
Dead Timestamp Identification in Stampede�

Nissim Harely

nissim@cc.gatech.edu
Hasnain A. Mandviwala�

mandvi@cc.gatech.edu
Kathleen Knobez

kath.knobe@hp.com

Umakishore Ramachandran�

rama@cc.gatech.edu

Abstract

Stampedeis a parallel programming system to support
computationally demanding applications including interac-
tive vision, speech and multimedia collaboration. The sys-
tem alleviates concerns such as communication, synchro-
nization, and buffer management in programming such real-
time stream-oriented applications. Threads are loosely con-
nected by channels which hold streams of items, each iden-
tified by a timestamp. There are two performance con-
cerns when programming with Stampede. The first is space,
namely, ensuring that memory is not wasted on items bear-
ing a timestamp that is not fully processed. The second
is time, namely, ensuring that processing resource is not
wasted on a timestamp that is not fully processed. In this pa-
per we introduce a single unifying framework, dead times-
tamp identification, that addresses both the space and time
concerns simultaneously. Dead timestamps on a channel
represent garbage. Dead timestamps at a thread represent
computations that need not be performed. This framework
has been implemented in the Stampede system. Experimen-
tal results showing the space advantage of this framework
are presented. Using a color-based people tracker appli-
cation, we show that the space advantage can be signifi-
cant (up to 40%) compared to the previous GC techniques
in Stampede.

1 Introduction

There is a class of emerging stream-oriented applications
spanning interactive vision, speech, and multimedia collab-
oration that are computationally demanding and dynamic in
their communication characteristics. Such applications are

�The work has been funded in part by an NSF ITR grant CCR-01-
21638, NSF grant CCR-99-72216, Compaq Cambridge Research Lab, the
Yamacraw project of the State of Georgia, and the Georgia Tech Broadband
Institute. The equipment used in the experimental studies is funded in part
by an NSF Research Infrastructure award EIA-99-72872, and Intel Corp.

yCollege of Computing, Georgia Institute of Technology
zHP Cambridge Research Lab

good candidates for the scalable parallelism exhibited by
clusters of SMPs.

A major problem in implementing these kinds of appli-
cation in parallel is “buffer management”, as (1) threads
may not access their input in a strict stream-like manner,
(2) newly created threads may have to re-analyze earlier
data, (3) datasets from different sources need to be corre-
lated temporally, and (4) not all the data that is produced at
lower levels of the processing pipeline will necessarily be
used at the higher levels, since computations performed be-
come more sophisticated as we move through the pipeline.

These features imply two requirements. First, data items
must be meaningfully associated with time, and second,
there must be a discipline of time that allows systematic
reclamation of storage for data items (garbage collection).

Stampedeis a parallel programming system designed
and developed to simplify programming of such applica-
tions. The programming model of Stampede is simple and
intuitive. A Stampede program consists of a dynamic col-
lection of threads communicating timestamped data items
throughchannels. Threads can be created to run anywhere
in the cluster. Channels can be created anywhere in the
cluster and have cluster-wide unique names. Threads can
connectto these channels for doing input/output viaget/put
operations. A timestamp value is used as anamefor a data
item that a thread puts into or gets from a channel. The run-
time system of Stampede takes care of the synchronization
and communication inherent in these operations, as well as
managing managing the storage for items put into or gotten
from the channels.

1.1 Live and dead timestamps

Every item on a channel is uniquely indexed by atimes-
tamp. Typically a thread willget an item with a particu-
lar timestamp from an input connection, perform some pro-
cessing1 on the data in the item, and thenput an item with
that same timestamp onto one of its output connections.

1We use “processing a timestamp”, “processing an item”, and “process-
ing a timestamped item” interchangeably to mean the same thing.

Items with the same timestamp in different channels rep-
resent various stages of processing of the same input.

The time to process an item varies from thread to thread.
In particular, earlier threads (typically faster threads that
perform low level processing) may be producing items
droppedby later threads doing higher level processing at a
slower rate. Only timestamps that are completely processed
affect the output of the application, while a timestamp that
is dropped by any thread during the application execution
is irrelevant. The metric for efficiency in these systems is
the rate of processingrelevanttimestamps (i.e., timestamps
that make it all the way through the entire pipeline). The
work done processing irrelevant timestamps represents an
inefficient use of processing resources.

At a coarse grain time marches forward in this class of
applications. That is, the timestamps being processed, in
general, tend to monotonically increase with time. Old
items (no longer needed by any thread) should be eliminated
to free storage. However, since at a fine grain, a thread may
be examining individual timestamps out of order, it is not
trivial to determine when an item can be eliminated.

The algorithm developed in this paper determines a
timestamp guaranteefor each node (thread or channel). For
a given timestamp T, the guarantee will indicate whether T
is live or whether it is guaranteed to bedead. A timestamp
T is live at a node N if (a) T is a relevant timestamp,and
(b) there is some further processing at N on T (i.e.,T is still
in use at N). Otherwise T is a dead timestamp at node N. If
the node is a thread, “in use” signifies that the node is still
processing the timestamp; if the node is a channel, “in use”
signifies that the timestamp has not been processed by all
the threads connected to that channel.

A timestamp may be live at a node at some execution
time but dead at a later time. A timestamp may be live
at one node but dead at another. Dead timestamps are in-
terpreted differently depending on the node type. If the
node is a channel, items in that channel with dead times-
tamps are garbage and can be removed. If the node is a
thread, dead timestamps that have not yet been produced by
the thread represent dead computations and can be elimi-
nated. Note that dead computation elimination is distinct
from dead code elimination. It is not the static code that we
eliminate but rather an instance of its dynamic execution.

A unified view of garbage collection and dead computa-
tion elimination results from a single algorithm that deter-
mines dead timestamps at all nodes (thread and channels).
This identification of dead timestamps is used on channels
to indicate dead data (garbage) and at threads to indicate
dead computations.

1.2 Background

There are two apparently unrelated technologies in
Stampede, scheduling [7] and garbage collection [9]. Our

Dead
Analysis Sched- timestamp Garbage

uling identification collection

State Prior work This paper Prior work
Task Static graph All potential
graph graph and threads and None
restri- predictive connections known
ctions time per item at compile time
Aggress-
iveness High Medium Low

Elimination of
Focus Elimination of irrelevant Elimination

of irrelevant work and of garbage
work garbage

Figure 1. Summary of three optimizations

earlier garbage collection work calculates lowerbounds for
timestamp values of interest to any of the application
threads. Using these lower bounds, the runtime system can
garbage collectthe storage space for useless data items on
channels. This algorithm which we refer to astranspar-
ent GC, is general and does not use any application-specific
property.

Our earlier scheduling work computes an ideal sched-
ule at compile-time. It generates a schedule that will pick
a timestamp and complete the processing of that timestamp
through the entire application pipeline. Thus only relevant
timestamps are processed in the entire pipeline. Garbage
collection is trivial in this environment. The schedule is to-
tally static and the last use of each item on each channel
is clear at compile-time. However, it only works on a re-
stricted class of programs. The task graph must be static
and further, the time for a thread to process a timestamp is
fixed and predictable at compile-time.

The dead timestamp identification and elimination work
presented in this paper develops asingle unifiedtechnique
that is used for both garbage collection and scheduling. The
focus, type of task graph for which this technique is applica-
ble, and the aggressiveness of the technique are in between
those of static scheduling and transparent GC, as described
in figure 1.

The rest of the paper is organized as follows. We present
a new unified algorithm for dead timestamp identification
in Section 2. Implementation details of this algorithm in
Stampede are given in Section 3. Performance results show-
ing the reduction in memory footprint of the new algorithm
compared to the previous garbage collection techniques in
Stampede are shown in Section 4. Comparison of the dead
timestamp identification algorithm to other related research
is presented in Section 5. Concluding remarks and future
directions are discussed in Section 6.

Figure 2. An abstract task graph

2 Dead Timestamp Identification

We can describe an application in Stampede in terms
of a task graph. This task graph is a bipartite directed
graph ofnodes, each of which is either athread, which
performs a certain computation, or achannel, which serves
as a medium for buffer management between two or more
threads. Directed edges between nodes are calledconnec-
tions. A connection describes the direction of the data flow
between two nodes. Both types of nodes, threads and chan-
nels, have input and output edges called input and output
connections (figure 2).

Dead timestamp identification is a process by which the
runtime system identifies for each node what timestamps
are provably of no use. This forms the basis of both garbage
collection and dead computation elimination.

The information that is propagated among the nodes is
a guarantee that can be used tolocally separate live times-
tamps from dead ones. The dead timestamp algorithm gen-
erates two types of guarantees: forward and backward. The
forward guaranteefor a connection identifies timestamps
that might cross that connection in the future. Theback-
ward guaranteefor a connection identifies timestamps that
are dead on that connection.

Both forward and backward processing are local in that,
based on guarantees available locally, they compute a new
guarantee to propagate forward or backward along a con-
nection to neighboring nodes.

Next we will describe how possible dependences be-
tween connections, in general, and the monotonic property
of a connection, in particular, help in determining guaran-
tees on each connection. Then, we will discuss how forward
and backward guarantees on a specific node are determined.
Finally, transfer functions that help optimize the basic algo-
rithm are described at the end of this section.

2.1 Monotonic and dependent connections

Monotonicity is an attribute of a connection that indi-
cates the forward direction of time. The progression of
time is, of course, controlled by the code in the threads.
Monotonicity occurs, for example, in the common case of
a thread’s input connection, where the thread issues a com-
mand to get the latest timestamp on an input channel. As-
sume the timestamp it gets isT . Then as part of managing
its own virtual time, it may issue a command that guarantees
it is completely done with any timestamp belowT on that

Co

C4

H2

H3

C2

C3

T4

T2

Figure 3. A sample dependent task graph

channel. Such a guarantee from a thread on an input con-
nection from a channel indicates that timestamps less than
T are irrelevant (and can be gotten rid of from the channel)
so far as this thread is concerned. Both thread to channel
and channel to thread connections can be monotonic.

Consider the task graph in Figure 3. Assume that thread
T4 gets a timestamp from C2 only if it gets the same times-
tamp from C3. This happens, for example, in stereo vision,
where a thread gets the latest timestamp from one chan-
nel and then looks in the other for the matching timestamp.
Connection C2 is said to be alocally dependenton connec-
tion C3. This relationship is not commutative, that is, the
relationship (C2 depends on C3) does not imply that (C3 de-
pends on C2). Notice that in this example, for a timestamp
TS,Next TS(C2) = Last TS(C3), because the thread
T4 gets a timestamp from C2 only if it gets the same times-
tamp from C3.

We may also view monotonicity as a type of dependency
where a connection, say C, is loosely dependent on itself. In
the case of a strictly monotonic connection, the next times-
tamp to be processed must be greater than the last one pro-
cessed, or,Next TS(C) > Last TS(C). But this view is
not limited to strictly monotonic connections. In fact, we
can describe any level of monotonic guarantee in terms of a
dependency. Every connection is, therefore, locally depen-
dent, either on itself or on some other connection. A local
dependence results in alocal guarantee. Dependences in
general and monotonicity in particular form the basis of the
algorithm, which takes local guarantees and combines and
propagates them to producetransitive guarantees.

2.2 Forward and backward processing

Dead timestamp identification algorithm has two com-
ponents: forward and backward processing. The input to
this algorithm is the application specified task graph (such
as the one in Figure 2) that gives the connectivity among
threads and channels, along with the associated monotonic-
ity and dependence properties of the connections. Forward
processing at a node N computes the forward guarantee as
the set of timestamps that are likely to leave N. Similarly,
backward processing at a node N computes the backward

C1

C2

C3

C4

C5

C6

C7

C8

FG

Node N2

Figure 4. ForwardGuaranteeVec

C1

C2

C3

C4

C5

C6

C7

C8

BG

Node N1

Figure 5. BackwardGuaranteeVec

guarantee as the set of timestamps that are dead so far as N
is concerned. Dependences in general, and monotonicity in
particular, are the basis for these guarantees. These prop-
erties allow associating atimestamp markeron each con-
nection that separates good (higher) timestamps from bad
(equal or lower) ones. Forward processing and backward
processing algorithms use these markers available locally at
each node on the connections that are incident at that node
to generate the guarantees. These algorithms execute at run-
time at the time of item transfers. Thus, the process of up-
dating of the guarantees is associated with the flow of items
through the system. In particular, as a timestamped item is
transferred from node N1 to node N2, we update the for-
ward guarantee at node N2 and the backward guarantee at
node N1. This enables continual and aggressive identifica-
tion of dead timestamps.

Figure 4 provides an example for the components in-
volved in this processing In this example, node N2 has
input connections, C1-C5 and output connections C6-C8.
Each node maintains a vector of forward guaranteesFor-
wardGuaranteeVec. There is a slot in this vector for each
input connection, in this case C1-C5. SlotCi of the vec-
tor holds the last forward guarantee communicated to the
node overCi. These are simply the timestamp markers as-
sociated with these connections. Forward processing at a
node N involves computing theMIN of the elements of this
vector and maintaining it as theForwardGuaranteefor this
node N, labeled FG in the figure.

Figure 5 provides an example for the components in-

volved in this processing In this example, node N1 has input
connections, C6-C8 and output connections C1-C5. Each
node, maintains a vector of backward guaranteesBack-
GuaranteeVec. There is a slot in this vector for each output
connection, in this case C1-C5. SlotCi of the vector holds
the last backward guarantee communicated to the node over
Ci. These are once again the timestamp markers associated
with these connections. Backward processing at a node N
involves computing theMIN of the elements of this vector
and maintaining it as theBackwardGuaranteefor this node
N, labeled BG in the figure.

BackwardGuaranteefor node N identifies dead times-
tamps for that node. If the node is a channel, items in the
channel with timestamps that are dead can be removed as
garbage. Timestamps that arrive at a channel where they
have been previously determined to be dead aredead on ar-
rival and need not be placed in the channel. If the node is
a thread, dead timestamps that have not yet been computed
by that thread are dead computations and need not be com-
puted.

2.3 Transfer Functions Optimization

The basic framework uses the application specified task
graph and the properties of the connections to generate the
forward and backward guarantees. We can go further and
use additional knowledge about the application to more ag-
gressively expose dead timestamps. For example, it is con-
ceivable that not all input connections to a thread node play
a role in determining the timestamps on one of its out-
put connection. If this application knowledge were to be
made available to the forward and backward processing al-
gorithms, then the guarantees produced would be more op-
timistic.

The machinery used to capture this application knowl-
edge isTransfer functions. A forward transfer function is
defined for each “out” connection from a node, and a back-
ward transfer connection is defined for each “in” connection
to a node. Tf andTb indicate the forward and backward
transfer functions respectively.Tf (Cout) = fC1in, C2in, ...
Cning where nodeN is the (unique) source of the output
connection Cout andfC1in, C2in, ... Cning is a subset of
the input connections ofN such that the timestamps put to
Cout are determined only by the connections in this set. A
connection,Ci for example, might not be in this set ifCi

is a dependent connection or if timestamps for some output
connection other thanCout are determined byCi. Tb(Cin)
= fC1, C2, ... Cng where nodeN is the (unique) target of
the input connectionCin andfC1, C2, ... Cng is a subset
of the input and output connections ofN such that relevant
timestamps forN are determined only by connections in
this set.

For a thread node, the forward and backward transfer
functions for connections incident at that node are deter-

Co

C4

C2

C3

T4

T2:10 H2:9, 8, 7

H3:14, ...

Figure 6. Dead timestamp elimination example

mined by the thread code itself (and assumed to be made
available in some form to the runtime system). For a chan-
nel node, the forward transfer function for any “out” con-
nection is the set of all input connections; the backward
transfer function for any “in” connection is the set of all
input and output connections incident at that channel node.

These transfer functions are used by the forward and
backward processing algorithms to generate tighter bounds
for dead timestamps. This is illustrated via an example. In
Figure 3, assume that input connection C2 depends on C3.
ThusC3 2 Tb(C2), butC2 62 Tb(C3). Let T4 get the lat-
est timestamp from C3 (say this ist); it then executes a
get from C2 for the same timestampt. Figure 6 shows a
dynamic state of Figure 3. The highest timestamp on chan-
nel H3 is 14. H2 contains timestamps 7, 8 and 9. T2 is
about to compute timestamp 10. When T4 gets timestamp
14 from C3 it will then wait for timestamp 14 from C2. The
backward transfer function will help backward processing
at node T4 to compute the backward guarantee on C2 as
14, thus allowing H2 to eliminate timestamps less than 14
as garbage (i.e., timestamps 7, 8, and 9); this in turn will
tell T2 to eliminate as dead computations, thread steps that
produce timestamps 10, 11, 12 and 13.

3 Implementation Issues

We have completed implementation of the dead times-
tamp identification algorithm described in the earlier sec-
tion within Stampede. This new implementation allows a
node (which can be a channel or a thread) to propagate
timestamp values of interest forward and backward through
the dataflow graph (of channels and threads) that represents
the application. The new implementation assumes that the
application dataflow graph is fully specified at application
startup (i.e.,static).

Forward propagation is instigated by the runtime system
upon a put/get operation on a channel. For example, when
a thread does a put on a channel, a lowerbound value for
timestamps that that thread is likely to generate in the future
is enclosed by the runtime system and sent to the channel.
Similarly upon a get from a channel, the runtime system cal-
culates a lowerbound for timestamp values that could possi-

bly appear in that channel and piggybacks that value on the
response sent to the thread.

Backward propagation is similarly instigated by put/get
operations. In fact, backward propagation is likely to be
more beneficial in terms of performance due to the proper-
ties of monotonicity and dependence on other connections
which we described in Section 2.1. These properties come
into play during a get operation on a channel. We have ex-
tended the Stampede API to enable a thread to enquire the
forward and backward guarantees so that it may incorporate
these guarantees in its computation.

There is very minimal application level burden to use the
extended implementation of Stampede. Specifically, the ap-
plication has to provide a few handler codes that the runtime
system can call during execution to determine the forward
and backward transfer functions for a given connection, the
monotonicity and the dependence (if any) of a given con-
nection on other ones.

Compared to the original implementation the new one
offers two specific avenues for performance enhancement.
First it provides a unified framework for both eliminating
unnecessary computation from the thread nodes and the un-
necessary items from the channel nodes as compared to the
old one which does only the latter. Secondly, the new one
allows getting rid of items from the channels more aggres-
sively compared to the old one using the application level
guarantees of monotonicity and dependence for a connec-
tion.

4 Performance Results

The Stampede cluster system supports three different
garbage collection strategies: a simple reference count
based garbage collector (REF), a transparent garbage col-
lector (TGC), and the new dead timestamps based garbage
collector (DGC). In REF, an application thread explicitly
encodes the reference count when it does aput operation.
The item is garbage collected when the reference count goes
to zero. In TGC, the runtime system computes a global vir-
tual time (GVT) using a distributed algorithm [9], which
runs concurrent with the application. Subsequently, in each
node of the cluster all items with timestamps lower than
GVT are garbage collected. The GVT value thus computed
is necessarily a safe lower bound for timestamps not needed
by any thread. Clearly, REF is the most aggressive in terms
of eliminating garbage as soon as it is recognized, while
TGC is the most conservative. Neither REF nor TGC offer
any help for removing dead computations. DGC is intended
to help eliminate both dead computations and dead items.
However, in this study we show the relative performance of
the three techniques with respect to garbage collection only.

We use a real-time color-based people tracker applica-
tion developed at Compaq CRL [10] for this study. Given a
color histogram of a model to look for in a scene, this ap-

plication locates the model if present. The application task
graph and its connection dependencies are provided at [8].
As we mentioned earlier in Section 2, these connection de-
pendencies are provided by the application and used by the
dead timestamp identification algorithm to compute the for-
ward and backward guarantees. A digitizer produces a new
image every 30 milliseconds, giving each image a times-
tamp equal to the current frame number, The target detec-
tion algorithm cannot process at the rate at which the digi-
tizer produces images. Thus not every image produced by
the digitizer makes its way through the entire pipeline. At
every stage of the pipeline, the threads get the latest avail-
able timestamp from their respective input channels. To en-
able a fair comparison across the three GC algorithms, the
digitizer reads a pre-recorded set of images from a file; two
target detection threads are used in each experiment; and
the same model file is supplied to both the threads. Under
the workload described above, the average message sizes
delivered to the digitizer, motion mask, histogram, and tar-
get detection channels are 756088, 252080, 1004904, and
67 bytes respectively.

We have developed an elaborate measurement infrastruc-
ture that helps us to accumulate the memory usage as a func-
tion of time in the Stampede channels, and the latency for
Stampede put/get/consume operations during the execution
of the application. A post-mortem analysis program gener-
ates metrics of interest. Details of this measurement infras-
tructure are outside the scope of this paper.

The metrics for evaluating the three different strategies
are the following:memory footprint, space-time, currency,
and latency per relevant timestamp. Memory footprint is
the amount of memory used by the application as a func-
tion of real time. This metric is indicative of the instanta-
neous memory pressure of the application. Space-time is
the product of the memory usage and time for which a par-
ticular chunk of memory is used. This can be considered as
the integral of the memory footprint over time. Currency is
the value of relevant timestamp (that made its way through
the entire pipeline) as a function of real time. This metric
is indicative of the real-time performance of the applica-
tion. The higher the currency value for a given real-time
the better the performance. Latency is the elapsed time for
a relevant timestamp to make it through the entire pipeline.
This metric is the determinant of the real-time performance
of the application.

The experiments are carried out on a cluster of 17, 8-
way 550 MHz P-III Xeon SMP machines with 4GB of main
memory running Redhat Linux 7.1. The interconnect is Gi-
gabit Ethernet. The Stampede runtime uses a reliable mes-
saging layer called CLF implemented on top of UDP. We
use two configurations: (1) all the threads and channels ex-
ecute on one node within a single address space. This con-
figuration represents one extreme, in which all computation

Config 1 : Total Average Mean Total

frames Latency memory space� time

1 node (ms) usage usage

(kB) (kB �ms)

DGC 4802 505,594 16,913 2,380,869,326
TGC 4801 491,946 24,043 3,402,019,615
REF 4802 489,610 23,755 3,229,459,927

Figure 7. Metrics (1-node). Performance of the three GC
algorithms for the tracker application with all the threads executing
within a single address space on one node. All experiments were
run for the same period of time. Transparent GC (TGC) and Refer-
ence Counting (REF) on average consume around 40% more mem-
ory than dead-timestamps based GC (DGC). The space-time usage
of TGC is 42.9% and that of REF is 35.6% greater than DGC. On
the other hand, DGC is 2.7% and 3.2% slower in terms of average
latency than TGC and REF, repectively.

is mapped onto a single node, and does not require the run-
time system to use the messaging layer. (2) the threads and
channels are distributed over 5 nodes of the cluster. This
configuration represents the other extreme, where threads
and channels do not share the same address space. In this
scenario, the messaging layer (CLF), as well as the physical
network latencies, come into play. CPU resources, however,
are not shared.

Figures 7 and 8 show latency per processed timestamp
reaching the end of the application pipeline. Although the
latency has increased for DGC due to inline execution of
transfer functions on puts and gets, the percentage increase
is only marginal (2.7% and 0.5% compared to TGC, 3.2%
and less than 0.1% compared to REF for 1-node and 5-node
configurations respectively). However, the memory foot-
print of the application as shown in Figure 9 is very much
in favor of DGC. Furthermore, Figures 7 and 8 show a low
mean for memory usage compared to both TGC and REF.
The low memory usage compared to TGC is expected due
to the aggressive nature of our algorithm. However, the
performance advantage compared to REF is quite interest-
ing. REF makes local decisions on items in a channel once
the consumers have explicitly signaled a set of items to be
garbage. DGC has an added advantage over REF in that it
propagates guarantees to upstream channels thus enabling
dead timestamps to be identified much earlier, resulting in
a smaller footprint compared to REF. This trend can also be
seen in the space-time metric column of Figures 7 and 8.

Figure 10 shows the currency metric for the three GC
algorithms, for the first (1-node) configuration. The y-axis
is the value of the timestamp that reaches the end of the
pipeline and the x-axis is the real time. The higher the cur-
rency value for a given real time the better, since this is
indicative of how recent the processed information is with
respect to real time. The dead-timestamp based GC algo-

0 2 4 6 8 10 12 14 16

x 10
7

0

1

2

3

4

5

6
x 10

7

time [ms]

m
em

or
y

fo
ot

pr
in

t (
B

yt
es

)

memory footprint vs. time

Dead timestamps GC

0 2 4 6 8 10 12 14 16

x 10
7

0

1

2

3

4

5

6
x 10

7

time [ms]

m
em

or
y

fo
ot

pr
in

t (
B

yt
es

)

memory footprint vs. time

Ref−Count GC

0 2 4 6 8 10 12 14 16

x 10
7

0

1

2

3

4

5

6
x 10

7

time [ms]

m
em

or
y

fo
ot

pr
in

t (
B

yt
es

)

memory footprint vs. time

Transparent GC

Figure 9. Memory Footprint. The three graphs represent the memory footprint of the application (distributed over 5 nodes) for the three GC
algorithms: DGC-Dead timestamps (left), REF-Reference Counting (center), and TGC-Transparent (right). We recorded the amount of memory the
application uses on every allocation and deallocation. All three graphs are to the same scale, with the y-axis showing memory use (bytes x107),
and the x-axis representing time (milliseconds). The graphs clearly show that DGC has a lower memory footprint than the other two. In addition, it
deviates much less from the mean, thereby requiring a smaller amount of memory during peak usage.

Config 2 : Total Average Mean Total

frames Latency memory space� time

5 nodes (ms) usage usage

(kB) (kB �ms)

DGC 5509 557,502 28,096 4,842,436,910
TGC 5489 554,584 36,911 6,276,379,274
REF 5510 556,964 32,764 5,606,728,841

Figure 8. Metrics (5-node). Performance of three GC al-
gorithms for the tracker application with the threads distributed on
5 nodes of the cluster. All configurations were run for the same
period of time. Transparent GC (TGC) and Reference Counting
(REF) on average consume respectively 31.4% and 16.6% more
memory than dead-timestamps based GC (DGC). The space-time
usage of Transparent GC is 29.6% and that of REF is 15.8% greater
than DGC. On the other hand, the average latency of DGC is only
0.5% and 0.1% slower than that of TGC and REF, repectively.

rithm gives almost the same currency (Figure 10) despite
the small increase in latency we observed earlier (average
latency column in Figures 7 and 8). The currency metric re-
sults for the second (5-node) configuration is almost indis-
tinguishable for the three algorithms and hence not shown
in the paper. An interesting question for future work is in-
vestigating how the three algorithms behave in a resource
constrained environment.

We noted earlier that the new GC algorithm can aid both
in eliminating dead items from channels and dead computa-
tions from threads. Clearly, dead computations can only re-
sult if later stages of the pipeline indicate during execution
their lack of interest for some timestamp values to earlier
stages. Thus for dead computation elimination one or more
of the following conditions need to hold: (1) variability in
processing times for items, (2) higher processing time for at
least one earlier stage of the pipeline, (3) dependences on

6.6 6.65 6.7 6.75 6.8 6.85 6.9 6.95 7 7.05 7.1

x 10
7

2180

2200

2220

2240

2260

2280

2300

2320

2340

time [ms]

tim
es

ta
m

p
nu

m
be

r

Processed timestamps at the end of the pipeline vs. time

Dead timestamps GC
Transparent GC
Reference Count

Figure 10. Currency of Processed Timestamps (1-node).
There is no substantial difference in the currency of processed
timestamps using any of the three GC algorithms.

connections that change with time, and (4) variability in re-
source availability over time. The first three are properties
of the application and workload, while the fourth is a prop-
erty of the computational infrastructure. These properties
do not hold in the application, the workload, and the hard-
ware environment used in this study. We are currently ex-
ploring possible scenarios for illustrating the performance
advantage of dead computation elimination.

5 Related Work

The traditional GC problem [11, 6] concerns reclaim-
ing storage for heap-allocated objects (data structures) when
they are no longer “reachable” from the computation. Stam-
pede’s GC problem deals with objects that are indexed, or
timestamped, and storage may be reclaimed when the run-
time system recognizes a specific timestamp won’t be used,
regardless of whether it is “reachable” or not.

The problem of determining the interest set for times-
tamp values in Stampede has similarity to the garbage
collection problem in Parallel Discrete Event Simulation
(PDES) systems [3]. However, PDES systems require that
repeated executions of an application program using the
same input data and parameters produce the same results
[4]. Thus, everytimestamp mustappearto be processed
in order by the PDES system. To insure this property, the
PDES literature proposes both synchronization algorithms
(such as Chandy-Misra-Bryant [1, 2]) and optimistic algo-
rithms (such as Time Warp [5]). The latter must support
roll backs if processing a timestamp out of order by a node
is not safe. These systems do not have the notion of dead
computation elimination (because every timestamp must be
processed).

On the other hand, the Stampede programming model
requires neither in-order execution, nor processing of every
timestamp. Consequently, roll backs are irrelevant. As with
PDES, if nothing is known about the application task graph,
Stampede must compute GVT to enable garbage collection
[9]. In this paper, we developed the algorithmic machinery
to enable garbage collection based entirely on local events
with no reliance on any global mechanism. Yet, we show in
Section 4, that our algorithm acheives comparable latency
as our earlier algorithm, while accruing all the benefits of
space reduction.

Dead code elimination is a common optimization tech-
nique in compilers for high level languages. However, we
are not aware of any other work that provides a unified
framework and implementation for eliminating dead com-
putations and dead items at runtime.

6 Conclusions

Stampede is a cluster programming system for interac-
tive stream-oriented applications such as vision and speech.
Space management (in the form of eliminating unnecessary
items) and time management (in the form of eliminating
unnecessary computations) are crucial to enhance the per-
formance of such applications. Stampede provides threads
and channels as computational abstractions for mapping the
dataflow graph of the application to the cluster. In this
paper, we have proposed a novel unified framework for
dynamically eliminating both dead computations and dead
items from such a computational pipeline. The framework
defines a simple and intuitive machinery for applications to
specify the properties of the computational pipeline. This
information is used by the runtime to dynamically gener-
ate guarantees (lower bounds on timestamp values) to the
threads and channels, that are then used in the dynamic
elimination of dead items and computations. Stampede
system has been implemented and runs on several differ-
ent cluster platforms. Experimental results show that the
memory footprint of the new algorithm for a color-based

vision tracker application is reduced anywhere from 16%
to 40% compared to previous techniques. Future work in-
cludes more elaborate experimentation to illustrate the dead
computation elimination capabilities of the unified frame-
work.

References

[1] R. E. Bryant. Simulation of Packet Communication
Architecture Computer Systems. Technical Report
MIT-LCS-TR-188, M.I.T, Cambridge, MA, 1977.

[2] K. Chandy and J. Misra. Asynchronous distributed
simulation via a sequence of parallel computation.
Communications of the ACM, 24:198–206, 1981.

[3] R. M. Fujimoto. Parallel Discrete Event Simulation.
Comm. of the ACM, 33(10), October 1990.

[4] R. M. Fujimoto. Parallel and distributed simulation.
In Winter Simulation Conference, pages 118–125, De-
cember 1995.

[5] D. R. Jefferson. Virtual time.ACM Transactions on
Programming Languages and Systems, 7(3):404–425,
July 1985.

[6] R. Jones and R. Lins.Garbage Collection : Algo-
rithms for Automatic Dynamic Memory Management.
John Wiley, August 1996. ISBN: 0471941484.

[7] K. Knobe, J. M. Rehg, A. Chauhan, R. S. Nikhil, and
U. Ramachandran. Scheduling constrained dynamic
applications on clusters. InProc. SC99: High Per-
formance Networking and Computing Conf, Portland,
OR, November 1999. Technical paper.

[8] K. K. N. Harel, H. Mandviwala and U. Ramachandran.
Dead timestamp identification in stampede. Technical
Report GIT-CC-02-08, College of Computing, Geor-
gia Institute of Technology, February 2002.

[9] R. S. Nikhil and U. Ramachandran. Garbage Col-
lection of Timestamped Data in Stampede. In
Proc.Nineteenth Annual Symposium on Principles of
Distributed Computing (PODC 2000), Portland, Ore-
gon, July 2000.

[10] J. M. Rehg, M. Loughlin, and K. Waters. Vision for a
Smart Kiosk. InComputer Vision and Pattern Recog-
nition, pages 690–696, San Juan, Puerto Rico, June
17–19 1997.

[11] P. R. Wilson. Uniprocessor garbage collection tech-
niques, Yves Bekkers and Jacques Cohen (eds.). In
Intl. Wkshp. on Memory Management (IWMM 92), St.
Malo, France, pages 1–42, September 1992.

