Dead Timestamp Identification in Stampede*

Nissim Harelf Hasnain A. Mandviwala Kathleen Knobé
nissim@ecc.gatech.edu mandvi@cc.gatech.edu kath.knobe@hp.com

Umakishore Ramachandran
rama@-cc.gatech.edu

Abstract good candidates for the scalable parallelism exhibited by
clusters of SMPs.

Stampedas a parallel programming system to support A major problem in implementing these kinds of appli-
computationally demanding applications including interac- cation in parallel is “buffer management”, as (1) threads
tive vision, speech and multimedia collaboration. The sys- may not access their input in a strict stream-like manner,
tem alleviates concerns such as communication, synchro{2) newly created threads may have to re-analyze earlier
nization, and buffer managementin programming such real- data, (3) datasets from different sources need to be corre-
time stream-oriented applications. Threads are loosely con- lated temporally, and (4) not all the data that is produced at
nected by channels which hold streams of items, each idenlower levels of the processing pipeline will necessarily be
tified by a timestamp. There are two performance con- used at the higher levels, since computations performed be-
cerns when programming with Stampede. The first is spacecome more sophisticated as we move through the pipeline.
namely, ensuring that memory is not wasted on items bear- These features imply two requirements. First, data items
ing a timestamp that is not fully processed. The secondmust be meaningfully associated with time, and second,
is time, namely, ensuring that processing resource is notthere must be a discipline of time that allows systematic
wasted on a timestamp that is not fully processed. In this pa-reclamation of storage for data items (garbage collection).
per we introduce a single unifying framework, dead times- Stampedg's a parallel programming system designed
tamp identification, that addresses both the space and timeand developed to simplify programming of such applica-
concerns simultaneously. Dead timestamps on a channetions. The programming model of Stampede is simple and
represent garbage. Dead timestamps at a thread represenintuitive. A Stampede program consists of a dynamic col-
computations that need not be performed. This framework|ection of threads communicating timestamped data items
has been implemented in the Stampede system. Experimeghroughchannels Threads can be created to run anywhere
tal results showing the space advantage of this frameworkin the cluster. Channels can be created anywhere in the
are presented. Using a color-based people tracker appli- cluster and have cluster-wide unique names. Threads can
cation, we show that the space advantage can be signifi-connecto these channels for doing input/output get/put
cant (up to 40%) compared to the previous GC techniquesoperations. A timestamp value is used asefor a data
in Stampede. item that a thread puts into or gets from a channel. The run-
time system of Stampede takes care of the synchronization

and communication inherent in these operations, as well as
managing managing the storage for items put into or gotten
Sfrom the channels.

1 Introduction

There is a class of emerging stream-oriented application
spanning interactive vision, speech, and multimedia collab-1 1 |jve and dead timestamps
oration that are computationally demanding and dynamic in
their communication characteristics. Such applications are Every item on a channel is uniquely indexed bynaes-
tamp Typically a thread willgetan item with a particu-

“The work has been funded in part by an NSF ITR grant CCR-01- |y timestamp from an input connection, perform some pro-

21638, NSF grant CCR-99-72216, Compaq Cambridge Research Lab, the . é] the data in the it d thent item with
Yamacraw project of the State of Georgia, and the Georgia Tech Broadband®€SSING ON the data In the item, an eatan re

Institute. The equipment used in the experimental studies is funded in partthat same timestamp onto one of its output connections.

by an NSF Research Infrastructure award EIA-99-72872, and Intel Corp.
TCollege of Computing, Georgia Institute of Technology 1We use “processing a timestamp”, “processing an item”, and “process-
tHP Cambridge Research Lab ing a timestamped item” interchangeably to mean the same thing.

Items with the same timestamp in different channels rep- Analvsis || Sched Eeadt Garb

. . . nalysis ched- Imestamp arpage
resent v.arlous stages of processmg of the same input. uling identification collection

The_tlme to process an item varies from thread to thread. S Priorwork | This paper Prior work
In particular, earlier threads (typically faster threads that [Task Static graph | All potential
perform low level processing) may be producing items | graph graph and threads and None
droppedby later threads doing higher level processing ata | st predictive connections known
. ctions time per item | at complle time

slower rate. Only timestamps that are completely processed Aggress-
affect the output of the application, while a timestamp that | iveness || High Medium Low
is dropped by any thread during the application execution - Elimination of S
is irrelevant The metric for efficiency in these systems is | Focus || Elimination | of irrelevant Elimination
the rate of processinglevanttimestampsi(e.,timestamps ofirrelevant | work and of garbage

p ng psie., p work garbage

that make it all the way through the entire pipeline). The
work done processing irrelevant timestamps represents an
inefficient use of processing resources. Figure 1. Summary of three optimizations
At a coarse grain time marches forward in this class of
applications. That is, the timestamps being processed, in
general, tend to monotonically increase with time. Old
items (no longer needed by any thread) should be eliminatedearlier garbage collection work calculates lowerbounds for
to free storage. However, since at a fine grain, a thread maytimestamp values of interest to any of the application
be examining individual timestamps out of order, it is not threads. Using these lower bounds, the runtime system can
trivial to determine when an item can be eliminated. garbage collecthe storage space for useless data items on
The algorithm developed in this paper determines achannels. This algorithm which we refer to @anspar-
timestamp guarantefer each node (thread or channel). For ent GG is general and does not use any application-specific
a given timestamp T, the guarantee will indicate whether T property.

is live or whether it is guaranteed to blead A timestamp o i heduli K ideal sched
T is live at a node N if (a) T is a relevant timestangmd ur earlier scheduling work computes an ideal sched-

(b) there is some further processing at N on.&.(T is still ulg at compile-time. It generates a schedule that.wiII pick
in use at N). Otherwise T is a dead timestamp at node N. If 2 timestamp anq comp!ete.the processing of that timestamp
the node is a thread, “in use” signifies that the node is still through the entire application pipeline. Thus only relevant

processing the timestamp; if the node is a channel, “in userlimestamps are processed in the entire pipeline. Garbage

signifies that the timestamp has not been processed by alFollectlon is trivial in this environment. The schedule is to-

the threads connected to that channel. tally static and the last use of each item on each channel

A timestamp may be live at a node at some execution s plear at compile-time. However, it only works on a re-
time but dead at a later time. A timestamp may be live stricted class of programs. The task graph must be static

at one node but dead at another. Dead timestamps are ir]gmd further, the time for a thread to process a timestamp is

terpreted differently depending on the node type. If the fixed and predictable at compile-time.

node is a channel, items in that channel with dead times- The dead timestamp identification and elimination work
tamps are garbage and can be removed. If the node is gyresented in this paper developsiagle unifiedtechnique
thread, dead timestamps that have not yet been produced bynat js used for both garbage collection and scheduling. The
the thread represent dead computations and can be elimitocys, type of task graph for which this technique is applica-
nated. Note that dead computation elimination is distinct pje and the aggressiveness of the technique are in between

from dead code elimination. Itis not the static code that we hose of static scheduling and transparent GC, as described
eliminate but rather an instance of its dynamic execution. i, figure 1.

A unified view of garbage collection and dead computa-
tion elimination results from a single algorithm that deter- ~ The rest of the paper is organized as follows. We present
mines dead timestamps at all nodes (thread and channelsp new unified algorithm for dead timestamp identification
This identification of dead timestamps is used on channelsin Section 2. Implementation details of this algorithm in
to indicate dead data (garbage) and at threads to indicatéStampede are given in Section 3. Performance results show-

dead computations. ing the reduction in memory footprint of the new algorithm
compared to the previous garbage collection techniques in
1.2 Background Stampede are shown in Section 4. Comparison of the dead

timestamp identification algorithm to other related research
is presented in Section 5. Concluding remarks and future
directions are discussed in Section 6.

There are two apparently unrelated technologies in
Stampede, scheduling [7] and garbage collection [9]. Our

%@C&S}Qﬂ%

Figure 2. An abstract task graph

2 Dead Timestamp Identification

We can describe an application in Stampede in terms Figure 3. A sample dependent task graph
of a task graph. This task graph is a bipartite directed
graph ofnodes each of which is either ghread which
performs a certain computation, ochanne] which serves
as a medium for buffer management between two or more

threads. Directed edges between nodes are cetiadec- p this thread i 4. Both thread to ch |
tions A connection describes the direction of the data flow So far as this thread 1S conceme - BO read to .C anne
and channel to thread connections can be monotonic.

between two nodes. Both types of nodes, threads and chan- i T
Consider the task graph in Figure 3. Assume that thread

nels, have input and output edges called input and output, _ ; v if i h .
connections (figure 2). T4 gets a timestamp from C2 only if it gets the same times-

Dead timestamp identification is a process by which the tamp from C3. This happens, for example, in stereo vision,

runtime system identifies for each node what timestampsWhere a thread gets the latest timestamp from one chan-

are provably of no use. This forms the basis of both garbagenel and then looks in the other for the matching timestamp.

collection and dead computation elimination. Connection C2 is said to belacally dependendn connec-

The information that is propagated among the nodes istioln _C3' h‘l_’his re(ljationsglip s notdcommutqtivel, tEat s, tr(;e
a guarantee that can be useddcally separate live times- relationship (C2 depends on C3) does notimply that (C3 de-

tamps from dead ones. The dead timestamp algorithm genpends on C2). Notice that in this example, for a timestamp

erates two types of guarantees: forward and backward. Thel > Next-T'S(C2) = Last TS(C3), because the thread

forward guarantedor a connection identifies timestamps T4 gets a timestamp from C2 only if it gets the same times-

that might cross that connection in the future. Teek- tamp from C3.) o

ward guarantedor a connection identifies timestamps that V& may also view monotonicity as a type of dependency

are dead on that connection. where a connection, say C, is loosely dependent on itself. In
Both forward and backward processing are local in that the case of a strictly monotonic connection, the next times-

based on guarantees available locally, they compute a neW@MP {0 be processed must be greater than the last one pro-

guarantee to propagate forward or backward along a con€SS€d, 0iVezt.T'S(C) > Last T'3(C). But this view is
nection to neighboring nodes. not limited to strictly monotonic connections. In fact, we

Next we will describe how possible dependences be- 2" describe any level of monotonic guarantee in terms of a
tween connections, in general, and the monotonic propertyd€Pendency. Every connection is, therefore, locally depen-
of a connection, in particular, help in determining guaran- dent, either on itself or on some other connection. A Ipcal
tees on each connection. Then, we will discuss how forwarddeépendence results inlacal guarantee Dependences in

and backward guarantees on a specific node are determine@€neral and monotonicity in particular form the basis of the
Finally, transfer functions that help optimize the basic algo- &!90rithm, which takes local guarantees and combines and

channel. Such a guarantee from a thread on an input con-
nection from a channel indicates that timestamps less than
T are irrelevant (and can be gotten rid of from the channel)

rithm are described at the end of this section. propagates them to produtansitive guarantees
2.1 Monotonic and dependent connections 2.2 Forward and backward processing
Monotonicity is an attribute of a connection that indi- Dead timestamp identification algorithm has two com-

cates the forward direction of time. The progression of ponents: forward and backward processing. The input to
time is, of course, controlled by the code in the threads. this algorithm is the application specified task graph (such
Monotonicity occurs, for example, in the common case of as the one in Figure 2) that gives the connectivity among
a thread’s input connection, where the thread issues a comthreads and channels, along with the associated monotonic-
mand to get the latest timestamp on an input channel. As-ity and dependence properties of the connections. Forward
sume the timestamp it gets1s Then as part of managing processing at a node N computes the forward guarantee as
its own virtual time, it may issue a command that guaranteesthe set of timestamps that are likely to leave N. Similarly,

it is completely done with any timestamp bel@won that backward processing at a node N computes the backward

volved in this processing In this example, node N1 has input
connections, C6-C8 and output connections C1-C5. Each
node, maintains a vector of backward guarant®ask-
GuaranteeVecThere is a slot in this vector for each output
connection, in this case C1-C5. SIGt of the vector holds

the last backward guarantee communicated to the node over
C;. These are once again the timestamp markers associated
with these connections. Backward processing at a node N
involves computing the1iN of the elements of this vector
and maintaining it as thBackwardGuarante#or this node

N, labeled BG in the figure.

BackwardGuarantedor node N identifies dead times-
tamps for that node. If the node is a channel, items in the
channel with timestamps that are dead can be removed as
garbage. Timestamps that arrive at a channel where they
have been previously determined to be deadlassl on ar-
rival and need not be placed in the channel. If the node is
a thread, dead timestamps that have not yet been computed
by that thread are dead computations and need not be com-
puted.

2.3 Transfer Functions Optimization

Figure 5. BackwardGuaranteeVec . o -
The basic framework uses the application specified task

graph and the properties of the connections to generate the

guarantee as the set of timestamps that are dead so far as forward and backward guarantees. We can go further and
is concerned. Dependences in general, and monotonicity inuse additional knowledge about the application to more ag-
particular, are the basis for these guarantees. These propgressively expose dead timestamps. For example, it is con-
erties allow associating imestamp markeon each con- ceivable that not all input connections to a thread node play
nection that separates good (higher) timestamps from badh role in determining the timestamps on one of its out-
(equal or lower) ones. Forward processing and backwardput connection. If this application knowledge were to be
processing algorithms use these markers available locally aimade available to the forward and backward processing al-
each node on the connections that are incident at that nodgorithms, then the guarantees produced would be more op-
to generate the guarantees. These algorithms execute at rutimistic.
time at the time of item transfers. Thus, the process of up- The machinery used to capture this application knowl-
dating of the guarantees is associated with the flow of itemsedge isTransfer functions A forward transfer function is
through the system. In particular, as a timestamped item isdefined for each “out” connection from a node, and a back-
transferred from node N1 to node N2, we update the for- ward transfer connection is defined for each “in” connection
ward guarantee at node N2 and the backward guarantee &b a node. 7; and 7, indicate the forward and backward
node N1. This enables continual and aggressive identifica-transfer functions respectively; (Cout) = {Clin, C2in, ...
tion of dead timestamps. Cn;, } where nodeV is the (unique) source of the output

Figure 4 provides an example for the components in- connection G,; and{C1;,, C2;,, ... Cn;,} is a subset of
volved in this processing In this example, node N2 has the input connections a¥ such that the timestamps put to
input connections, C1-C5 and output connections C6-C8.C,,; are determined only by the connections in this set. A
Each node maintains a vector of forward guarantees connection(C; for example, might not be in this set(;
wardGuaranteeVecThere is a slot in this vector for each is a dependent connection or if timestamps for some output
input connection, in this case C1-C5. S(3t of the vec- connection other tha@,,,; are determined b¢;. 7,(C;,)
tor holds the last forward guarantee communicated to the= {C1, C2, ... Cn} where nodéV is the (unique) target of
node overC;. These are simply the timestamp markers as- the input connectiod’;,, and{C1, C2, ... Cn} is a subset
sociated with these connections. Forward processing at af the input and output connections &F such that relevant
node N involves computing theiN of the elements of this timestamps forV are determined only by connections in
vector and maintaining it as tH@rwardGuarantedor this this set.
node N, labeled FG in the figure. For a thread node, the forward and backward transfer

Figure 5 provides an example for the components in- functions for connections incident at that node are deter-

bly appear in that channel and piggybacks that value on the
response sent to the thread.

Backward propagation is similarly instigated by put/get
operations. In fact, backward propagation is likely to be
more beneficial in terms of performance due to the proper-
ties of monotonicity and dependence on other connections
which we described in Section 2.1. These properties come
into play during a get operation on a channel. We have ex-
tended the Stampede API to enable a thread to enquire the
forward and backward guarantees so that it may incorporate
these guarantees in its computation.

There is very minimal application level burden to use the
mined by the thread code itself (and assumed to be madeextended implementation of Stampede. Specifically, the ap-
available in some form to the runtime system). For a chan- plication has to provide a few handler codes that the runtime
nel node, the forward transfer function for any “out” con- system can call during execution to determine the forward
nection is the set of all input connections; the backward and backward transfer functions for a given connection, the
transfer function for any “in” connection is the set of all monotonicity and the dependence (if any) of a given con-
input and output connections incident at that channel node.nection on other ones.

These transfer functions are used by the forward and Compared to the original implementation the new one
backward processing algorithms to generate tighter bound®ffers two specific avenues for performance enhancement.
for dead timestamps. This is illustrated via an example. In First it provides a unified framework for both eliminating
Figure 3, assume that input connection C2 depends on C3unnecessary computation from the thread nodes and the un-
ThusC3 € T;(C2), butC2 ¢ T;(C3). Let T4 get the lat- necessary items from the channel nodes as compared to the
est timestamp from C3 (say this ¥, it then executes a old one which does only the latter. Secondly, the new one
get from C2 for the same timestanip Figure 6 shows a allows getting rid of items from the channels more aggres-
dynamic state of Figure 3. The highest timestamp on chan-sively compared to the old one using the application level
nel H3 is 14. H2 contains timestamps 7, 8 and 9. T2 is guarantees of monotonicity and dependence for a connec-
about to compute timestamp 10. When T4 gets timestamption.

14 from C3 it will then wait for timestamp 14 from C2. The
backward transfer function will help backward processing 4 Performance Results
at node T4 to compute the backward guarantee on C2 as

14, thus allowing H2 to eliminate timestamps less than 14 : : .
! . - o . arbage collection strategies: a simple reference count
as garbagei.g., timestamps 7, 8, and 9); this in turn will g g g P

Y . based garbage collector (REF), a transparent garbage col-
tell T2 to eliminate as dead computations, thread steps tha ;
produce timestamps 10, 11, 12 and 13. Eector (TGC), and the new dead timestamps based garbage

collector (DGC). In REF, an application thread explicitly
encodes the reference count when it dogmieoperation.
The item is garbage collected when the reference count goes
We have completed implementation of the dead times-to zero. In TGC, the runtime system computes a global vir-
tamp identification algorithm described in the earlier sec- tual time (GVT) using a distributed algorithm [9], which
tion within Stampede. This new implementation allows a runs concurrent with the application. Subsequently, in each
node (which can be a channel or a thread) to propagatenode of the cluster all items with timestamps lower than
timestamp values of interest forward and backward throughGVT are garbage collected. The GVT value thus computed
the dataflow graph (of channels and threads) that representis necessarily a safe lower bound for timestamps not needed
the application. The new implementation assumes that theby any thread. Clearly, REF is the most aggressive in terms
application dataflow graph is fully specified at application of eliminating garbage as soon as it is recognized, while
startup (.e., static). TGC is the most conservative. Neither REF nor TGC offer
Forward propagation is instigated by the runtime system any help for removing dead computations. DGC is intended
upon a put/get operation on a channel. For example, wherto help eliminate both dead computations and dead items.
a thread does a put on a channel, a lowerbound value forHowever, in this study we show the relative performance of
timestamps that that thread is likely to generate in the futurethe three techniques with respect to garbage collection only.
is enclosed by the runtime system and sent to the channel. We use a real-time color-based people tracker applica-
Similarly upon a get from a channel, the runtime system cal- tion developed at Compag CRL [10] for this study. Given a
culates a lowerbound for timestamp values that could possi-color histogram of a model to look for in a scene, this ap-

Figure 6. Dead timestamp elimination example

The Stampede cluster system supports three different

3 Implementation Issues

plication locates the model if present. The application task

. . . . Config 1: Total Average Mean Total
graph and its connection dependencies are provided at [8] frames | Latency | memory | space — time
As we mentioned earlier in Section 2, these connectiondeq{ 1 node (ms) usage usage
pendencies are provided by the application and used by the (kB) (kB * ms)
dead timestamp identification algorithm to compute the for- ?gg Z‘ggi 28?32‘; ;g'gig g'igg’gig'gig
ward and backward guarantees. A digitizer produces anew .5 4802 | 489.610 | 23755 | 3229459927

image every 30 milliseconds, giving each image a times-

tamp equal to the current frame number, The target detec-

tion algorithm cannot process at the rate at which the digi- Figure 7. Metrics (1-node). Performance of the three GC

tizer produces images. Thus not every image produced by algorithms for the tracker application with all the threads executing

the digiti kes it th h th fi iveli At within a single address space on one node. All experiments were
e digiizer makes '_S V_Iay roug € entre pipeline. - run for the same period of time. Transparent GC (TGC) and Refer-

every stage of the pipeline, the threads get the latest avail- ence Counting (REF) on average consume around 40% more mem-

able timestamp from their respective input channels. To en- ory than dead-timestamps based GC (DGC). The space-time usage
I fair comparison acr the thre C algorithms. th of TGC is 42.9% and that of REF is 35.6% greater than DGC. On

gb .e.a a g pariso acé)sj fi eG f 90 fil ?’ N the other hand, DGC is 2.7% and 3.2% slower in terms of average

igitizer rea s a pre-recorde set of images from a file; tWO |atency than TGC and REF, repectively.

target detection threads are used in each experiment; and

the same model file is supplied to both the threads. Under

the workload described above, the average message sizes
delivered to the digitizer, motion mask, histogram, and tar- is mapped onto a Sing|e node, and does not require the run-
get detection channels are 756088, 252080, 1004904, an@me system to use the messaging |ayer_ (2) the threads and
67 bytes respectively. channels are distributed over 5 nodes of the cluster. This
We have developed an elaborate measurement infrastruceonfiguration represents the other extreme, where threads
ture that helps us to accumulate the memory usage as a funcand channels do not share the same address space. In this
tion of time in the Stampede channels, and the latency forscenario, the messaging layer (CLF), as well as the physical
Stampede put/get/consume operations during the executiometwork latencies, come into play. CPU resources, however,
of the application. A post-mortem analysis program gener- are not shared.

ates metrics of interest. Details of this measurement infras- Figures 7 and 8 show latency per processed timestamp
tructure are outside the scope of this paper. reaching the end of the application pipeline. Although the
The metrics for evaluating the three different strategies latency has increased for DGC due to inline execution of
are the following:memory footprintspace-timecurrency, transfer functions on puts and gets, the percentage increase
and latency per relevant timestampgMemory footprint is is only marginal (2.7% and 0.5% compared to TGC, 3.2%
the amount of memory used by the application as a func-and less than 0.1% compared to REF for 1-node and 5-node
tion of real time. This metric is indicative of the instanta- configurations respectively). However, the memory foot-
neous memory pressure of the application. Space-time isprint of the application as shown in Figure 9 is very much
the product of the memory usage and time for which a par- in favor of DGC. Furthermore, Figures 7 and 8 show a low
ticular chunk of memory is used. This can be considered asmean for memory usage compared to both TGC and REF.
the integral of the memory footprint over time. Currency is The low memory usage compared to TGC is expected due
the value of relevant timestamp (that made its way throughto the aggressive nature of our algorithm. However, the
the entire pipeline) as a function of real time. This metric performance advantage compared to REF is quite interest-
is indicative of the real-time performance of the applica- ing. REF makes local decisions on items in a channel once
tion. The higher the currency value for a given real-time the consumers have explicitly signaled a set of items to be
the better the performance. Latency is the elapsed time forgarbage. DGC has an added advantage over REF in that it
a relevant timestamp to make it through the entire pipeline. propagates guarantees to upstream channels thus enabling
This metric is the determinant of the real-time performance dead timestamps to be identified much earlier, resulting in
of the application. a smaller footprint compared to REF. This trend can also be

The experiments are carried out on a cluster of 17, 8-S€en in the space-time metric column of Figures 7 and 8.
way 550 MHz P-I1l Xeon SMP machines with 4GB of main Figure 10 shows the currency metric for the three GC
memory running Redhat Linux 7.1. The interconnectis Gi- algorithms, for the first (1-node) configuration. The y-axis
gabit Ethernet. The Stampede runtime uses a reliable mesis the value of the timestamp that reaches the end of the
saging layer called CLF implemented on top of UDP. We pipeline and the x-axis is the real time. The higher the cur-
use two configurations: (1) all the threads and channels ex-rency value for a given real time the better, since this is
ecute on one node within a single address space. This conindicative of how recent the processed information is with
figuration represents one extreme, in which all computationrespect to real time. The dead-timestamp based GC algo-

x10' memory footprint vs. time x10 memory footprint vs. time x10' memory footprint vs. time

T 6
Dead timestamps GC Ref-Count GC

Transparent GC

8 x 3 8 10 6 8 x
time [ms] 10" time [ms] «10' time [ms] x10

Figure 9. Memory Footprint. The three graphs represent the memory footprint of the application (distributed over 5 nodes) for the three GC
algorithms: DGC-Dead timestamps (left), REF-Reference Counting (center), and TGC-Transparent (right). We recorded the amount of memory the
application uses on every allocation and deallocation. All three graphs are to the same scale, with the y-axis showing memory use’(bytes x

and the x-axis representing time (milliseconds). The graphs clearly show that DGC has a lower memory footprint than the other two. In addition, it
deviates much less from the mean, thereby requiring a smaller amount of memory during peak usage.

Processed timestamps at the end of the pipeline vs. time
T T T T

Config 2: Total Average Mean Total 2340
frames | Latency | memory | space — time = Reeree oo
5 nodes (ms) usage usage ot oL 1
(kB) (kB * ms) 23001 5 = 4
DGC 5509 557,502 28,096 4,842,436,910 R 1
TGC 5489 554,584 36,911 6,276,379,274 i <]
REF 5510 556,964 32,764 5,606,728,841 ém, ol ,
gzzao— L7 i 4
Figure 8. Metrics (5-node). Performance of three GC al- 2o20)- |
gorithms for the tracker application with the threads distributed on s
5 nodes of the cluster. All configurations were run for the same =or A 1
period of time. Transparent GC (TGC) and Reference Counting I ‘ ‘ ‘ ‘
(REF) on average consume respectively 31.4% and 16.6% more A

memory than dead-timestamps based GC (DGC). The space-time

usage of Transparent GC is 29.6% and that of REF is 15.8% greater)

than DGC. On the other hand, the average latency of DGC is only Figure 10. Currency of Processed Timestamps (1-node).

0.5% and 0.1% slower than that of TGC and REF, repectively. There is no substantial difference in the currency of processed
timestamps using any of the three GC algorithms.

rithm gives almost the same currency (Figure 10) despiteconnections that change with time, and (4) variability in re-

the small increase in latency we observed earlier (averagesource availability over time. The first three are properties
latency column in Figures 7 and 8). The currency metric re- of the application and workload, while the fourth is a prop-

sults for the second (5-node) configuration is almost indis- erty of the computational infrastructure. These properties
tinguishable for the three algorithms and hence not showndo not hold in the application, the workload, and the hard-
in the paper. An interesting question for future work is in- ware environment used in this study. We are currently ex-
vestigating how the three algorithms behave in a resourceploring possible scenarios for illustrating the performance
constrained environment. advantage of dead computation elimination.

. We pote_d earlier.that the new GC algorithm can aid both 5 Related Work

in eliminating dead items from channels and dead computa-

tions from threads. Clearly, dead computations can only re- The traditional GC problem [11, 6] concerns reclaim-
sult if later stages of the pipeline indicate during execution ing storage for heap-allocated objects (data structures) when
their lack of interest for some timestamp values to earlier they are no longer “reachable” from the computation. Stam-
stages. Thus for dead computation elimination one or morepede’s GC problem deals with objects that are indexed, or
of the following conditions need to hold: (1) variability in timestamped, and storage may be reclaimed when the run-
processing times for items, (2) higher processing time for attime system recognizes a specific timestamp won'’t be used,
least one earlier stage of the pipeline, (3) dependences omegardless of whether it is “reachable” or not.

The problem of determining the interest set for times- vision tracker application is reduced anywhere from 16%
tamp values in Stampede has similarity to the garbageto 40% compared to previous techniques. Future work in-
collection problem in Parallel Discrete Event Simulation cludes more elaborate experimentation to illustrate the dead
(PDES) systems [3]. However, PDES systems require thatcomputation elimination capabilities of the unified frame-
repeated executions of an application program using thework.
same input data and parameters produce the same resul
[4]. Thus, everytimestamp mustppearto be processed
in order by the PDES system. To insure this property, the
PDES literature proposes both synchronization algorithms [1] R. E. Bryant. Simulation of Packet Communication
(such as Chandy-Misra-Bryant [1, 2]) and optimistic algo- Architecture Computer Systems. Technical Report
rithms (such as Time Warp [5]). The latter must support MIT-LCS-TR-188, M.I.T, Cambridge, MA, 1977.

roll backs if processing a timestamp out of order by a node [2] K. Chandy and J. Misra. Asynchronous distributed
is not safe. These systems do not have the notion of dead simulation via a sequence of parallel computation.

computation elimination (because every timestamp must be Communications of the ACN24:198—206, 1981.
processed).

On the other hand, the Stampede programming model [3] R. M. Fujimoto. Parallel Discrete Event Simulation.
requires neither in-order execution, nor processing of every Comm. of the ACIM33(10), October 1990.
timestamp. Consequently, roll backs are irrelevant. As with
PDES, if nothing is known about the application task graph,
Stampede must compute GVT to enable garbage collection
[9]. In this paper, we developed the algorithmic machinery
to enable garbage collection based entirely on local events [5] D. R. Jefferson. Virtual time. ACM Transactions on

with no reliance on any global mechanism. Yet, we show in Programming Languages and Systef(8):404-425,
Section 4, that our algorithm acheives comparable latency July 1985.

as our earlier algorithm, while accruing all the benefits of))
space reduction. [6] R. Jones and R. Lins.Garbage Collection : Algo-

Dead code elimination is a common optimization tech- rithms for Automatic Dynamic Memory Management
nique in compilers for high level languages. However, we John Wiley, August 1996. ISBN: 0471941484.
are not aware of any other work that provides a unified [7] K. Knobe, J. M. Rehg, A. Chauhan, R. S. Nikhil, and
framgwork and impl_ementation for eliminating dead com- U. Ramachandran. Scheduling constrained dynamic
putations and dead items at runtime. applications on clusters. IRroc. SC99: High Per-
formance Networking and Computing CpRbrtland,
OR, November 1999. Technical paper.

Eeferences

[4] R. M. Fujimoto. Parallel and distributed simulation.
In Winter Simulation Conferencpages 118-125, De-
cember 1995.

6 Conclusions

~ Stampede is a cluster programming system for interac- g kK. N. Harel, H. Mandviwala and U. Ramachandran.
tive stream-oriented applications such as vision and speech. Dead timestamp identification in stampede. Technical

Space management (in the form of eliminating unnecessary Report GIT-CC-02-08, College of Computing, Geor-

items) and time management (in thg form of eliminating gia Institute of Technology, February 2002.
unnecessary computations) are crucial to enhance the per-

formance of such applications. Stampede provides threads[9] R. S. Nikhil and U. Ramachandran. Garbage Col-
and channels as computational abstractions for mapping the lection of Timestamped Data in Stampede. In

dataflow graph of the application to the cluster. In this Proc.Nineteenth Annual Symposium on Principles of
paper, we have proposed a novel unified framework for Distributed Computing (PODC 2000), Portland, Ore-
dynamically eliminating both dead computations and dead gon, July 2000.

items from such a computational pipeline. The framework
defines a simple and intuitive machinery for applications to
specify the properties of the computational pipeline. This . .
information is used by the runtime to dynamically gener- Tg'ofé ggg‘;s 690-696, San Juan, Puerto Rico, June
ate guarantees (lower bounds on timestamp values) to the h '

threads and channels, that are then used in the dynamig11] P. R. Wilson. Uniprocessor garbage collection tech-
elimination of dead items and computations. Stampede niques, Yves Bekkers and Jacques Cohen (eds.). In

system has been implemented and runs on several differ- Intl. Wkshp. on Memory Management (IWMM 92), St.
ent cluster platforms. Experimental results show that the Malo, France pages 1-42, September 1992.

memory footprint of the new algorithm for a color-based

[10] J. M. Rehg, M. Loughlin, and K. Waters. Vision for a
Smart Kiosk. InComputer Vision and Pattern Recog-

