nodes and array dimension nodes� Sometimes� it will be better to iterate on all
possible distribution schemes for the arrays� and to deduce the best distribution scheme for the
loops� For Example �� there is a single array of dimension � and several loop nodes� so we should
indeed consider the di�erent choices for distributing a� and for each of them to determine the best
distribution scheme for the loops�

Remark 	 For the �mostly theoretical� situation where our algorithm would be too costly� we
can introduce the following greedy heuristic� along each path of the loop subgraph� give priority to
distributing the most external parallel loop� This will lead to the largest granularity of the tasks
that are distributed to processors�

��� Bidimensional grids

If the dimension of the processor grid of processors is larger than one� we propose the following two
strategies�
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���� Recursive algorithm

We build the alignment�distribution graph just as in Section 
��� and we use the previous unidimen�
sional algorithm� At this stage we have chosen to distribute one parallel loop and one dimension
of each array� We distribute them along the �rst dimension of the grid�

We construct a new graph by deleting already chosen nodes� We update edge weights by taking
the distribution scheme for the �rst grid dimension into account� Then we use a second time the
unidimensional algorithm to determine which loops and which array dimensions will be distributed
along the second grid dimension�

We iterate the process as many times as there are dimensions in the processor grid�

Example 


Assume that we target a �D�processor grid for the following nest�

for �� i � � to n do
for �� j � � to n do

for �� k � � to n do
a�i� j� k� � b�j� i� k� � b�i� j� k�

end for ��
end for ��

end for ��

Using this recursive algorithm� we �rst distribute the k loop and the last dimension of a and
b� Indeed� such a choice preserves the parallelism and is communication�free� After deleting the
corresponding nodes and updating the weights� we obtain the graph of Figure�� Next the recursive
algorithm decides to distribute i and the �rst dimension of a and b along the second grid dimension�

b1

b2a2

a1 i

j

N

N

N

N

N
N

Figure �� Recursive algorithm � after the �rst step�


���� Optimal algorithm

The main principle of the optimal algorithm is the same as in the unidimensional case� Instead
of considering one node by path of the loop subgraph� we consider g nodes by path� where g is
the dimension of the target processor grid� When d loop nodes are chosen along each path� we
determine for each dimension of each array the cost of the communications induced by the distri�
bution of this dimension and these loops� We keep the loop distribution scheme which minimizes
the communications�
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Figure �� The alignment�distribution graph for Example 
�

Coming back to the example 
� we construct the graph depicted in the �gure �� In this graph�
we have to compare the three following cases � distribute �i� j�� distribute �i� k� or distribute �j� k��

Distribute �i� j� � We distribute a�� a� and b�� b��

Distribute �i� k� � We distribute a�� a� and b�� b��

Distribute �j� k� � We distribute a�� a� and b�� b��

In all three cases communications come from accessing b�j� i� k�� The �rst case is very expensive�
We have to choose between the second and the third� Since the communications are the same for
both� we distribute �i� k�� the solution with largest task granularity�


���	 Comparison

Let g be the number of dimensions of the processor grid� For the recursive algorithm� the complexity
for a perfect loop nest is O�g � d � T � s�� For a non perfect nest� we get O�g � d � T � e

s

e ��
This is because we use the unidimensional algorithm g times� Of course g can be viewed as a small
constant in practice �g � � or � for current machines��

For the optimal algorithm� the complexity for a perfect nest is O�%schemes � T � d�� The

number of loop distribution schemes is

�
g
s

�
� Hence the complexity is O�d� T � sg�� For a non

perfect nest� the complexity is O�d� T �
Qp

i�� s
g
i �� So in the worst case� it�s O�d� T � eg�s��

Of course the optimal algorithm has higher complexity� However� it relies on a more accurate
estimation of the communication costs� because when we search for a loop distribution scheme we
look for g dimensions of arrays to distribute together with the selected loops�

��� Several nests

In the case of several loop nests� we use the method proposed Lee 	���� Given a program constituted
by a sequence of n nests� we want to determine the best distribution scheme �for parallel loops and
arrays� for the whole program� In a word� Lee 	��� uses Li and Chen�s CAG as a basic block
for a single loop nest� together with a dynamic programming algorithm to determine whether to
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redistribute some array in between two consecutive blocks� We simply suggest to use our alignment�
distribution graph as a new basic block� and to keep the dynamic approach unchanged� This will
preserve parallelism over the whole program in addition to determining the best distribution and
re�distribution of arrays�

When we consider two consecutive nests� we have two main choices�

� either we keep the same alignment�distribution for the two nests� and we look for the scheme
that minimizes the sum of the communications for both nests�

� or we determine the best alignment�distribution for each nest� and we use a redistribution in
between�

Consider a sequence of n loop nests L�L� � � �Ln� For each subsequence LiLi	� � � �Li	j��� where
� � i � n� � � j � n � i � �� Let Ti�j be the minimal time to compute L�L� � � �Li	j�� with the
restriction that it uses the distribution scheme Pi�j for the sequence LiLi	� � � �Li	j��� Thus the
�nal distribution scheme after computing Ti�j is Pi�j � At the beginning� T��j is equal to M��j � Let
cost�Pi�k�k � Pi�j� be the communication cost of changing data layouts from Pi�k�k to Pi�j � Lee 	���
uses the following dynamic programming algorithm�

for i � � to s do

for j � � to s � i � � do
Ti�j � min��k�i�Ti�k�k � Mi�j � cost�Pi�k�k � Pi�j��

end for
end for

Minimum � min��k�s�Ts�k	��k�

If the sequence of nests is enclosed by an iterative loop� the last line of the algorithm is modi�ed
as follows�

Minimum � min
��k�s

�Ts�k	��k � MAX ITER� dependence�Ts�k	��k���

where dependence�Ts�k	�� returns the cost of changing data layouts from the distribution scheme
of the last nest to the �rst one�

Consider the following simple example �

Example �

for �� i � � to n do
for j � � to n do

a�i� j� � a�i� j � �� � a�i� j�
end for

end for ��
for i � � to n do

for �� j � � to n do
a�i� j� � a�i� �� j� � a�i� j�

end for ��
end for

Lee�s algorithm consists in considering the program either as a unique nest or as two nests for
which we may need to determine a redistribution scheme�
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A unique nest� Our alignment�distribution algorithm decides to distribute the two parallel loops
and the �rst dimension of a� The second nest induces many communications�

Two di�erent nests� For the �rst nest� we distribute the i loop and the �rst dimension of a�
For the second nest we distribute the j loop and the second dimension of a� There is no
communication inside the two nests� but we need communications to redistribute a between
them�

We have to compare both solutions� In the �rst case� processor Pj receives a�i� j� from Pi and
a�i� �� j� from Pi��� and then sends the result to Pi� Each processor has to communicate with all
the others several times� However� if we use a block distribution� these communications are often
transformed into local memory accesses� So the �nal solution is to distribute i� j et a� �the unique
nest strategy��

� Conclusion

We have introduced the alignment�distribution graph to replace Li and Chen�s component a�nity
graph� The major two advantages of our approach are the following�

� Parallelism is preserved� we derive the best loop distribution together with the best array
alignment

� Complexity is polynomial for perfect loop nests� Complexity is always polynomial in the
number of arrays addressed inside the nest�

In addition� we retain all the �exibility of Li and Chen�s approach� new results from the literature
and from experiments can be easily incorporated� for instance to re�ne the estimation of the com�
munication and computation weights� Indeed� our weight model for communications is much more
re�ned than the original CAG of Li and Chen$ as for computation costs� we can also bene�t from
the literature� e�g� 	�� ��� ���� Finally� our graph can be used as a building block for techniques
that manipulate larger programs�

The current largest limitation is that our alignment�distribution graph is built for a �xed� al�
ready parallelized loop nest� It would be nice to incorporate loop transformations in the framework�
how to determine the best way of writing the loop nest� in order to derive the best way to distribute
arrays and computations to processors!
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