Performance Optimization of a
Parallel, Two Stage Stochastic Linear Program

Akhil Langer!, Ramprasad Venkataraman®, Udatta Palekar*, Laxmikant V. Kale*
tDept of Computer Science, *College of Business
University of Illinois at Urbana-Champaign

Steven Baker
MITRE Corporation
sbaker @mitre.org

{alanger, ramv, palekar, kale} @illinois.edu

Abstract—Stochastic optimization is used in several high
impact contexts to provide optimal solutions in the face of
uncertainties. This paper explores the parallelization of two-
stage stochastic resource allocation problems that seek an optimal
solution in the first stage, while accounting for sudden changes
in resource requirements by evaluating multiple possible sce-
narios in the second stage. Unlike typical scientific computing
algorithms, linear programs (which are the individual grains of
computation in our parallel design) have unpredictable and long
execution times. This confounds both a priori load distribution as
well as persistence-based dynamic load balancing techniques. We
present a master-worker decomposition coupled with a pull-based
work assignment scheme for load balance. We discuss some of
the challenges encountered in optimizing both the master and the
worker portions of the computations, and techniques to address
them. Of note are cut retirement schemes for balancing memory
requirements with duplicated worker computation, and scenario
clustering for accelerating the evaluation of similar scenarios.

We base our work in the context of a real application:
the optimization of US military aircraft allocation to various
cargo and personnel movement missions in the face of uncertain
demands. We demonstrate scaling up to 122 cores of an intel® 64
cluster; even for very small, but representative datasets.

Our decision to eschew problem-specific decompositions has
resulted in a parallel infrastructure that should be easily adapted
to other similar problems. Similarly, we believe the techniques
developed in this paper will be generally applicable to other
contexts that require quick solutions to stochastic optimization

problems.
Keywords-stochastic optimization, parallel computing, large

scale optimization, airfleet management

I. INTRODUCTION

Stochastic optimization provides a means of coping with the
uncertainty inherent in real-world systems; and with models
that are nonlinear, of high dimensionality, or not conducive
to deterministic optimization techniques. Deterministic ap-
proaches find optima for a fixed combination of inputs. How-
ever, the solutions obtained can be far from optimal even with
small perturbations of the input data. This can be problematic
because real-world systems often have many perturbations
from mean values. Stochastic optimization allows the modeler
to account for this randomness by looking for optimality
across multiple possible scenarios [1]. Typically, the search
for an optimum involves the evaluation of candidate solutions
for many possible combinations or variations in input values
(scenarios). Since, the number of likely or possible scenarios
is typically quite large, there is a clear motivation to explore
parallel computing to handle this large computational burden.

Stochastic optimization algorithms have applications in
statistics, science, engineering, and business. Examples include
making investment decisions in order to increase profit, trans-
portation (planning and scheduling logistics), design-space
exploration in product design, etc. There are other applications
in agriculture, energy, telecommunications, military, medicine,
water management etc.

In this paper, we describe our design for a parallel program
to solve a 2-stage stochastic linear optimization model for
an aircraft planning problem. We present our parallel decom-
position and some interesting considerations in dealing with
computation-communication granularity, responsiveness, and
the lack of persistence of work loads in an iterative setting.

In Section II we briefly describe the aircraft allocation
problem and its formulation as a two-stage stochastic program.
In Section IIT we discuss our parallel program design for the
Benders decomposition approach. In Section IV, we present
challenges and strategies for optimizing the Stage 1 component
of the computations while in Section V we present our study of
the Stage 2 computations. Scalability results are presented in
Section VI, while we summarize related work in Section VII.

II. MODEL FORMULATION & APPROACH

The United States Air Mobility Command (AMC) ! man-
ages a fleet of over 1300 aircraft [2] that operate globally under
uncertain and rapidly changing demands. Aircraft are allocated
at different bases in anticipation of the demands for several
missions to be conducted over an upcoming time period
(typically, fifteen days to one month). Causes of changes
include demand variation, aircraft breakdown, weather, natural
disaster, conflict, etc. The purpose of a stochastic formulation
is to optimally allocate aircraft to each mission such that
subsequent disruptions are minimized.

Aircraft are allocated by aircraft type, airlift wing, mission
type and day. In situations when self-owned military aircraft
are not sufficient for outstanding missions, civilian aircraft are
leased. The cost of renting civilian aircraft procured in advance
for the entire planning cycle is lower than the rent of civilian
aircraft leased at short notice. Therefore, a good prediction of
the aircraft demand prior to the schedule execution reduces
the execution cost.

http://www.amc.af. mil/

http://www.amc.af.mil/

We model the allocation process as a two-stage stochastic
linear program (LP) with Stage 1 generating candidate al-
locations and Stage 2 evaluating the allocations over many
scenarios. This iterative method developed by Benders [3] has
been widely applied to Stochastic Programming. Note that
our formulation of the aircraft allocation model has complete
recourse (i.e. all candidate allocations generated are feasible)
because any demand (in a particular scenario) that cannot
be satisfied by a candidate allocation is met by short term
leasing of civilian aircraft at a high cost while evaluating that
scenario. A detailed description of our model and the potential
cost benefits of stochastic vs deterministic models is available
elsewhere [4], [5]. To illustrate the size of the datasets of
interest, Table I lists the sizes of various airlift fleet assignment
models. 3t corresponds to an execution period of 3 days, 5t
for 5 days, and so on.

In Stage 1 , before a realization of the demands are known,
decisions about long-term leasing of civilian aircraft are made,
and the allocations of aircraft to different missions at each base
location are also decided.

K
min Cz+ Y pily (1)
k=1
s.t. Ax < b, 2)
Ex+0<e 3)

In the objective function(1), = corresponds to the allocations
by the aircraft type, location, mission and time. C is the
cost of allocating military aircraft and leasing civilian aircraft.
0 = {0x|k = 1,...,k} is the vector of Stage 2 costs for the
k scenarios, py are the probability of occurrence of scenario
k, 1 corresponds to the iteration in which the constraint was
generated and FEj(e;) are the coefficients (right hand sides)
of the corresponding constraints. Constraints in (2) are the
feasibility constraints, while constraints in (3) are cuts which
represents an outer linearization of the recourse function.

In Stage 2 , the expected cost of an allocation for each
scenario in a collection of possible scenarios is computed by
solving LPs for that scenario.

a’y 4)
Wy < hy — Trz &)

min
s.t.

The second stage optimization helps Stage 1 to take the
recourse action of increasing the capacity for satisfying an
unmet demand by providing feedback in the form of additional
constraints (cuts) on the Stage 1 LP (6). Here, 7, are the dual
multipliers obtained from Stage 2 optimization and z* is the
allocation vector obtained from the last Stage 1 optimization.

0k Sﬂ'k*(hk—Tkl'*)—ﬂ'ka(fL'—l'*) (6)

IIT1. PARALLEL PROGRAM DESIGN

a) Programming Model: We have implemented the pro-
gram in Charm++ [6], [7], which is a message-driven, object-
oriented parallel programming framework with an adaptive
run-time system. It allows expressing the computations in

TABLE I
MODEL SIZES OF INTEREST (120 SCENARIOS)

Model Num stgl Num stg2 | Num stg2
Name variables variables constraints
3t 255 1076400 668640
5t 345 1663440 1064280
10t 570 3068760 1988640
15t 795 4157040 2805000
30t 1470 7956480 5573400

Stg1Solver

allocation
cuts ‘
Cenavios, /allocations
Stg2Solver Stg2Solver| @ @ @ Stg2Solver
Fig. 1. Design Schematic

terms of interacting collections of objects and also implic-
itly overlaps computation with communication. Messaging is
one-sided and computation is asynchronous, sender-driven;
facilitating the expression of control flow which is not bulk
synchronous (SPMD) in nature.

b) Coarse Grained Decomposition: To exploit the state
of the craft in LP solvers, our design delegates the individual
LP solves to a library (Gurobi [8]). This allows us to build
atop the domain expertise required to tune these numerically
intensive algorithms. However, the same decision also causes
a very coarse-grain of computation as the individual solves are
not decomposed further. Parallel programs usually benefit from
a medium or fine-grained decomposition as it permits a better
overlap of computation with communication. In Charm++
programs, medium-sized grains allow the runtime system to be
more responsive and give it more flexibility in balancing load.
Adopting a coarse-grained decomposition motivates other mit-
igating design decisions described here. It also emphasizes any
sequential bottlenecks and has been causative of some of our
efforts in optimizing solve times.

c) Two-stage Design: Since the unit of sequential com-
putation is an LP solve, the two-stage formulation maps readily
onto a two-stage parallel design, with the first stage generating
candidate allocations, and the second stage evaluating these
allocations over a spectrum of scenarios that are of interest.
Feedback cuts from the second stage LPs guides the generation
of a new candidate allocation. There are many such iterations
(rounds) until an optimal allocation is found. We express
this as a master-worker design in Charm++ with two types
(C++ classes) of compute objects. An Allocation Generator

Q
Re)

== with advanced start
«o With fresh start

=
R

tage 1 solve time(in seconds)

0 10 20 30 20 50
round number

Fig. 2. Stage 1 LP solve times with and without advanced start on 2.67
GHZ Dual Westmere Xeon

object acts as the master and generates allocations, while a
collection of Scenario Evaluator objects are responsible for
the evaluation of all the scenarios.

d) Unpredictable Grain Sizes: Experiments show that LP
solves for different scenarios take different amounts of time.
Hence, an a priori static distribution of scenarios across all
the Scenario Evaluators will not achieve a good load balance.
Unlike typical algorithms in parallel, scientific computing, the
time taken for an individual grain of computation (LP solve)
is also devoid of any persistence across different iterations
(rounds). This precludes the use of any persistence-based
dynamic load balancers available in Charm++. To tackle
this fundamental unpredictability in the time taken for a
unit of computation we adopt a work-request or pull-based
mechanism to ensure load-balance. We create a separate work
management entity, Work Allocator object(Comm in Figure 1),
that is responsible for doling out work units as needed. As
soon as a Scenario Evaluator becomes idle, it sends a work
request to the Work Allocator which assigns it an unevaluated
scenario. Figure 1 is a schematic representing our design.

e) Maintaining Responsiveness: A pull-based mecha-
nism to achieve load balance requires support from a very
responsive Work Allocator. Charm++ provides flexibility in the
placement of compute objects on processors. We use this to
place the Allocation Generator and the Work Allocator objects
on dedicated processors. This ensures a responsive Work
Allocator object and allows fast handling of work requests
from the Scenario Evaluators; unimpeded by the long, coarse-
grained solves that would otherwise be executing.

IV. OPTIMIZING STAGE 1

/) Advanced Starts: The two-stage design yields an allo-
cation that is iteratively evolved towards the optimal. Typically,
this results in LPs that are only incrementally different from
the corresponding LPs in the previous round as only a few
additional constraints may be added every round. LP solvers
can exploit such situations by maintaining internal state from a
call so that a later call may start its search for an optimum from
the previous solution. This is called advanced start (or warm

120 ‘ ‘ ‘ 5000
] -- stgl memory usage

I i)
100 [mm stg 1 solvgltrmes 140002
2 e 3
[} (o))
E 80 a
= 13000 3
o >
S 60r <}
@ £
~ {2000 2
g\ 40r —
g : g
20l 11000 §
n

50%

200 300
round number

400

Fig. 3. Stage 1 memory usage and LP solve times for 15 time period model
on Dell 2.6 GHz Lisbon Opteron 4180

1.0 : ;
\H avg stg2 solve time
0.9
0.8
0.7,
z /,/
gos -
=
0.5
0.4
0.3
0.2 2 3 Z 5 6

number of cores per node

Fig. 4. The impact of artificially constraining memory bandwidth available
for an LP solve (10 time period model) on a system with Intel 64(Clovertown)
2.33 GHz dual socket quad core processor with 1333MHz front size bus (per
socket), 2x4MB L2 cache and 2 GB/core memory.

start), and can significantly reduce the time required to find a
solution to an LP. We enabled advanced starts for the Stage 1
LP and observed sizable performance benefits (Figure 2).

g) Memory Footprint and Bandwidth: An observation
from Figure 2 is that the Stage 1 solve time increases steadily
with the round number irrespective of the use of advanced

10°

10°

number of cuts (log scale)
=
1)
X

10"

0.4 0.
cut usage rate

Fig. 5. Cut usage rate for a 5 time period model

120 : : : —5000
— w/o cut retirement

100+ - - with cut retirement 7400()%
G T
(] (<))
£ B
‘5 13000 i
> 4
E g
— 42000 2
A €
% —
) [J]
7} = il {71 { N | o>
“ A I 1000 g

100

200 300
round number

400 500

Fig. 6. Stage 1 LP solve times and memory usage for the 15 time period
model solved to 1% convergence with Cut Window of 75 (run on 8 cores of
2.6 GHz Lisbon Opteron 4180)

starts. Our investigation pointed to an increasing solver mem-
ory footprint as the cause for such behavior.

During each round, the Allocation Generator incorporates
feedback from the evaluation of each scenario into the Stage 1
model. This feedback is in the form of constraints (cuts) which
are additional rows added to a matrix maintained internally
by the library. The number of cuts added to the model
grows monotonically with the number of rounds; requiring
an increasing amount of memory to store and solve an LP.
Figure 3 captures this trend by plotting memory utilization
for the Allocation Generator object (which includes LP library
memory footprint) and the time taken for the Stage 1 solves
by round number. The memory usage is as high as 5 GB and
the solve time for a single grain of Stage 1 computation can
reach 100s.

To improve the characterization of the LP solves, we
designed an experiment that artificially limits the memory
bandwidth available to a single LP solver instance by simul-
taneously running multiple, independent LP solver instances
on a multicore node. Our results (Figure 4) show that for the
same problem size, the time to solution of an LP is increased
substantially by limiting the available memory bandwidth per
core. As the Stage 1 model grows larger every round, it
becomes increasingly limited by the memory subsystem and
experiences dilated times for LP solves.

h) Curbing Solver Memory Footprint: For large Stage
1 problems, which take many iterations to converge, the
increasing Stage 1 solve times and the increasing memory
demands exacerbate the serial bottleneck at the Allocation
Generator, and pose a threat to the very tractability of the
Benders approach. However, an important observation in this
context is that not all the cuts added to a Stage 1 problem may
actually constrain the feasible space in which the optimum
solution is found. As new cuts are added, older cuts may no
longer be binding or active. They may become active again in a
later round or maybe rendered redundant if they are dominated
by newer cuts. Such cuts simply add to the size of the Stage 1
model and its solve time, and can be safely discarded. Figure 5
plots a histogram of the cut usage rate (defined by equation 7)

for the cuts generated during the course of convergence of a
5 time period model. Most of the cuts have very low usage
rates while a significant number of the cuts are not used at
all. This suggests that the size of the Stage 1 problem may
be reduced noticeably without diluting the description of the
feasible space for the LP solution.

num rounds in which cut is active

Cut Usage Rate = — - (7
num rounds since its generation

We therefore implemented a cut retirement scheme that
discards/retires cuts whenever the total number of cuts in the
Stage 1 model exceeds a configurable threshold. After every
round of the Benders method, the cut score is updated based on
it’s activity in that round. Cuts with small usage rates (defined
by Equation 7) are discarded. The desired number of lowest
scoring cuts can be determined using a partial sort that runs
in linear time.

Discarding a cut that may be required during a later
round only results in some repeated work. This is because
the Benders approach will cause any necessary cuts to be
regenerated via scenario evaluations in future rounds. This
approach could increase the number of rounds required to
reach convergence, but lowers execution times for each Stage
1 LP solve by limiting the required memory and access
bandwidth. Figure 6 demonstrates these effects and shows
the benefit of cut management on the Stage 1 memory usage
and solve times of the 15 time period model solved to 1%
convergence tolerance. The time to solution reduced from
19025s without cut retirement to 8184s with cut retirement
- a 57% improvement.

We define a Cut Window as the upper limit on the number of
cuts allowed in the Stage 1 model, expressed as the maximum
number of cuts divided by the number of scenarios. Figure 7(a)
and 7(b) describe the effect of different Cur Windows on
the time and number of rounds to convergence. Smaller Cut
Windows reduce the individual Stage 1 solve times, leading to
an overall improvement in the time to solution even though it
takes more rounds to converge. However, decreasing the Cut
Window beyond a certain limit, leads to a significant increase
in the number of rounds because several useful cuts are
discarded and have to be regenerated in later rounds. Further
reducing the Cut Window makes it impossible to converge
because the collection of cuts is no longer sufficient. These
experiments demonstrate the need to make an informed choice
of the Cut Window to get the shortest time to solution, e.g.
for the 5 time period model with 120 scenarios, an optimal
Cut Window size is close to 25 while for the 10 time period
model with 120 scenarios it is close to 15.

i) Evaluating Cut-Retirement Strategies: We investigate
cut management further to study it’s performance with dif-
ferent cut scoring schemes. Three cut scoring schemes are
discussed here namely, the least frequently used, the least
recently used and the least recently/frequently used. Each of
these are briefly discussed here: leftmargin=3mm

e Least Frequently Used (LFU) A cut is scored based
on it’s rate of activity since it’s generation (equation7).

1000——— . : : 2000
IH time to solution
mm # Of rounds
800
" 11500 _
kel %)
s g
2 600 S
s {1000 &
@ £
g 400 1
5 E
< 1500
200 /I\]_/r%
— o~ un ~ S
cut window

(a) 5 time period model (solved to 0.1% convergence on 8 cores of
2.26 GHz Dual Nehalem)

Fig. 7.

This scoring method was used for results presented in
Figure 7(a) and 7(b).

o Least Recently Used (LRU) - In this scheme, the recently
used cuts are scored higher. Therefore, a cut’s score is
simply the last round in which it was active.

LRU_Score = Last active round for the cut

o Least Recently/Frequently Used (LRFU) This scheme
takes both the recency and frequency of cut activity into
account. Each round in which the cut was active con-
tributes to the cut score. The contribution is determined
by a weighing function F(x), where z is the time span
from the activity in the past to current time.

k

LRFU_Score = Z F(toase — ti)

i=1
where t1,1s,...,t; are the active rounds of the cut and
t1 < to < ... <t < tpgse. This policy can demand
a large amount of memory if each reference to every
cut has to be maintained and also demands considerable
computation every time the cut retirement decisions are
made. Lee, et. al. [9] have proposed a weighing function
F(x) = (;) (p > 2) which reduces the storage and
computational needs drastically. They tested it for cache
replacement policies and obtained competitive results.
With this weighing function, the cut score can be cal-
culated as follows:

St = F(0) + F(0)Se,_,»

where S;, is the cut score at the kth reference to the
cut, Sy, _, was the cut score at the (k — 1)th reference
and 0 = t — tx_1. For more details and proofs for the
weighing function refer to [9]. We use p = 2 and A = 0.5
for our experiments.

Figure 8 compares the result of these strategies. LRFU
gives the best performance of the three. The cut windows used
for these experiments were the optimal values obtained from
experiments in Figure 7(a) and 7(b).

— : : : 2000
1400} [+~ time to solution
=m 7 Of rounds
1200
- 11500 _
el [%)
£1000 e
o o
ful [9)
5 800 {10004
o} £
2 600 !
g £
€ 400 IE
N 1 1
—— N n ~ o o~
— —
cut window

(b) 10 time period model (solved to 1% convergence on 32 cores of
2.67 GHz Intel Xeon hex-core processors)

Performance of 5 and 10 time period models with different Cut Windows

250

I LFU
N | RU
I LRFU

200

150

time (in seconds)
number of rounds

50!

Fig. 8. Performance of different cut scoring strategies for the 5 time period
model(8 cores, cut-window=25, 0.1% convergence) and the 10 time period
model(32 cores, cut-window=15, 1% convergence)

V. OPTIMIZING STAGE 2

J) Advanced Starts: In every iteration, there are as many
Stage 2 LP solves as there are scenarios. This constitutes the
major volume of the computation involved in the Benders
approach because of the large number of scenarios in practical
applications. Even a small reduction in the number of rounds
or average Stage 2 solve times can have sizable payoffs. In this
section, we analyze different strategies to reduce the amount
of time spent in Stage 2 work.

In contrast to the Stage 1 LP solves, Stage 2 solves take
more time with the advanced start feature as compared to a
fresh start. This can happen because the initial basis from the
previous scenario solve can be a bad starting point for the
new scenario. Despite the slower solves with advanced starts,
our experiments show that runs with advanced start take fewer
rounds to converge than with a fresh start. This indicates that
starting from the previous solves gives us better cuts. This
behavior was seen across several input datasets. We do not
yet have data to back any line of reasoning that can explain

tsv900—mmrmm————

k7 S R EE # of rounds (with advanced start) 14000

T 350t — time to solution (with advanced start) |

q:d I # of rounds (with fresh start) 3500

g 300 - - time to solution(with fresh start) 130005

3 E

£ 250) 12500 §

2 12000 2

2 200} =

< 11500 £

© 150¢ =

4 1000

o

g 500

g 50

c —aMTINO~©o 22 with frest start
run number

Fig. 9. Variation across runs with advanced-start and their comparison with
fresh start (10t model) on 8 cores of 2.67 GHz Dual Nehalem

0.8t | e fresh start H
i m—a adv start(random clusters)
-g 0.7} — adv start(KMeans clustering) H
S - - average solve time with fresh start
3 0.6r - average solve time with adv start(random clusters) H
c - - average solve time with adv start(KMeans clustering)
p 05, i H i B H B H _|
£
g}
[
=2
o
0
o~
)
o
©
-
0

0.0 L L L I L L L L L L L

0 10 20 30 40 50 60 70 80 90 100110
scenario#
Fig. 10. Comparison of average Stage 2 solve time between Stage 2 fresh

start, advanced start with clustering and advanced start without clustering on
2.6 GHz AMD Lisbon Opteron

this. Figure 9 shows that runs with Stage 2 fresh starts took
300 rounds to converge as compared to just 100 — 150 rounds
with advanced start. Consequently, the total time to solution
with advanced start is much less than with Stage 2 reset despite
slower Stage 2 LP solves.

k) Variability Across Runs: A Note: Figure 9 also shows
the number of rounds and time to solution for 25 runs on
the same model. An interesting note is the variability across
various runs of the same program.

Scenarios are assigned to Scenario Evaluators in the order
in which work requests are received. This varies across dif-
ferent runs because of variable message latencies and variable
LP solve times. With advanced starts, this results in different
LP library internal states as starting points for a given scenario
evaluation; yielding different cuts for identical scenario eval-
vations across different runs. This variation in cuts affects the
next generated allocation from Stage 1 and the very course of
convergence of the execution.

Variation across different runs make it difficult to measure
the effect of different optimization strategies. Additionally in
some situations, obtaining an optimal solution in predictable
time can be more important than obtaining it in the shortest
possible time. Therefore, mitigating the variability can be an

10’ ‘ ; ‘
— fresh start
105 | — adv start(random clusters) |l
— adv start(KMeans clustering)
105 ' ~essooooo o
I
510*
)
10°
102
1 " L L L L L L
1076750 100 150 200 250 300 350 400

round #

Fig. 11. Bound convergence rate comparison between Stage 2 fresh start,
advanced start with clustering and advanced start without clustering

important consideration.

Note that to verify that multiple solutions are not the artifact
of a loose termination criteria, we solved the problems to very
tight convergence criteria (up to 0.00001%). Identical runs
resulted in different solutions implying that the problem is
degenerate.

) Clustering Similar Scenarios: Turning off the ad-
vanced start feature can significantly increase the time to
solution and hence is not a viable approach. However, the
scenario evaluation order can be pre-determined by assigning a
fixed set of scenarios to each solver. This approach can poten-
tially decrease the efficiency of the work-request mechanism
at balancing Stage 2 load because work is now assigned in
larger clusters of scenarios.

However, since some scenarios may exhibit similarities,
it may be possible to group similar scenarios together to
increase the benefits of advanced starts. It may be benefi-
cial to trade coarser units of work-assignment (poorer load
balance) for reduced computation grain sizes. We explore
this by implementing scenario clustering schemes and cluster-
based work assignment. Similarity between scenarios can be
determined either by using the demands in each scenario,
the dual variable values returned by them, or by a hybrid of
demands and duals. Our current work has used the demands
to cluster scenarios because they are known a priori— before
the stochastic optimization process begins. We use a k-means
[10] algorithm for clustering scenarios. Since, the clusters
returned from k-means can be unequal in size, we use a
simple approach (described in Algorithm 1) to migrate some
scenarios from over-sized clusters to the under-sized clusters.
We also implement random clustering for reference. Figure 10
compares the improvement in average Stage 2 solve times
when scenarios are clustered using Algorithm 1.

However, our results show that random clustering gives
faster convergence rates than k-means clustering (Figure 11).
Despite faster Stage 2 solves, clustering does not give us
shorter times to solution (Figure 12). These experiments
point to a need for further studies to understand the impact
of advanced starts on cut quality, to develop more robust

o
o
>

B fresh start
EEm adv start(random clusters)
EE adv start(KMeans clustering)

Bl fresh start

I
>

o
W
[
=)
W

o
N
Time to Solution (seconds)
=
o

Average Stage 2 Solve Time(s)
o
s

o
o
=

2

3t 5t

15t 30t

3t

10t
Model

Fig. 12.

Algorithm 1 The Scenario Clustering Algorithm
Input
D;- Demand set for scenario 7 (1 = 1,2,,n)
k - number of clusters
Output
k equally sized clusters of scenarios
Algorithm
{label, centroids} = kMeans({D;, D2, Ds, ..., D, }, k)
IdealClusterSize = 7
size; = size of cluster ¢
{Identify Oversized clusters}
O = {c € Clusters | size, > IdealClusterSize}
{Identify Undersized clusters}
U = {c € Clusters | size. < IdealClusterSize}
S: set of adjustable points
for c € O do
Find (size; — IdealClusterSize) points in cluster ¢ that
are farthest from centroid. and add them to the set S
end for
while size(S) > 0 do
Find the closest pair of cluster ¢ € (U) and point p € S
Add p to cluster ¢
Remove p from S
if size, == IdealClusterSize then
Remove ¢ from U
end if
end while

BB adv start(random clusters)
EEE adv start(KMeans clusters

0

5t
Model

scenario similarity metrics; and to investigate other clustering
algorithms that may yield better results.

VI. SCALABILITY

With the optimizations described above, we were able to
scale medium-sized problems up to 122 cores of an Intel-64
Clovertwon (2.33 GHz) cluster with 8 cores per node. For 120
scenarios, an execution that uses 122 processors represents the
limit of parallel decomposition using the described approach:
one Stage 1 object, one Work Allocator object, and 120
Scenario Evaluators that each solve one scenario. Figure 13(a)
and 13(b) show the scalability plots with Stage 1 and Stage
2 wall time breakdown. The plots also demonstrate Amdahl’s
effect as the maximum parallelism available is proportional to

B fresh start

B adv start(random clusters)

EE adv start(KMeans clustering)
>1510

=
=)
W

>420

=
OM

Rounds to Solution

1
10t Ist 10 3t 10t Ist

5t
Model

Comparing the effect of advanced start and clustering on performance of different models on 8 cores of 2.67 GHz AMD Lisbon Opteron

the number of scenarios that can be solved in parallel, and
scaling is limited by the sequential Stage 1 computations. It
must be noted that real-world problems may involve several
hundreds or thousands of scenarios, and our current design
should yield significant speedups because of Stage 2 paral-
lelization.

VII. RELATED WORK

Stochastic linear programs can be solved using the extensive
formulation(EF) [1]. Extensive formulation of a stochastic
program is its deterministic equivalent program in which
constraints from all the scenarios are put together in a single
large scale linear program. e.g. the extensive formulation
for a stochastic program corresponding to Stage 1 given in
equations 1, 2, 3 and Stage 2 in equations 4, 5 can be
written as:

. K
min "'z + 37,7 prat uk

s.t. Azr =0,
Tk{E—l—Wyk = hg, k=1.. K
2>0,0 >0, k=1..K

EF results in a large linear program that quickly becomes too
large to be solved by a single computer. However, liner pro-
gram solvers are hard to parallelize, and other parallelization
approaches become necessary. Recently, there has been some
work on parallelization of the simplex algorithms for linear
programs with dual block-angular structure [11]. Lubin et al
[12] demonstrated how emerging HPC architectures can be
used to solve certain classes of power grid problems, namely,
energy dispatch problems. Their PIPS solver is based on the
interior-point method and uses a Schur’s complement to obtain
a scenario-based decomposition of the linear algebra. How-
ever, in our work we choose not to decompose the LP solves,
but instead delegate them to a library. This reuses domain
expertise encapsulated in the library and allows performance
specialists to focus just on parallel performance. Using a
library also allows the implementation to remain more general
with the ability to use it for other problems.

Linderoth, et. al. [13] have studied the performance of
two-stage stochastic linear optimizations using the L-shaped
algorithm on distributed grids. Unlike modern supercomputers,
grids have high communication latencies and availability of

(5t, 120 scenarios)

1000 \ ‘ ‘ i 100
total time
stg2 walltime
..... = stg1 walltime 1 80
TA\ c
= 100 ¢ £
E {60 2
§ o
2 (2]
E o
S »
a 14 o
c
) :
1 20
1 L . 0
2 4 8 16 32 64 128 256

num cores

(a) 5 time period problem solved to 0.1% convergence
Fig. 13.

nodes is sporadic. Hence, their work focuses on performance
of an asynchronous approach to the Benders decomposition. In
contrast, our work is based on a synchronous approach where
a new iteration is initiated only after completion of all the
scenario solves from the previous iteration.

VIII. SUMMARY

Most stochastic programs incorporate a large number of sce-
narios to hedge against many possible uncertainties. Therefore,
Stage 2 work constitutes a significant portion of the total work
done in stochastic optimizations. For stochastic optimization
with Benders approach, the vast bulk of computation can
be parallelized using a master-worker design described in
this paper. We have presented experiments, diagnoses and
techniques that aim to improve the performance of each of
the two stages of computation.

We presented an LRFU based cut management scheme, that
completely eliminates the memory bottleneck and significantly
reduces the Stage 1 solve time, thus making the optimization
of large scale problems tractable. We analyzed different as-
pects of the Stage 2 optimization and have presented some
interesting avenues for further studies in improving Stage 2
performance. With our techniques, we were able to obtain a
speedup of about 21 and 11 for the 5 and 10 time period
problems, respectively with 120 scenarios each as we scaled
from 4 cores to 122 cores. Much higher speedups can be
obtained for real-world problems which present much more
Stage 2 computational loads. In our current design, Stage 1 still
presents a serial bottleneck that inhibits the efficiency of any
parallel implementation. We are currently exploring methods
such as Lagrangean decomposition to alleivate this. We believe
that some of our strategies can be applied to other stochastic
programs too; and that this work will be of benefit to a larger
class of large, commercially relevant, high impact stochastic
problems.

IX. ACKNOWLEDGMENTS

The research was supported by MITRE Research Agree-
ment Number 81990 with UIUC. The Gurobi linear program
solver is licensed at no cost for academic use. Runs on Abe

(101, 120 scenarios) on Abe (Intel 64 Cluster)

' ' : T 600
total time
stg2 walltime
10000 | 2\ = = = stg1 walltime 1 500
T/)\ c
< 4 S
IS 400 =
2 3
2 1 300 o
2 1000 | "o o M é
[0
£ 1200 3
1 100
100 0
2 4 8 16 32 64 128 256

num cores

(b) 10 time period problem solved to 0.1% convergence

Scalability plots for 5 and 10 time period models

cluster were done under the TeraGrid [14] allocation grant
ASCO050040N supported by NSF.

REFERENCES

[1] J. Birge and F. Louveaux. Introduction to stochastic programming.
Springer, 2011.

[2] Air Mobility Command. Air Mobility Com-
mand Almanac 2009. Retrieved 12 Sep 2011.
http:/fwww.amc.af.mil/shared/media/document/AFD-090609-052.pdyf.

[3] J.F. Benders. Partitioning procedures for solving mixed-variables pro-
gramming problems. Numerische mathematik, 4(1):238-252, 1962.

[4] Steven Baker, Udatta Palekar, Gagan Gupta, Laxmikant Kale, Akhil

Langer, Mark Surina, and Ram Venkataraman. Parallel Computing for

DoD Airlift Allocation. MITRE Technical Report, 2012. www.mitre.

org/work/tech_papers/2012/11_5412/.

Akhil Langer. Enabling Massive Parallelism for Two-Stage Stochastic

Integer Optimizations: A Branch and Bound Based Approach. Mas-

ter’s thesis, Dept. of Computer Science, University of Illinois, 2011.

http://charm.cs.uiuc.edu/media/11-57.

[6] Laxmikant V. Kale, Eric Bohm, Celso L. Mendes, Terry Wilmarth, and

Gengbin Zheng. Programming Petascale Applications with Charm++

and AMPI. In D. Bader, editor, Petascale Computing: Algorithms and

Applications, pages 421-441. Chapman & Hall / CRC Press, 2008.

Laxmikant Kale, Anshu Arya, Abhinav Bhatele, Abhishek Gupta,

Nikhil Jain, Pritish Jetley, Jonathan Lifflander, Phil Miller, Yanhua Sun,

Ramprasad Venkataraman, Lukasz Wesolowski, and Gengbin Zheng.

Charm++ for productivity and performance: A submission to the 2011

HPC class II challenge. Technical Report 11-49, Parallel Programming

Laboratory, November 2011.

Gurobi Optimization Inc. Gurobi Optimizer. Software, 2012.

/lwww.gurobi.com/welcome.html.

[9] C.S. Kim. LRFU: A Spectrum of Policies that Subsumes the Least

Recently Used and Least Frequently Used Policies. IEEE Transactions

on Computers, 50(12), 2001.

JA Hartigan and MA Wong. Algorithm AS 136: A K-means clustering

algorithm. Applied Statistics, pages 100-108, 1979.

Parallel Distributed-Memory Simplex for Large-scale Stochastic LP

Problems. Preprint ANL/MCS-P2075-0412, Argonne National Labo-

ratory, Argonne, IL. April 2012. www.optimization-online.org/DB_

HTML/2012/04/3438.html.

Miles Lubin, Cosmin G. Petra, Mihai Anitescu, and Victor Zavala.

Scalable Stochastic Optimization of Complex Energy Systems. In

Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, SC ’11, pages 64:1—

64:64, New York, NY, USA, 2011. ACM.

J. Linderoth and S.J. Wright. Computational Grids for Stochastic

Programming. Applications of stochastic programming, 5:61-77, 2005.

Charlie Catlett et al. TeraGrid: Analysis of Organization, System

Architecture, and Middleware Enabling New Types of Applications. In

Lucio Grandinetti, editor, HPC and Grids in Action, volume 16, pages

225-249, Amsterdam, 2007. IOS Press.

[5

[ty

[7

—

[8

—

http:

[10]

(11]

[12]

[13]

[14]

www.mitre.org/work/tech_papers/2012/11_5412/
www.mitre.org/work/tech_papers/2012/11_5412/
http://www.gurobi.com/welcome.html
http://www.gurobi.com/welcome.html
www.optimization-online.org/DB_HTML/2012/04/3438.html
www.optimization-online.org/DB_HTML/2012/04/3438.html

