
HAL Id: hal-02101994
https://hal-lara.archives-ouvertes.fr/hal-02101994v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Alignment and distribution is NOT (always) NP-hard.
Vincent Boudet, Fabrice Rastello, Yves Robert

To cite this version:
Vincent Boudet, Fabrice Rastello, Yves Robert. Alignment and distribution is NOT (always) NP-
hard.. [Research Report] LIP RR-1998-30, Laboratoire de l’informatique du parallélisme. 1998, 2+18p.
�hal-02101994�

https://hal-lara.archives-ouvertes.fr/hal-02101994v1
https://hal.archives-ouvertes.fr


Laboratoire de l’Informatique du Parallélisme

�Ecole Normale Sup�erieure de Lyon
Unit�e de recherche associ�ee au CNRS no ����

SPI

Alignment and distribution is NOT
�always� NP�hard

Vincent BOUDET

Fabrice RASTELLO

Yves ROBERT

Juillet ����

Research Report No �����

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.00
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip�ens�lyon�fr



Alignment and distribution is NOT �always� NP�hard

Vincent BOUDET

Fabrice RASTELLO

Yves ROBERT

Juillet ����

Abstract

In this paper� an e�cient algorithm to simultaneously implement array
alignment and data�computation distribution is introduced and evalu�
ated� We re�visit previous work of Li and Chen 	��� �
�� and we show
that their alignment step should not be conducted without preserv�
ing the potential parallelism� In other words� the optimal alignment
may well sequentialize computations� whatever the distribution after�
wards� We provide an e�cient algorithm that handles alignment and
data�computation distribution simultaneously� The good news is that
several important instances of the whole alignment�distribution problem
have polynomial complexity� while alignment itself is NP�complete 	����

Keywords� compilation techniques� parallel loops� alignment�
distribution� the owner computes� rule�

R�esum�e

Dans ce rapport� un algorithme e�cace est pr�esent�e et �evalu�e pour
r�esoudre simultan�ement l�alignement des tableaux et la distribution des
donn�ees et des calculs� Nous revisitons les travaux pr�ec�edents de Li
et Chen 	��� �
�� et nous montrons que leur recherche d�un aligne�
ment ne doit pas �etre conduite sans pr�eserver le parall�elisme potentiel�
En d�autres termes� l�alignement optimal peut s�equentialiser les calculs
quelle que soit la distribution choisie ensuite� Nous pr�esentons un al�
gorithme e�cace qui tient compte simultan�ement de l�alignement et de
la distribution des donn�ees et des calculs� La bonne nouvelle est que
plusieurs instances du probl�eme d�alignement�distribution ont une com�
plexit�e polynomiale alors que l�alignement lui�m�eme est NP�complet 	����

Mots�cl�es� techniques de compilation� boucles parall�eles� alignement�
distrib ution� r�egle du the owner computes��



Alignment and distribution is NOT �always� NP�hard�

Vincent Boudet� Fabrice Rastello and Yves Robert

LIP� URA CNRS ����

Ecole Normale Sup�erieure de Lyon� ����� Lyon Cedex �	� France

e�mail� �Vincent�Boudet� Fabrice�Rastello� Yves�Robert��ens�lyon�fr

Abstract

In this paper� an e�cient algorithm to simultaneously implement array alignment and
data�computation distribution is introduced and evaluated� We re�visit previous work of Li
and Chen ���� ���� and we show that their alignment step should not be conducted without
preserving the potential parallelism� In other words� the optimal alignment may well sequen�
tialize computations� whatever the distribution afterwards� We provide an e�cient algorithm
that handles alignment and data	computation distribution simultaneously� The good news is
that several important instances of the whole alignment	distribution problem have polynomial
complexity� while alignment itself is NP�complete �����

Key words� compilation techniques� parallel loops� alignment� distribution� 
the owner
computes� rule�

Corresponding author� Yves Robert
LIP� Ecole Normale Sup�erieure de Lyon� ����
 Lyon Cedex ��� France
Phone� � �� 
 �� �� �� ��� Fax� � �� 
 �� �� �� ��
E�mail� Yves�Robert�ens�lyon�fr

�This work was supported by the CNRS�ENS Lyon�INRIA project ReMaP and by the Eureka Project EuroTOPS�

�



� Introduction

Compile�time techniques for mapping arrays and computations onto distributed memory machines
have focused a large research e�ort recently� as illustrated by the survey paper of Ayguad�e� Garcia
and Kremer 	��� Several methods and tools have been presented since the reference paper of Li and
Chen 	��� �
�� who have studied the problem of aligning arrays so as to minimize communications�
Because Li and Chen have shown the alignment problem to be NP�complete �in the number of data
arrays and statements within the loop nest�� heuristics or costly �exponential� algorithms� such
as Integer Linear Programming� have been introduced� We brie�y survey the related literature in
Section ��

In this paper we re�visit previous work of Li and Chen 	��� �
�� and we show that their align�
ment step should not be conducted without preserving the potential parallelism� In other words�
the optimal alignment may well sequentialize computations� whatever the distribution afterwards�
We provide an e�cient algorithm that handles alignment and data�computation distribution simul�
taneously� The good news is that several important instances of the whole alignment�distribution
problem have polynomial complexity� while alignment itself is NP�complete 	����

We take as input a loop nest� possibly non perfect� where parallelism has been made explicit�
e�g� after applying the Allen and Kennedy parallelization algorithm 	��� We construct a new graph�
the alignment�distribution graph� which replaces Li and Chen�s component a�nity graph� Using
this graph� we are able to determine which parallel loop�s� and which array dimension�s� should be
distributed to the processors so as to preserve parallelism while minimizing communications� Our
alignment�distribution graph is weighted� and the weights represent estimates of the communication
costs� it is a very �exible approach� and we are able to take advantage of recent results on modeling
such communication costs accurately 	�� 
� �� ���� Because the choice of the distributed loops
provides kind of a reference� pattern� the alignment step is conducted according to this choice�
and the complexity to �nding the optimal solution reduces to a fast �polynomial� path algorithm
on the alignment�distribution graph� This is a very nice result for the practical applicability of our
approach �again� previous techniques aimed at solving a NP�complete problem��

The paper is organized as follows� we start with a motivating example in Section �� We use
the example to summarize the approach of Li and Chen 	��� �
� and to point out its limitations�
We brie�y review the existing literature in Section �� We describe our new algorithm� and we state
complexity results� in Section 
� We give some �nal remarks in Section ��

� Motivation

We use a simple example to explain why aligning arrays and distributing parallel loops should be
dealt with simultaneously�

Example �

for i � � to n do

for �� j � i � � to n do
S�� a�i� j� � b�i� j� � a�i� �� j�
S�� b�j� i� � a�j� j� � �

end for ��

end for

�



To check that the second loop on j is indeed parallel� we can use a dependence analysis tool like
Tiny 	���� Using such a tool� we check that there is only one �ow dependence of level � from S� to
itself� which is due to a� The reduced dependence graph for Example � is depicted in Figure ��

S S
1 2

1

Figure �� The reduced dependence graph �using dependence levels� for Example ��

First we review Li and Chen�s approach 	��� �
� through Example �� Then we explain why their
technique may kill the potential parallelism�

��� Li and Chen�s component a�nity graph

We represent in Figure � the component a�nity graph �CAG� that Li and Chen 	�
� ��� would
derive for Example �� We informally explain how the CAG is built using the example� The CAG
contains � columns of � nodes� because they are � arrays a and b �hence � columns� of dimension �
each �hence two nodes in each column�� Node a� represents the �rst dimension of array a� and so
on� There is an edge between two nodes� i�e� between two dimensions of di�erent arrays� if� roughly
speaking� the subscripts of these dimensions are the same up to a translation by a constant� and if
these arrays appear on both sides of the same assignment� The CAG is undirected� Self references
are not taken into account� In our example� there is an edge between nodes a� and b� because of
statement S�� the same subscript i appears in the �rst dimension of a and b� In general� when
the same subscript� up to a translation by a constant� appears in dimension ix of array x and in
dimension iy of array y� these two dimensions are said to have an a�nity relationship� and we draw
an edge between the corresponding nodes� Similarly� due to S� again� there is an edge between
b� and a�� Because self references are not taken into account� the occurrence of a�i � �� j� in the
right hand side has no impact on the graph� The intuitive idea is that edges imply an alignment
preference between the corresponding arrays� The term alignment may well be understood here
as an HPF ALIGN directive 	��� onto a virtual template� Aligning arrays according to the edges
will reduce� or even suppress �as in statement S��� the possible communications induced by the
distribution of the arrays onto parallel processors�

Statement S� introduces some complication� because the same index j appears in the �rst
dimension of a on the left hand side� and in both dimensions of b on the right hand side� The two
edges �a�� b�� and �a�� b�� are said to be competing�

The CAG is weighted� edges are valued according to the strength of preference� A competing
edge has weight �� a value much smaller than �� The weight of an edge between nodes indexed
by a spatial variable �a subscript of a parallel loop� like j in Example �� is �� Finally� the weight
of an edge between nodes indexed by a temporal variable �a subscript of a sequential loop� like i

in Example �� is �� We are led to the graph of Figure �� If there are several edges between two
nodes� we only keep one� whose weight is the sum of all edge weights between the two nodes�

Li and Chen 	�
� ��� state the alignment problem as follows� partition the nodes of all columns
into disjoint subsets that represent aligned dimensions� The rule of the game is that no two nodes

�



a1

a2

b1

b2

1

ε

ε+

Figure �� The component a�nity graph for Example ��

of the same column are in the same subset� The objective is to minimize the sum of the edge
weights between subsets� Unfortunately� the problem is NP�complete in the size of the CAG �Li
and Chen use a reduction from MAX�CUT 	���� To compute a satisfactory alignment� Li and Chen
use a greedy heuristic based upon bipartite matching 	�
�� For Example �� their heuristic leads to
the optimal �minimal�weight� solution� namely aligning a� with b� and a� with b�� In other words
arrays a and b are directly superimposed onto the same template�

��� Distributing parallel loops

The previous alignment� however� causes all the potential parallelism to be lost when it comes to
distributing array elements onto processors To see why� consider the following two possible data
distributions�

Distributing the �rst dimension This means that rows of arrays a and b are distributed to
processors� elements a�i� j� and b�i� j�� for � � j � n� are stored in �virtual� processor Pi�
This causes statement S� to be executed sequentially� given a value of the �rst loop index i�
all iterations of the second loop index j are computed by the same processor Pi�

Distributing the second dimension Quite similarly� distributing columns of a and b to proces�
sors will lead statement S� to be executed sequentially�

To summarize� the best alignment� as computed by Li and Chen� turns out to kill the parallelism�
We claim that the alignment step should be conducted while having parallelism in mind� dis�
tributing parallel loops to processors is the true priority� A good alignment can reduce or suppress
communications� but what if it leads to gather all parallel computations onto the same processor�
as in our example!

We informally explain our approach using Example �� See Section 
 for a complete description
of our algorithm� Assume we target a one�dimensional processor grid� The highest priority is to
distribute parallel computations� i�e� instances of the parallel loop j� on processors� In the example
there is not much freedom� we distribute columns of a and rows of b to processors� processor Pj
receives a�i� j� and b�j� i� for all � � i � n� Owing to this distribution� for each instance of the
external loop i� we distribute the parallel computations of loop j to processors� There remains
some communications� for each instance i of the external loop� because of statement S�� the i�th






row of b must be scattered from processor Pi to all processors� But parallelism has been preserved�
Our approach does lead to this solution� based upon an alignment�distribution graph that privileges
parallel loops� The alignment�distribution graph for Example � is represented in Figure �� It is
built as follows� there are 
 array dimension nodes� one per array and per dimension� as in Li and
Chen�s CAG� plus an additional loop node for the parallel j loop� There is an edge between the
loop node and an array dimension node if distributing both of them onto the processors induces
communications� Edge weigh correspond to �estimated� communication costs� In Figure �� Ga
stands for Gather� and Sc for Scatter�

j

a1

a2

b1

b2

N*Ga(N/P)+N*Sc(N/P)

N*Br(N)

N*Sc(N/P)

Figure �� The alignment�distribution graph for Example ��

The detailed construction of the graph as well as our solution to the problem are described in
Section 
� We conclude our study of Example � with a few important remarks�

Remark �� �the owner�computes� rule� There is no major reason to obey the owner�computes�
rule� The true objective is to distribute the parallel computations S��i� j� and S��i� j� to pro�
cessor Pj � for � � i � n� To this purpose� we might distribute columns of a and b to processors�
which corresponds to Li and Chen�s alignment� But we would insist that S��i� j� is executed
by processor Pj � at the price of a communication after the computation� to store the written
value b�j� i� into the memory of processor Pi� For each value of i� statement S� would then
induce a gather operation �Pj owns a�j� j�� writes into b�j� i� and sends it to Pi��

Remark �� computations versus communications� Example � is a toy example and should
be considered as such� In this example� our solution may not be signi�cantly better than
a solution that sequentializes the parallel loop� because of the cost of the communications�
Still� we can easily modify the example Also� we can take bene�t of the many papers in
the literature to derive the best physical distribution� i�e� deciding whether rows of a and
columns of b will be distributed in a pure cyclic� pure block or block�cyclic fashion over p
physical processors� where p is likely to be much smaller than n� the array size� In fact� our
approach is quite �exible and can bene�t from any precise modeling of the computation and
communication costs� our alignment�distribution graph is vertex�weighted and edge�weighted�
and the more precise the weights� the more accurate the solution� See the literature survey
in Section ��

Remark 	� loop parallelization algorithms and redistribution� An experienced program�
mer may have decided to apply loop distribution 	��� p� ����� on Example � before con�
sidering alignment and distribution� Such a transformation is perfectly legal and leads to the
following loop nest�

�A confusing terminology� Loop distribution here amounts to distribute statements inside the same loop so that

they appear in separate loops� It is not related to distributing loop instances to processors�

�



Distributing loops

for i � � to n do
for �� j � i � � to n do

S�� a�i� j� � b�i� j� � a�i� �� j�
end for ��

end for
for �� i � � to n do

for �� j � i � � to n do
S�� b�j� i� � a�j� j� � �

end for ��
end for

We could then perform the alignment step separately on the two nests� and eventually re�
distribute some data array �say b� in between� If the modi�ed loop nest �having distributed
the loop� is given as input to our alignment�distribution graph� and if the redistribution of
one array �say b� is optimal� our algorithm will �nd it� But given the original loop nest of
Example �� we do not deal with ANY loop transformation�

Consider the following modi�cation of Example ��

Example �

for i � � to n do
for �� j � i � � to n do

for k � � to n do
S�� a�i� j� k� � b�i� j� k� � b�i� �� i� k� �� � a�i� �� j� k�
S�� b�j� i� k� � a�j� j� k� � a�i� i� �� k�

end for
end for ��

end for

The reduced dependence graph is shown in Figure 
� loop distribution is no longer valid�
We represent Li and Chen�s CAG in Figure �� solid arrows correspond to statement S�� and
dashed arrows to S�� Again� the optimal solution for the CAG is to superimpose arrays a
and b� i�e� align each dimension of a with the same dimension of b� Again� this would lead to
a sequential execution� whatever the distribution chosen� However� as before� our alignment�
distribution graph� represented in Figure �� gives priority to the parallel loop j and distribute
the �rst dimension of a and the second dimension of b to processors�

To summarize� our approach starts from a �parallelized� loop nest� i�e�a loop nest for which
dependence analysis and loop parallelization have already been carried out� The most popular
tools for these two steps are dependence levels 	�� �� and the Allen�Kennedy algorithm 	��� Given a
parallelized loop nest� we determine which parallel loops should be distributed to processors� and
the best alignment and distribution of arrays to minimize communications� This is done through
the alignment�distribution graph�

Our main contribution is for a single loop nest� possibly non perfectly nested� When there
are several consecutive loop nests� or an iterative loop surrounding several loop nests� we use the
approach of Lee 	���� which we brie�y summarize in Section 
�� when dealing with multiple nests�

�



S S
1 2

1

3

Figure 
� The reduced dependence graphs �using dependence levels� for Example ��

a1

a2

a3

b1

b2

b3

1
ε ε

ε

+

+

+ ε

ε + ε

Figure �� The component a�nity graph for Example ��

a1

a2

a3

b2

b1

b3

j

N*Ga(N^2/P)+2*N*Sc(N^2/P)

N*Ga(N^2/P)+3*N*Sc(N^2/P) N*Ga(N^2/P)+2*N*Sc(N^2/P)

2*N*Sc(N^2/P)

N*Sc(N^2/P)

N*Ga(N^2/P)+N*Sc(N^2/P)

Figure �� The alignment�distribution graph for Example ��

�



� Related work

There are numerous papers on the alignment and distribution problem� We refer the reader to
the survey 	�� and the references therein� In this section� we summarize a few selected papers� In
addition to Li and Chen�s alignment method 	��� �
� �already described in Section ����� we describe
three papers by Tandri and Abdelrahman 	���� Kelly and Pugh 	��� and Ayguad�e et al� 	
� ��� whose
goal is similar to ours� Next we present results by Gupta and Banerjee 	�� and Li and Chen 	��� on
identifying structured communications and estimating their weight�

Our algorithm also uses the dynamic programming algorithm of Lee 	��� when dealing with
several loop nests� Indeed� redistributing some arrays between two consecutive nests may well
prove more e�cient� We describe Lee�s technique in Section 
���

��� Tandri and Abdelrahman

Given a loop nest� Tandri and Abdelrahman 	��� construct an undirected graph where each node
represents either a parallel loop� or an array dimension� There is an edge between a loop node and
an array node if the dimension considered is indexed by the loop variable�

Attributes are assigned to the nodes � "� Cyclic or CyclicRCyclic for loop nodes� to favor load
balancing� and "� Block or BlockCyclic for array node� to favor local access� For example� if X is
referred to as X�a� i�b�j� where j �outer� is parallel and i �inner� is sequential� then the attribute
will be BlockCyclic�

There is a con�ict when an edge connects two nodes whose attributes are di�erent� To solve
such a con�ict� we replace the attributes by an intermediary� Thus� Cyclic and Block resolve to
BlockCyclic�

Once all con�icts are solved� we have to assign dimensions of the processor geometry to the
nodes� The algorithm is a greedy one� We consider �rst the outer loop� We assign to them and
to the array nodes connected to them a dimension of processors� We pursue then with the other
nodes� A distribution scheme is then found�

Tandri and Abdelrahman�s method is somewhat crude� in that communication costs are not
taken into account precisely� Also� their selection of the best array dimension to be distributed
is not clear� Still� they give priority to distributing parallel lops� and next they align the array
dimensions onto those loops� we believe this is the right way to go� and we use a similar �but
re�ned� scheme in our algorithm�

��� Ayguad�e et al�

Ayguad�e et al� 	
� �� consider programs constituted of several consecutive perfect loop nests L�L� � � �Ln�
All arrays are assumed to have the same dimension d� They describe their method for �D� and
�D�grids� but we only deal with �D�grids in this short survey� We start with the construction of a
graph called the Communication�Parallelism Graph� Nodes are organized in columns� Each column
represents an array in a nest and it contains d nodes�

There are two types of edges� Data movement edges show possible alignment alternatives
between the dimension of two arrays in a nest Li� The assigned weight re�ects the data movement
cost to be paid if these two dimensions are aligned and distributed� We add other data movement
edges to show possible realignment in a sequence of nests� If the array A in Li is used in Lj � then
d� d edges connect each node of array A in Li to each node of A in Lj � If the edge connects the
same dimension� its weight is null� otherwise its weight is the cost of a realignment�

�



Parallelism hyper�edges show possible parallelization strategies for the loops in Li� An hyper�
edge connects the nodes corresponding to the array dimensions that have to be distributed to
parallelize the loop according to the owner computes rule� Its weight is the time that is saved when
the loop is parallelized�

We have to �nd a path in the CPG that includes exactly one node of each column so that the
sum of weights of the edges minus the sum of weights of the hyper�edges that connect nodes in the
chosen path is minimized� This problem is formulated as a linear ��� programming problem� The
variables are YPQ�i� j� which corresponds to the edge between the ith dimension of P and the jth

dimension of Q and Zk which corresponds to the kth hyper�edge�
The constraints are the following�

�
X
j

YPQ�i� j� �
X
j

YQR�i� j� �i� P�Q�R

�
X
i

X
j

YPQ�i� j� � � �P�Q

� If Zk connects the nodes XP ��i��� � � � � XPh�ih� which are connected by the edges YP �Q� � � � � � YPhQh �

we need
X
j

YP lQl�il� j� � Zk �l 	 	���h�

The approach of Ayguad�e et al� 	
� �� is interesting because of their precise estimation of edge
weights� Also they can handle redistribution between consecutive nests� However� the requirement
that all nests are perfect and that all arrays have same dimension is very restrictive� In addition�
the integer linear programming solution may prove too expensive in practice�

��� Kelly and Pugh

The title of Kelly and Pugh�s paper 	�� is Minimizing communication while preserving parallelism�
This title exactly corresponds to our goal However Kelly and Pugh consider a framework quite
di�erent from ours� they study all the possible transformations �loop permutations� of the pro�
gram to determine which one induces the maximum of parallelism and the best mapping of the
computations�

To determine valid loop permutations� Kelly and Pugh use a dependence analysis more sophis�
ticated than the dependence levels� The direct dependences are computed by the Omega software
and the indirect dependences are computed by transitive closure�

For each legal permutation� they determine the parallelism level which is allowed and they
estimate the number of required synchronizations �they use a sophisticated model which allows
to take pipelining into account�� Finally� for each statement pair� they compute the number of
data written in the �rst statement and read in the second one� using value�based �ow dependence
analysis�

To summarize� in the case where a precise dependence analysis is possible �e�g� when all
dependences are a�ne�� Kelly and Pugh�s method is quite powerful� However� it cannot be applied
to general loop nests where only limited information �such as dependence levels� is available�

��� Communication patterns

Li and Chen 	��� present interesting results on communication routines� They consider already
parallelized programs with sequential and parallel loops� They assume that each array element

�



can be assigned only once� that left�hand side subscripts are index variables� and that arrays are
aligned to have a common index domain within each loop nest� We have a distribution scheme over
a template and we want to recognize communication routines�

Each assignment a���� � � � � �n� � � � �b���� � � � � �n� � � �may generate communications� If the tuples
di�er in only one corresponding pair of elements� the communication is either a Spread or a Reduce
or a Copy or a Shift or a Multi�spread� The routine can be found with a pattern matching on these
elements�

If the tuples are strongly di�erent� we try by pattern matching on the tuples to recognize one of
these routines � One�All�Broadcast� All�One�Reduce� Single�Send�Receive� Uniform�Shift or A�ne�
Transform� When a pattern cannot be matched with a routine� we decompose it into sub�patterns�
Indeed� a pattern over an n�dimensional index domain can be thought of as a composition of n
simple patterns� For example� send a�c�i� j�� j � �� to �i� j� can be decomposed into two simple
communications� send a�c�i� j�� j� �� to �i� j � ���which is a Multi�spread� and then send �the

data� from �i� j � �� to �i� j�� which is a Shift�
Gupta and Banerjee 	�� improve Li and Chen�s alignment method to estimate communication

costs� Their method is based on pattern�matching� applied upon the di�erent assignments which
could generate communications in the program� Their communication primitives are Transfer�
OneToManyMulticast� ManyToManyMulticast� Scatter� Gather� Shift and Reduction�

They allow operations on the structure of the program to decrease the communications costs
by founding a better placement of communication� For instance they use loop distribution over
two components to enable any communication placed between those components to be aggregated
with respect to that loop� They try to permute loops when there is a parallel loop outside a loop
in which communication takes place� To control the size of communication bu�ers required� they
propose to strip�mine the loops�

Sometimes� the compiler may generate more communication than necessary� for example when
there are conditionals� Information about the frequency of execution of statements can help the
compiler decide between carrying out potentially extra communication and using a large number
of messages� Since the primitives corresponding to di�erent terms implement the data movement
in distinct grid dimensions� they can legally be composed in any order� So another optimization is
to permute the communications in favor of reducing the message sizes handled by processors�

� Solving the alignment�distribution problem

Al already stated� we start from a parallelized program� i�e� a program for which dependence analysis
and loop parallelization have already been carried out� we are using the same hypotheses as Li and
Chen 	�
�� Our goal is to preserve the potential parallelism while conducting the alignment step� We
�rst describe our algorithm for a unidimensional processor grid� Next we move to a bidimensional
grid� In both cases� we target a single �possibly non perfectly nested� loop nest� For several
consecutive loop nests� we simply use the approach of Lee 	���� who uses a dynamic�programming
algorithm to determine whether some data redistribution is needed between two successive loop
nests�

��� Unidimensional grids


���� Construction of the alignment�communication graph

We have two kinds of nodes in the graph� array dimension nodes and loop nodes�

��



� For each array� each dimension of this array is represented by a node �like for Li # Chen
graph�� The weight of such a node is zero�

� Each loop is also represented by a node� We give a weight to this node which represents
the �approximated� execution time of the loop� For parallel loops� we divide the sequential
execution time by the number of processors� as in Ayguad�e et al 	
� ���

Edges link array dimension nodes to loop nodes� There is an edge between two such vertices
if there is a reference to the corresponding array dimension in the corresponding loop$ the edge
weight represents the �estimated� communication costs induced by the distribution of both the
array dimension and the loop instances to the processors�

Finally� we add dashed arrows to illustrate the loop nesting� This is only for convenience� We
refer to loop nodes and dashed arrows as the loop subgraph of the alignment�communication graph�

Consider the Cholesky factorization algorithm showed in Example �� We use this example to
describe our algorithm because it is a classical in compilation literature� Data dependence analysis
can be conducted exactly on this example because all references are a�ne� but this is by no means
a requirement for our algorithm�

Example 	

for k � � to n do

S� � a�k� k��
p
a�k� k�

for �� j � k � � to n do

S� � a�k� j� � a�k�j�
a�k�k�

end for ��
for �� i � k � � to n� �

for �� j � i to n� �
S� � a�i� j� � a�i� j�� a�k� i� � a�k� j�

end for ��
end for ��

end for

Note that Li and Chen�s CAG for Cholesky has no edge� because there is a single array in the
nest� and they do not take self references into account� We represent the alignment�distribution
graph in Figure �� Boxed nodes are the loop nodes� we use a circle for a parallel loop and a square
for a sequential loop� The other nodes are the array dimension nodes� We use the following routines
for the edge weights�

Br�N��Broadcast�N� a processor sends the same N data items�
Sc�N��Scatter�N� a processor sends N di�erent data items�
Ga�N��Gather�N� a processor receives N di�erent data items�

Aap�N��All to all personalized�N� each processor sends N di�erent data items�
Aa�N��All to all�N� each processor sends the same N data items�

For example� the edge between a� and the left parallel node j comes from statement S�� It means
that if we distribute this j loop and the second dimension of a� each processor j which computes
a�k� j� has to receive from the same processor k the value of a�k� k�$ hence the label Br����

��



k

j i

j

a1

a2

N N

N

2Aap(N/P)+Aa(N/P)

2Aap(N/P)+Sc(N/P)+Br(N/P)

Sc(N/P)+Br(N)

Aa(N/P)

Br(1)+Sc(N/P)+Ga(N/P)

Br(1)

Figure �� The alignment�distribution graph for Example ��


���� The algorithm

The goal is to �nd exactly one parallel loop node to distribute� along each path of the loop subgraph�
We also need to distribute a dimension of each array� The optimization criteria is to minimize
residual communications costs�

The optimal solution is to consider all di�erent possibilities to distribute the parallel loops�
Once a given distribution is chosen� we compare for each array the communication costs generated
by this distribution� and we select the dimension which minimizes the communications� We sum
the costs over all arrays and we obtain the total cost of the selected loop distribution� We keep the
loop distribution scheme of minimal cost�

Coming back to Example �� there are two di�erent paths� We have to choose j in the left
path� and either i or j in the right path� In the case of the distribution scheme �j� i�� we have
for a� the weight N � Br��� � �N � Sc�N�P � � N � Ga�N�P � � N � Br�N� and N � Br��� �
�N � Aap�N�P � � N � Sc�N�P � � N � Br�N�P � for a�� The weight of a� is lower� hence we
distribute a�� For the other distribution scheme �j� j�� the weight is N � Br��� � N � Sc�N�P � �
N �Ga�N�P � � �N �Aap�N�P � � N �Aa�N�P � for a� and N � Br��� � N � aa�N�P � for a�� In
this case� we choose a�� Then we have to compare the two solutions� The cost of the �rst solution
is N � Br��� � �N � Sc�N�P � � N � Ga�N�P � � N � Br�N�� and the cost of the second solution
is N �Br��� � N � aa�N�P �� Since a personalized all�to�all is expensive� we would most certainly
select the �rst solution�


���	 Complexity

Consider �rst the case of a perfect loop nest� Let s be the number of parallel loops� T be the
number of arrays and di the dimension of the i�th array Ti� The complexity of our algorithm is
O�s�

PT
i�� di� because for each parallel loop and for each array� we search for the best dimension

to distribute� Letting d � maxi�di� be the largest array dimension� the complexity of our algorithm
is O�d� T � s��

It is important to understand why this result does not contradict the NP�completeness result
of Li and Chen� who show that the alignment problem is NP�complete in the size of the CAG� i�e�
the number of arrays T multiplied by the largest array dimension d� The intuitive explanation is
the following� Li and Chen have no template reference for the alignment problem� so they have to
explore the possibility of aligning each dimension of each array with every dimension of every other
array� hence the combinatorial swell� On the contrary in our approach� because we aim at preserving

��



the potential parallelism� each loop distribution scheme constitutes a reference pattern for which we
search the best distribution for each array� Because we have few possible loop distribution schemes�
the overall complexity is kept small�

Theorem � The alignment�distribution problem can be solved in time O�d � T � s� for a perfect
loop nest with s parallel loops and T arrays with largest dimension d�

In the case of a non�perfect nest� on a given path labeled i in the loop nodes of the alignment�
distribution graph� there are si parallel loops� For instance in Example �refprog�choles� we have two
paths in the loop subgraph� s� � � and s� � �� The complexity of the algorithm is O�d�T�

Qp
i�� si�

because
Qp

i�� si represents the number of distribution scheme� In the worst case� the complexity is
O�d� T � es��

The exponential term is not important� Indeed� the number of parallel loops in a nest is not
higher than � in practice�


���
 Remarks

Remark � In the above version of the algorithm� we always distribute exactly one parallel loop
along each path of the loop subgraph� In certain cases� it may well be more e�cient to execute a
parallel loop in sequential mode on a single processor� We can implement this modi�cation� which
amounts to select at most one �instead of exactly one parallel loop along each path of the loop
subgraph� we make a copy of each parallel node� One copy indicates a sequential execution and the
other a parallel execution� So� there are twice as many loop nodes� hence more loop distribution
schemes to evaluate�

Similarly� we always distribute one dimension of each array� Sometimes� it will be better to
allocate a whole array to an unique processor� To that purpose� we can add a node for each array
which indicates that we do not want to distribute this array�

Remark � The problem �and of course the alignment�communication graph� is symmetric�
between loop nodes and array dimension nodes� Sometimes� it will be better to iterate on all
possible distribution schemes for the arrays� and to deduce the best distribution scheme for the
loops� For Example �� there is a single array of dimension � and several loop nodes� so we should
indeed consider the di�erent choices for distributing a� and for each of them to determine the best
distribution scheme for the loops�

Remark 	 For the �mostly theoretical� situation where our algorithm would be too costly� we
can introduce the following greedy heuristic� along each path of the loop subgraph� give priority to
distributing the most external parallel loop� This will lead to the largest granularity of the tasks
that are distributed to processors�

��� Bidimensional grids

If the dimension of the processor grid of processors is larger than one� we propose the following two
strategies�

��




���� Recursive algorithm

We build the alignment�distribution graph just as in Section 
��� and we use the previous unidimen�
sional algorithm� At this stage we have chosen to distribute one parallel loop and one dimension
of each array� We distribute them along the �rst dimension of the grid�

We construct a new graph by deleting already chosen nodes� We update edge weights by taking
the distribution scheme for the �rst grid dimension into account� Then we use a second time the
unidimensional algorithm to determine which loops and which array dimensions will be distributed
along the second grid dimension�

We iterate the process as many times as there are dimensions in the processor grid�

Example 


Assume that we target a �D�processor grid for the following nest�

for �� i � � to n do
for �� j � � to n do

for �� k � � to n do
a�i� j� k� � b�j� i� k� � b�i� j� k�

end for ��
end for ��

end for ��

Using this recursive algorithm� we �rst distribute the k loop and the last dimension of a and
b� Indeed� such a choice preserves the parallelism and is communication�free� After deleting the
corresponding nodes and updating the weights� we obtain the graph of Figure�� Next the recursive
algorithm decides to distribute i and the �rst dimension of a and b along the second grid dimension�

b1

b2a2

a1 i

j

N

N

N

N

N
N

Figure �� Recursive algorithm � after the �rst step�


���� Optimal algorithm

The main principle of the optimal algorithm is the same as in the unidimensional case� Instead
of considering one node by path of the loop subgraph� we consider g nodes by path� where g is
the dimension of the target processor grid� When d loop nodes are chosen along each path� we
determine for each dimension of each array the cost of the communications induced by the distri�
bution of this dimension and these loops� We keep the loop distribution scheme which minimizes
the communications�

�




b1

b2

b3

a2

a3

a1 i

j

k

Figure �� The alignment�distribution graph for Example 
�

Coming back to the example 
� we construct the graph depicted in the �gure �� In this graph�
we have to compare the three following cases � distribute �i� j�� distribute �i� k� or distribute �j� k��

Distribute �i� j� � We distribute a�� a� and b�� b��

Distribute �i� k� � We distribute a�� a� and b�� b��

Distribute �j� k� � We distribute a�� a� and b�� b��

In all three cases communications come from accessing b�j� i� k�� The �rst case is very expensive�
We have to choose between the second and the third� Since the communications are the same for
both� we distribute �i� k�� the solution with largest task granularity�


���	 Comparison

Let g be the number of dimensions of the processor grid� For the recursive algorithm� the complexity
for a perfect loop nest is O�g � d � T � s�� For a non perfect nest� we get O�g � d � T � e

s

e ��
This is because we use the unidimensional algorithm g times� Of course g can be viewed as a small
constant in practice �g � � or � for current machines��

For the optimal algorithm� the complexity for a perfect nest is O�%schemes � T � d�� The

number of loop distribution schemes is

�
g
s

�
� Hence the complexity is O�d� T � sg�� For a non

perfect nest� the complexity is O�d� T �
Qp

i�� s
g
i �� So in the worst case� it�s O�d� T � eg�s��

Of course the optimal algorithm has higher complexity� However� it relies on a more accurate
estimation of the communication costs� because when we search for a loop distribution scheme we
look for g dimensions of arrays to distribute together with the selected loops�

��� Several nests

In the case of several loop nests� we use the method proposed Lee 	���� Given a program constituted
by a sequence of n nests� we want to determine the best distribution scheme �for parallel loops and
arrays� for the whole program� In a word� Lee 	��� uses Li and Chen�s CAG as a basic block
for a single loop nest� together with a dynamic programming algorithm to determine whether to

��



redistribute some array in between two consecutive blocks� We simply suggest to use our alignment�
distribution graph as a new basic block� and to keep the dynamic approach unchanged� This will
preserve parallelism over the whole program in addition to determining the best distribution and
re�distribution of arrays�

When we consider two consecutive nests� we have two main choices�

� either we keep the same alignment�distribution for the two nests� and we look for the scheme
that minimizes the sum of the communications for both nests�

� or we determine the best alignment�distribution for each nest� and we use a redistribution in
between�

Consider a sequence of n loop nests L�L� � � �Ln� For each subsequence LiLi	� � � �Li	j��� where
� � i � n� � � j � n � i � �� Let Ti�j be the minimal time to compute L�L� � � �Li	j�� with the
restriction that it uses the distribution scheme Pi�j for the sequence LiLi	� � � �Li	j��� Thus the
�nal distribution scheme after computing Ti�j is Pi�j � At the beginning� T��j is equal to M��j � Let
cost�Pi�k�k � Pi�j� be the communication cost of changing data layouts from Pi�k�k to Pi�j � Lee 	���
uses the following dynamic programming algorithm�

for i � � to s do

for j � � to s � i � � do
Ti�j � min��k�i�Ti�k�k � Mi�j � cost�Pi�k�k � Pi�j��

end for
end for

Minimum � min��k�s�Ts�k	��k�

If the sequence of nests is enclosed by an iterative loop� the last line of the algorithm is modi�ed
as follows�

Minimum � min
��k�s

�Ts�k	��k � MAX ITER� dependence�Ts�k	��k���

where dependence�Ts�k	�� returns the cost of changing data layouts from the distribution scheme
of the last nest to the �rst one�

Consider the following simple example �

Example �

for �� i � � to n do
for j � � to n do

a�i� j� � a�i� j � �� � a�i� j�
end for

end for ��
for i � � to n do

for �� j � � to n do
a�i� j� � a�i� �� j� � a�i� j�

end for ��
end for

Lee�s algorithm consists in considering the program either as a unique nest or as two nests for
which we may need to determine a redistribution scheme�

��



A unique nest� Our alignment�distribution algorithm decides to distribute the two parallel loops
and the �rst dimension of a� The second nest induces many communications�

Two di�erent nests� For the �rst nest� we distribute the i loop and the �rst dimension of a�
For the second nest we distribute the j loop and the second dimension of a� There is no
communication inside the two nests� but we need communications to redistribute a between
them�

We have to compare both solutions� In the �rst case� processor Pj receives a�i� j� from Pi and
a�i� �� j� from Pi��� and then sends the result to Pi� Each processor has to communicate with all
the others several times� However� if we use a block distribution� these communications are often
transformed into local memory accesses� So the �nal solution is to distribute i� j et a� �the unique
nest strategy��

� Conclusion

We have introduced the alignment�distribution graph to replace Li and Chen�s component a�nity
graph� The major two advantages of our approach are the following�

� Parallelism is preserved� we derive the best loop distribution together with the best array
alignment

� Complexity is polynomial for perfect loop nests� Complexity is always polynomial in the
number of arrays addressed inside the nest�

In addition� we retain all the �exibility of Li and Chen�s approach� new results from the literature
and from experiments can be easily incorporated� for instance to re�ne the estimation of the com�
munication and computation weights� Indeed� our weight model for communications is much more
re�ned than the original CAG of Li and Chen$ as for computation costs� we can also bene�t from
the literature� e�g� 	�� ��� ���� Finally� our graph can be used as a building block for techniques
that manipulate larger programs�

The current largest limitation is that our alignment�distribution graph is built for a �xed� al�
ready parallelized loop nest� It would be nice to incorporate loop transformations in the framework�
how to determine the best way of writing the loop nest� in order to derive the best way to distribute
arrays and computations to processors!

References

	�� John R� Allen and Ken Kennedy� PFC� a program to convert Fortran to parallel form� Technical
Report MASC�TR����� Rice University� Houston� TX� USA� �����

	�� John R� Allen and Ken Kennedy� Automatic translation of Fortran programs to vector form�
ACM Transactions on Programming Languages and Systems� ��
��
��&�
�� October �����

	�� E� Ayguad�e� J� Garcia� M� Giron�es� M� L� Grande� and J� Labarta� DDT� A research tool for
automatic data distribution in HPF� Scienti	c Programming� �������&�
� �����

	
� E� Ayguad�e� J� Garcia� M� Giron�esa� J� Labarta� J� Torres� and M� Valero� Detecting and
using a�nity in an automatic data distribution tool� In Languages and Compilers for Parallel
Computing� pages ��&��� Springer�Verlag� �����

��



	�� E� Ayguad�e� J� Garcia� and U� Kremer� Tools and techniques for automatic data layout� a
case study� Parallel Computing� �
����&���� �����

	�� Michael R� Garey and Davis S� Johnson� Computers and Intractability
 a Guide to the Theory
of NP�Completeness� W� H� Freeman and Company� �����

	�� M� Gupta and P� Banerjee� Demonstration of automatic data partitioning techniques for
parallelizing compilers on multicomputers� IEEE Transactions on Parallel and Distributed
Systems� ��������&���� �����

	�� Mohammad R� Haghighat� Symbolic Analysis for Parallelizing Compilers� Kluwer Academic
Publishers� �����

	�� W� Kelly and W� Pugh� Minimizing communication while preserving parallelism� In Proceed�
ings of the ��th ACM International Conference on Supercomputing� ACM Press� �����

	��� Charles H� Koelbel� David B� Loveman� Robert S� Schreiber� Guy L� Steele Jr�� and Mary E�
Zosel� The High Performance Fortran Handbook� The MIT Press� ���
�

	��� PeiZong Lee� E�cient algorithms for data distribution on distributed memory parallel com�
puters� IEEE Transactions on Parallel and Distributed Systems� ��������&���� �����

	��� J� Li and M� Chen� Compiling communication�e�cient programs for massively parallel ma�
chines� IEEE Transactions on Parallel and Distributed Systems� ��������&���� �����

	��� Jingke Li and Marina Chen� Index domain alignment� Minimizing cost of cross�referencing
between distributed arrays� In Frontiers �� The �rd Symposium on the Frontiers of Massively
Parallel Computation� pages 
�
&
��� College Park� MD� October ����� IEEE Computer So�
ciety Press�

	�
� Jingke Li and Marina Chen� The data alignment phase in compiling programs for distributed�
memory machines� Journal of Parallel and Distributed Computing� ������&���� �����

	��� Kathryn S� McKinley� Automatic and Interactive Parallelization� PhD thesis� Department of
Computer Science� Rice University� �����

	��� W� Pugh� Counting solutions to Pressburger formulas� how and why� In ACM SIGPLANCon�
ference on Programming Language
 Design and Implementation� ACM Press� ���
�

	��� S� Tandri and T� S� Abdelrahman� Automatic data and computation partitioning on scalable
shared memory multiprocessors� In �rd Workshop on Automatic Data Layout and Performance
Prediction� �����

	��� Michael Wolfe� The Tiny loop restructuring research tool� In H�D� Schwetman� editor� Inter�
national Conference on Parallel Processing� volume II� pages 
�&��� CRC Press� �����

	��� Michael Wolfe� High Performance Compilers For Parallel Computing� Addison�Wesley� �����

��


