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Abstract—By combining an unstructured protocol with a DHT-based global index, hybrid peer-to-peer (P2P) improves search

efficiency in terms of query recall and response time. The major challenge in hybrid search is how to estimate the number of peers that

can answer a given query. Existing approaches assume that such a number can be directly obtained by computing item popularity. In

this work, we show that such an assumption is not always valid, and previous designs cannot distinguish whether items related to a

query are distributed in many peers or are in a few peers. To address this issue, we propose QRank, a difficulty-aware hybrid search,

which ranks queries by weighting keywords based on term frequency. Using rank values, QRank selects proper search strategies for

queries. We conduct comprehensive trace-driven simulations to evaluate this design. Results show that QRank significantly improves

the search quality as well as reducing system traffic cost compared with existing approaches.

Index Terms—Peer-to-peer, hybrid search, flooding, DHT, difficulty awareness.
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1 INTRODUCTION

SINCE the emergence of peer-to-peer (P2P) [28] file sharing
applications, such as Gnutella [5] and BitTorrent [18],

millions of users have started using P2P tools to search for
desired files. P2P networks have shown a great potential to
become a network tool for harnessing the information
stored on desktops.

There are three different architectures for P2P file
sharing systems: centralized, decentralized structured, and
decentralized unstructured. The centralized architecture main-
tains a central global file index for searching, and it is
commonly believed that the central index is a single point of
failure for the system and is vulnerable to denial-of-service
attacks. In decentralized structured models, the shared data
placement and topology characteristics of the network are
tightly controlled based on distributed hash functions.
Decentralized unstructured P2P networks are organized in
an ad hoc fashion and require no centralized directories and
no precise control over the network topology or the data
placement.

Decentralized P2P networks utilize different search
techniques. Unstructured P2P networks mainly employ
flooding-based search mechanisms to locate items (in the
rest of this paper, we use the terms “file” and “item”
interchangeably). Each query is tagged with a maximum
Time-To-Live (TTL) to limit the number of hops it travels. In
structured P2Ps, items are located through distributed hash

table (DHT) interfaces. Recent studies show that flooding is
effective for locating highly replicated items but less effective
for rare items. In [15], Loo et al.’s experiments show that
queries for rare items in Gnutella have very low recall rate.
Around 18 percent of all Gnutella queries return no results,
despite the fact that for at least two thirds of these queries, the
desired results are available in the system. In addition, such
queries often suffer long response time. On the contrary,
DHTs guarantee perfect recalls and good response time for
rare items, while incur significant bandwidth cost for popular
item publishing and multiple keyword search [7].

Hybrid P2P networks have recently attracted much
attention [14], [15], [29]. A hybrid P2P network combines
an unstructured flooding-based network with a structured
DHT-based global index [14], [15]. To make this concept
clear, let us consider a simple example in our daily life.
When we need an answer for an easy question, such as
“what is the date today?” probably we can get it from most
of the people around us. For a difficult question, such as
“partial derivative,” randomly asking people around us
may not work, and we would achieve better (or quicker)
results by looking it up in books in the library or consulting
with experts. This scenario is similar to the selection of
flooding and DHT in P2P networks. By combining an
unstructured P2P approach with a structured DHT-based
index, a hybrid P2P utilizes selective techniques that
publish only rare items into the DHTs. Searches are
performed either by flooding the unstructured network,
or by looking up in the DHTs, according to the popularity of
desired items. Hybrid search improves the recall rate and
response time of queries for rare items with low bandwidth
overhead, as well as maintaining good recall and response
time for highly replicated items.

The key issue in improving hybrid search is how to
better estimate the number of peers that can answer a
question (query), so that we can determine the best search
operation. Existing approaches for differentiating queries
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fall into two categories. The first type is detection-based, for
example the simple hybrid strategy [14], in which a search is
first performed via flooding. If not enough results are being
returned within a predefined time, the query is reissued as
a DHT query. Although both popular and rare items can be
ultimately located, locating rare items has a worse response
time than pure DHTs, and extra cost is incurred by the
preflooding. The other type of approaches use aggregation
information gathered through a gossiping method to
estimate the popularity of the items [29]. By using a
threshold on the number of copies of related items to
determine whether flooding or DHT, such approaches
outperform simple hybrid techniques.

Nevertheless, differentiating among queries by estimat-
ing the number of items containing all the query terms has a
fatal flaw. As identified by Sripanidkulchai et al. [22], the
interest locality is a common and powerful principle of P2P
file sharing systems. If a peer has a particular piece of
content that a user is interested in, it is likely the peer has
other items that user has interest as well. Hence, for a given
query, when it is estimated that there are many related
items in the network, it is not necessary that many peers
have the desired files. Current approaches cannot distin-
guish whether the many items related to a query are
distributed in many peers or are in a few peers, thus fail to
provide a proper selection of flooding or DHT.

To address this issue, we propose QRank, a difficulty-
aware hybrid search scheme, which employs a push
synopsis based random gossiping algorithm [12], [16] to
gather statistical information and term frequency. Using the
rank values, QRank selects proper search strategies for
queries. Trace-driven simulation results show that, com-
pared with the copy popularity based technique, QRank
significantly improves the query recall rate, as well as
reduces the response time and traffic overhead.

The rest of this paper is organized as follows: Section 2
discusses the related work. Section 3 introduces the basic
idea of QRank. Detailed design of QRank scheme is
presented in Section 4. Section 5 describes how we collect
a real trace as well as the simulation methodology.
Performance evaluation of this design is presented in
Section 6. We conclude the work in Section 7.

2 RELATED WORK

Hybrid P2P model is first introduced by Loo et al. [15].
Having observed that the Gnutella network is inefficient for
locating rare items, Loo et al. propose the SimpleHybrid
architecture, combining Gnutella and DHT-based PIER [14].
SimpleHybrid search first performs flooding techniques
with limited TTL. Queries that return no results within
30 seconds are reissued using the PIER search engine. Using
this method, the recall rate for rare items is improved. The
experiment results also show that PIER returns the first
result within 10-12 seconds. Hence, SimpleHybrid approach
reduces the average latency for rare items to 40-42 seconds,
which is 65 seconds by flooding only. In addition,
SimpleHybrid reduces the number of queries that receive
no results in Gnutella by 18 percent. The drawback of
SimpleHybrid is twofold. First, due to the preflooding
operation, the response time for rare items (40-42 seconds) is

much longer than that (10-12 seconds) directly using DHT.
Second, the method incurs unnecessary bandwidth cost for
rare items.

To better identify rare items, Zaharia and Keshav
propose a gossip-based scheme called GAB [29]. GAB
uses pushing synopsis based random gossip scheme to get
global statistics on the number of copies. Search selection is
based on the popularity of items. Every super peer
maintains a synopsis for global item titles. In the synopsis,
every distinct title uses a bit vector as a counter. The
synopses are disseminated among super peers using a
randomized gossip algorithm. When a query arrives, GAB
sums up all the counts of titles that contain all the terms in
the query. If the sum is above a specified threshold, the
query will be flooded; otherwise, it will be looked up in
the DHT. Compared with SimpleHybrid, GAB achieves a
10-20 percent higher recall rate, a 20-25 percent smaller
response time, and a 45 percent reduction in the mean
volume of query traffic. GAB, however, has a limited
accuracy due to the fact that many titles containing the
desired terms does not always mean that many peers can
answer the query (we will explain in more detail in
Section 3).

It is well known that weighting of terms provides
improved retrieval performance because it differentiates
useful terms from less useful ones, for example TF � IDF
scheme [20]. To weight a term in a specific query, TF
quantifies the fact that terms more frequently used in a
query are likely important to describe the meaning of the
query [20]. It is defined by

TFt ¼ 1þ loge fq;t; ð1Þ

where fq;t denotes the frequency of term t in query q.
Generally speaking, a verbose descriptive query can
provide an indication of term importance [20].

Inverse document frequency (IDF) quantifies the fact that
terms appearing in many documents in a collection are less
important for differentiating the query:

IDFt ¼ loge 1þN
ft

� �
; ð2Þ

where N is the number of documents in the collection, and
ft denotes the number of documents in which term t
appears.

The following equation is a standard form of TF � IDF
to weight a term with the specified query:

!t ¼ TFt � IDFt ¼ ð1þ loge fq;tÞ � loge 1þN
ft

� �
: ð3Þ

Such methods however are not directly applicable to P2P
systems. First, in a P2P system, it is often difficult, if not
impossible, to maintain a central repository or index, and
large numbers of items are distributed over the entire
network where nodes are joining and leaving in a dynamic
and ad hoc manner. The absence of global statistical
information hinders the use of IDF to differentiate terms
in a query. Second, different from queries in traditional
information retrieval application, P2P queries are typically
short and when they are issued, all terms are usually used
only once, offering less help. In order to address this issue,
we propose QRank for hybrid P2P systems.
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3 QRANK DESIGN

3.1 “Many Items” 6¼ “Many Peers”

Current hybrid search selections are based on the
assumption that when a query has many related items,
these items are distributed among many peers. It is
demonstrated in diverse traces of popular P2P systems
[22]; nevertheless, P2P users prefer to store similar items of
interest on their local disks. As shown in the example in
Fig. 1, both queries a and b have a similar number of
related items. However, since items related to query a are
widely distributed, flooding will be more effective than a
DHT for query a. On the other hand, a DHT is better for
query b, as its results are available on only a few nodes in
the network. Selecting search strategies on the number of
related items often leads to degradation of query recall and
an increase in search traffic.

QRank employs a ranking model by weighting the
difficulty of queries and selects the best search strategy based

on rank values. It is known that keywords in a query might be
differently discriminative for searching. Considering the
query “peer-to-peer network,” more items and peers contain
the keyword “network” than the keyword “peer-to-peer”
because “network” is a less specific term than “peer-to-peer.”

But clearly, “peer-to-peer” is more important in this query.

3.2 Weighting Query Terms

In our query term weighting model, documents are

identified by titles. Each title T contains a set of

keywords: T ¼ ðk1; k2; . . . ; knÞ, and a query q is a sequence

of terms, q ¼ ðt1; t2; . . . ; tmÞ. QRank weighting model has

two parameters, Inverse Peer Frequency (IPF) and Term

Frequency (TF). IPF is given by IPFt ¼ logeð1þ N
ft;p
Þ, where

N is the number of peers in the P2P network, and ft;p
denotes the number of peers that have items containing

term t. Terms that appear in more peers are less

important and vice versa.
IPF quantifies the fact that terms appearing in many

peers in a P2P network are common terms and flooding is
more feasible. We change IDF into IPF based on the
observation that many documents containing t does not
mean that many peers can answer the queries containing t.
The value ft;p reflects the difficulty of a term t.

The challenging issue here is the parameter TF . The
standard query term weighting method in traditional
information retrieval field, TFt ¼ 1þ loge fq;t, is not applic-
able here. We analyze the Gnutella query trace provided by
Zeinalipour-Yazti [30]. We observe that the average length
of Gnutella queries is 3.54 terms. Fig. 2 plots the query
length distribution showing that 83 percent queries have no
more than five terms. Hence, the variable fq;t, the frequency
that a keyword occurs in a query, is always 1 in the
equation of TFt, leading the TFt constant.

To address this problem, QRank replaces TFt with

apTFt, where apTFt ¼ 1þ � loge
ft
ft;p

, ft is the number of

items whose titles contain t, and ft=ft;p denotes the average

frequency that the term t appears in a peer, while � > 0 is

the parameter scaling the contribution of apTFt.
The formula of apTF quantifies the degree of interest-

based locality for terms. Given fixed value of ft, the lower
the value of ft;p is, the higher the degree of interest locality
of the term t is. The terms highly replicated in few peers are
difficult ones, and flooding is not appropriate for them.

Then, the QRank weight is given by

!t ¼ apTFt � IPFt ¼ 1þ � loge

ft
ft;p

� �
� loge 1þ N

ft;p

� �
:

ð4Þ

3.3 Search Selection

We define the difficulty of queries, $q, by

$q ¼

P
t2q
!t

jqj ; ð5Þ

where jqj denotes the length of query q.
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We use the following �q to quantify by how far the
weights of terms differ from $q:

�q ¼

P
t2q
ð!t �$qÞ2

jqj : ð6Þ

The lower the value of �q is, the slighter the difference of
the terms is.

Intuitively, queries with popular keywords tend to be
easier to be searched using flooding, while DHT search is
more feasible for the queries consisting of rare terms due
to the perfect recall and low bandwidth cost. If a query
contains popular terms, DHT search may incur unac-
ceptable bandwidth cost and long average result latency
due to the distributed intersection operation [7]. On the
other hand, interest-based locality of terms also affects
search efficiency. Flooding is less suitable for the terms
with higher degree of interest-based locality. Indeed, if
the values of $q and �q are both low, the terms in the
query are all easy and flooding technique is more
feasible for such queries. If the value of $q is high and
the value of �q is low, the terms in the query are all
difficult and DHT search may be more feasible. When a
query is issued, QRank selects flooding or DHT accord-
ing to the rank values ð$q; �qÞ of the query. As it is
difficult for a system administrator to provide simple
thresholds for both $q and �q, QRank uses a Support
Vector Machine (SVM) [25] to classify a query into
different types. In the following, we introduce how we
obtain the classifier.

Based on the traces collected, a training set is formed
and is denoted as D ¼ fxi!; yig, where xi

! denotes the
sample vector, and yi 2 fþ1;�1g is a class label. The input
to the training algorithm is a set of examples xi with
labels yi:

ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxp; ypÞ
� �

;

where
yi ¼ þ1; if xi 2 class A;
yi ¼ �1; if xi 2 class B:

� ð7Þ

Considering the linearly separable data space, the aim of
SVM is to find a decision function, an optimal separating
hyperplane w � xþ b ¼ 0 that separates the positive and
negative data with the maximum margin.

The classifier can be written as

fðxÞ ¼ þ1; if w � xþ b � 0;
�1; if w � xþ b < 0:

�
ð8Þ

In the case of nonlinear space, SVM maps the input space
to a high-dimensional space by kernels [25].

In order to label each example with best search type in
the data set {($q, �q, BestSearchType)} for training the
search type classifier, where the label BestSearchType is
either “Flooding” or “DHT,” we define the metric vector
M ¼ ðm1;m2;m3; . . . ;mnÞ. The metrics have two kinds.
Some of the metrics such as recall could be positive, i.e.,
the higher the value, the higher the quality. Other metrics
are negative, i.e., the higher the value, the lower the quality.
To normalize the metric values for queries, we scale positive

metrics according to (9). For negative metrics, their values
are scaled according to (10):

Vi;j ¼
mi;j�mmin

i

mmax
i �mmin

i

; if mmax
i �mmin

i 6¼ 0;

1; if mmax
i �mmin

i ¼ 0;

(
ð9Þ

Vi;j ¼
mmax
i �mi;j

mmax
i �mmin

i

; if mmax
i �mmin

i 6¼ 0;

1; if mmax
i �mmin

i ¼ 0;

(
ð10Þ

where mi;j denotes the value of the ith metric of query qj,
and Vi;j denotes the normalized value of mi;j. Then, we
define the utility function as

UtilityðqjÞ ¼
X

i
ðVi;j �WiÞ; ð11Þ

where Wi 2 ½0; 1� and �iWi ¼ 1. Wi is a normalized weight
given by users to represent the importance of metric mi.

Although this method can be easily extended to more
metrics, we consider three metrics ðm1;m2;m3Þ as follows:

. Recall: percentage of relevant items returned as
results for a query. It is a widely accepted standard
metric in the information retrieval research area [10]:

Recall ¼ # of relevant items returned

total # of relevant items in the network
:

ð12Þ

. Latency: average latency of query results:

Latency ¼ sum of latencies of all the results for a query

total # of results for a query
:

ð13Þ

. Traffic: bandwidth cost for searching a query.
Thus, the utility function for query qj is given by

UtilityðqjÞ ¼
m1;j �mmin

1

mmax
1 �mmin

1

�W1

þ
X3

i¼2

mmax
i �mi;j

mmax
i �mmin

i

�Wi

� �
: ð14Þ

Using the set of Gnutella query logs, we randomly extracted
6,759 examples as a training data set to train a classifier. Each
example is represented as ($q,�q, BestSearchType), where the
label BestSearchType is either “Flooding” or “DHT,” which-
ever has the better value of utility function. The accuracy of an
SVM classifier is quite critical for the efficiency of search
strategy selection. In order to get a good classifier, QRank
varies �, the parameter scaling the contribution of apTFt in
(4), and tests several SVM kernels, including linear, poly-
nomial, and Gaussian. We use cross-validation technique [25]
for training and testing. Table 1 summarizes the experimental
results of the trained classifier.
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The results show that the trained classifier has good
classification Precision and Recall [25] for both search types.
Here, recall is the fraction of the correctly classified results to
the total results in the set, while precision is the fraction of the
correctly classified results to the total number of returned
results. We use the F -Measure [25], which was computed by
F -Measure¼ð2� Precision� RecallÞ=ðPrecisionþ RecallÞ, to
measure the overall performance of the trained classifier. The
result shows that the trained classifier performed well. The
trained classifier is employed for QRank search type
selection.

For a real-world system design, we need to conduct
experiments with large-scale data sets, for example, the
TREC WT100G [3], a 100-Gigabyte text collection on an
open platform, PlanetLab. By using different network
metrics obtained from the PlanetLab, such as end-to-end
delay, end-to-end bandwidth, and so forth, we are able to
successfully collect the necessary training data set. As
shown in (4), QRank’s weighting model is not dependent on
the scale of network size and the absolute value of term
frequency. Later in Section 6, we will demonstrate this point
in the different simulation runs. Thus, the training data
collected from PlanetLab should be applicable for a real-
word system design.

4 HYBRID SEARCH WITH QRANK

We first give an overview of QRank hybrid search and then
describe the method of collecting global information in
distributed P2P networks in detail. We will also discuss
how to improve the search performance by using adaptive
methods.

4.1 QRank Hybrid Search

QRank defines four types of nodes [29]: unstructured super
peers, structured super peers, normal peers, and bootstrap
peers, as illustrated in Fig. 3. A normal peer connects to at
least one unstructured super peer via bootstrap peers. An
unstructured super peer maintains a local index of items
from the normal peers connected to it and performs query
search on their behalf. Every QRank unstructured super
peer connects to one or more structured super peer in
order to enable both flooding and DHT search in each

unstructured super peer. To reduce the overhead of DHT
maintenance, only a small fraction of server-like nodes are
selected to act as structured super peers and participate in
the global DHT in the P2P network. The DHT allows every
individual keyword to be mapped to documents across the
network. Using this single-term based global index, a list of
entries for each keyword in a query can be retrieved. To
decrease the overhead associated with item publishing,
QRank only publishes items with rare keywords into the
global index. Titles are decomposed into multiple key-
words and separately published into the global single-term
based inverted index.

A query issued by a normal peer is first sent to a
connected unstructured super peer. The unstructured
super peer computes $q, �q as the input of the embedded
QRank classifier using the global statistical information of
ft, ft;p, and N . The query is then checked by QRank
classifier to select flooding or DHT. If flooding is selected,
the query is inserted into the unstructured network with a
given TTL. Otherwise, the keywords of the query are
looked up in the global DHT separately via the connected
DHT nodes, with a consequent intersection operation for
the retrieved posting lists. The SVM classifier can effec-
tively identify the queries with high $q and low �q and
select DHT search technique for them. For such queries,
DHT nodes need to transmit short posting list across wide
area networks. Thus, the QRank difficult-aware hybrid
search scheme can efficiently reduce bandwidth cost for
multikeyword search. Based on the DHT global index, we
have further optimized the bandwidth cost of multikey-
word search using techniques such as bloom filter in our
previous work [7].

4.2 Global Information Collection

QRank gathers the global statistics in the network by
using a variation of the pushing synopsis based gossip
algorithm first proposed in [16]. It is a combination of the
gossip-style computation [12] and duplicate-insensitive
probabilistic counting [9], [29]. Such gossip scheme causes
the computation of aggregation information to converge
exponentially [12]. After logðnÞ rounds of gossip, where n
is the maximum number of all the nodes involved in the
gossip, all the nodes will get the global statistics. Within
the structure of hybrid P2P network, the algorithm enables
every super peer to quickly collect the statistics, including
ft, ft;p, and N in the query ranking model, as described in
Section 3.2.

4.3 Adaptive Hybrid Search

Due to the dynamic property of P2P networks, the accuracy
of QRank is influenced by the uptime of a peer. In adaptive
search, when a new query is issued to an unstructured
super peer, the peer first asks its neighboring super peers. If
all the neighbors agree on the same search type, the agreed
search type will be performed. Otherwise, the decision of
the peer with longest uptime will be used. The maximum
uptime Uptimemax of neighbors will be tagged in the query
and forwarded together with the query.

During flooding, when a query ðq; UptimemaxÞ is
forwarded to a super peer, the peer will compare
Uptimemax tagged with the query and its own uptime
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Uptimelocal. If Uptimelocal > Uptimemax and the local
classifier suggests the query should be looked in DHT,
the flooding based forward will be stopped by setting the
TTL value of this message to “0” and a consequent DHT
lookup will be performed. In order to prevent looking up
DHT multiple times, this DHT lookup operation will be
discussed with the source peer. By this adaptive hybrid
search strategy, more accurate decisions can be made to
further improve search performance.

5 SIMULATION METHODOLOGY

5.1 Gnutella Trace Collection

The query traces from Zeinalipour-Yazti are quite represen-
tative for real-world P2P systems. However, we found that
the traces are not complete enough for obtaining complete
topology information. So, we collect the topology informa-
tion of Gnutella using the crawler we developed.

As mentioned in the Gnutella protocol, individual
nodes, also called servants, perform tasks normally
associated with both clients and servers. They provide
client-side interfaces through which users can issue queries
and view search results. At the same time, they also accept
queries from other servants and respond with applicable
results.

Originally, all Gnutella peers are connected with each
other randomly, which caused the scalability problem in the
Gnutella network. Current Gnutella categorizes peers as
leaves and super peers. A leaf keeps only a small number of
connections to super peers. A super peer behaves as a proxy
for the leaves connected to it.

According to the Gnutella protocol, a ping message with
TTL ¼ 2 and HOP ¼ 0 is regarded as a crawler ping, and
peers, upon receiving a crawler ping, should respond with
appropriate pong messages. Based on this mechanism, our
crawler discovers the Gnutella topology by performing a
breadth first search on the network. From our experience and
observations, we find that some clients such as Gnucleus and
Morpheus (based on GnucDNA) do not respond to the
crawler ping appropriately. Fortunately, these clients send an
information page summarizing servants’ status to any web
browser trying to connect to it. Motivated by this, we also
developed a web spider as a means of collecting topology
information from these clients. We then integrated the web
spider into the crawler, which accelerated the crawling
process remarkably. The crawlers are written in Java based
on Limewire’s [2] open source client and run in parallel using
40 threads. Our crawler can explore more than 50,000 peers
within half an hour.

Using the crawler, we crawled seven topologies with
sizes of 31,747, 34,206, 45,650, 48,134, 57,926, 68,737, and
75,643 nodes. In Fig. 4, we plot the distribution of the node
degree corresponding to the collected Gnutella topology
traces. The plots of all data sets are in good agreement with
previous results [19].

5.2 Simulator Design

We wrote a custom simulator in Java to compare QRank
with the GAB search technique. We first generate the
underlying network topology. Based on generated network,
we simulate hybrid P2P overlay and the search techniques.

5.2.1 Hybrid P2P Overlay

In order to better represent real-world systems, we
consider both the underlying physical topology and the
P2P overlay.

The physical topology should represent the real topol-
ogy with Internet characteristics. Previous studies have
shown that large-scale Internet physical topology follows
the small world and power law properties [24]. Power law
describes the node degree, while the small world describes
characteristics of path length and clustering coefficient.
The study in [4] found that the topologies generated using
the AS Model have the properties of the small world and
power law. BRITE [1] is a topology generation tool that
provides the option of generating topologies based on the
AS Model. Using BRITE, we generate a physical topology
with 100,000 nodes.

We use the Gnutella traces we collected to simulate the
P2P overlay, where all P2P nodes are mapped into the
underlying physical topology. The communication cost
between two logical neighbors is calculated based on the
physical shortest path between the pair of nodes. Using
BRITE, we can simulate the underlying Internet with rich
configuration information, including bandwidth configura-
tion, latency, and so forth. The ultra peers of the Gnutella
trace are nominated as unstructured super peers in our
simulator. The uptime of peers follows the distribution of
Gnutella P2P systems reported in [21]. About 10 percent
ultra peers have an average uptime longer than 80 minutes
and we nominate such peers as DHT nodes. (In practice,
QRank can classify the structured super peers according to
the characteristics such as uptime history age (how long the
peer used to be online on average per minute), history role
the peer used to play, bandwidth configuration, and how
long the peer has been alive [29].) Each peer is assigned a
lifetime in seconds. We simulate the joining and leaving
behavior of peers via turning on/off peers. The lifetime is
decreased by one after each passing second. A peer leaves
in the next second when its lifetime reaches zero. During
each second, there are a number of peers leaving the
system. We then randomly pick up (turn on) the same
number of peers from the physical network to join the
overlay.
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We simulate the flooding search technique among the
unstructured super peers and Chord [23] DHT in structured
super peers. The TTL for the flooding search is set to 7, as it
is found in [19] that 95 percent of any two Gnutella node
pairs could exchange messages in fewer than seven hops. A
DHT search is performed by searching each keyword with a
consequent join operation. In the simulation, the distributed
intersection for multikeyword searching is performed by
transmitting the posting list for a rarer keyword to the
DHT nodes that are responsible for other more popular
keywords.

5.2.2 Queries and Files

In order to compute the query popularity, we use the
Gnutella query trace, which we analyzed in Section 3. The
trace is quite representative for real-world P2P systems.

We simulate files with the file names generated from
exact queries. The file distribution is computed according to
the study result in [8] that files in P2P network exhibits
popularity characteristics that fit a log-quadratic distribu-
tion y ¼ 10�2:98x2�0:68�0:07, where x is the percentage of
unique files ranked in log scale, and y is the percentage of
all files in log scale. All data sets were processed with Porter
stemming algorithm to reduce morphological variants for a
given term to the common base form of it. Common stop
words such as “the,” “and,” and so forth were removed
from the data set [10].

5.2.3 Gathering Global Statistics

To gather global statistics, we simulate the push synopsis
based randomized gossip method. We also implement the
apTF � IPF ranking model. QRank leverages the fact that
the global statistics are slowly changing in the large-scale
P2P networks. Hence, infrequent computation of these
statistics is sufficient for good performance. The commu-
nication cost for the gossiping algorithm is quite acceptable
for a real-world system.

5.2.4 Classifier Training

To obtain the training query set, we search each query using
both flooding and DHT strategies and compute the utility of
both strategies for the query. Thus, each sample of a query
can be represented as ð$q; �q; labelÞ, where the label is either
“Flooding” or “DHT,” whichever has the better value for
the utility function defined as (14) in Section 3. We trained a
classifier using Weka 3 [27] and use the classifier to predict
which strategy should be used for any given query in the
simulation.

In Section 6, we will show that the performance of the
trained SVM classifier is quite stable when we change the
distribution of the underlying data set. Generally, the overall
situation including the system scale, the principle of interest-
based locality, and even the global statistics changes slowly,
so using SVM classifier is quite efficient for search strategy
selection. Although there is overhead associated with
training a classifier, we believe such a cost is acceptable
compared with the overhead associated with adaptively
adjusting a threshold like GAB or predetecting the
P2P network using flooding like SimpleHybrid.

For each simulation, we take 50 runs and report the
average or the representatives.

6 PERFORMANCE EVALUATION

QRank considers both search quality and efficiency.
Quality focuses on user-perceived qualities, such as the
number of returned results, recall, and search latency,
while efficiency focuses on resource utilization, such as
bandwidth cost.

For simulating the GAB and QRank algorithms, we use
the utility function defined in Section 3.3, which mainly
considers three normalized metrics: recall, latency, and
traffic. In the utility function, we set the weight Wi to 1/3
for 1 � i � 3 to show the same importance of each
metric mi. The different metrics are all normalized into
the space [0, 1] by (9) and (10). GAB’s utility function
shows that its performance is largely determined by the
value of the specified Rmax. Choosing proper Rmax value
for different network sizes and document collection sizes
is not trivial because the same Rmax value may not work
in different systems. For example, in GAB’s simulation,
Rmax is set to 25, while due to the partial matching it is
likely that in a larger scale network with much more
documents, a user may not obtain what it really desires
although the system returns 25 items with titles containing
all the keywords in the query (this is why a real-world
search engine needs to rank the results). Thus, in our
testbed, we simply use the same parameter setting of Rmax

as GAB’s simulation could be not feasible. GAB paper has
not discussed about how to better choose Rmax in different
network sizes and different scales of document collection.
Thus, in the utility function proposed in Section 3.3, we
do not separately consider Rmax. Instead, we use recall, a
more widely accepted standard metric in the information
retrieval research area, which reflects the fraction of
relevant returned items. We believe this comparison is
fair since both algorithms are simulated based on the
same utility function.

GAB’s adaptive thresholding algorithm can help a real-
world system achieve the optimal value for t, where
flooding and DHT search provide equal utility. In our
preliminary research [6], we found that the optimal value
for t is crucial to search performance. In this extended
simulation, in order to bound the performance improve-
ment of our scheme over GAB, we use much stricter
methodology to obtain the optimal values of t for GAB.
We first let the synopsis-based gossip algorithm to
converge to the statistics. Then, we randomly choose a
set of unstructured super peers and let them issue a
certain number of queries. Each query is performed by
both flooding and DHT lookup. We compute the t values
for the queries that have equal utility. In the simulation,
we use an average value of all such t values as a
threshold for search selection for GAB. Our simulator
periodically performs the above steps to achieve new
optimal thresholds and finds that the values change very
slightly during the simulation. With this simulation
scheme, we can successfully get the optimal threshold
that GAB’s adaptive algorithm aims to achieve. Thus, our
simulation can obtain almost the upper bound perfor-
mance of GAB. We believe such comparison is quite fair.

Fig. 5 plots the number of returned results for all
queries, in which 77 percent GAB queries return 100 or

CHEN ET AL.: DIFFICULTY-AWARE HYBRID SEARCH IN PEER-TO-PEER NETWORKS 77

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on September 16, 2009 at 02:17 from IEEE Xplore.  Restrictions apply. 



fewer results, while 62 percent QRank queries return less

than 100 results, showing that QRank outperforms GAB for

highly replicated items. The reason for the increase is that

the queries for searching the items with strongly interest-

based locality distribution can be identified as difficult

queries in our ranking model. The SVM classifier may

choose DHT-based search instead of flooding.
Fig. 5 also shows that about 7 percent GAB queries

return no results, while only 2.5 percent QRank queries

return nothing. It shows that both GAB and QRank are

efficient for the queries with rare related items. The reason

why more GAB queries return nothing is because using

flooding for the queries with many related items may be

inefficient. When these many items may be distributed only

on a few peers in the network, GAB may have lower hit rate

for such queries by flooding.
Fig. 6 shows the average number of query results in all

the 50 simulation runs. Statistically, the average number of

query results is improved by 48 percent.
We also conduct experiments for the optimal search

policy. To achieve the optimal search policy, each query is

performed with both DHT and flooding. We use the

strategy with better utility as an optimal strategy. Figs. 5

and 6 also plot how well the optimal search policy can do.

We can see that the performance of QRank is very close to

the optimal selection.

Non-detection-based hybrid search schemes aim at
improving the performance of the first strategy selected for
a query. In this simulation, both QRank and GAB search a
query either by flooding or DHT, without combining the
detection-based strategy (such as SimpleHybrid).

We evaluated the First Strategy Recall (FSR) of queries.
The FSR denotes the percentage of returned relevant items
out of all relevant items in the network as defined in (12)
using the first strategy selected for a query.

Fig. 7 plots the FSR of all queries where 53 percent
queries using GAB have 80 percent or lower recall. By
using QRank, less than 32 percent queries have a recall
rate less than 80 percent. Since both GAB and QRank use
DHT for the queries with rare related items, they are
both efficient for such queries. The lower recall for GAB
is because using flooding for the queries with many
related items may be inefficient when these many items
may not be widely distributed in the network. QRank
achieves a better recall by using DHT searches for such
queries.

Fig. 8 plots the statistical average query FSR in each run.
The statistical average query FSR is increased by 21 percent,
which means that 82 percent of the potential improvement
can be achieved by the optimal search selection.

Short search latency is always desirable in P2P systems.
In Figs. 9 and 10, we evaluate the average latency of all the
results of a query as defined in (13). Fig. 9 shows that about
45 percent QRank queries have short average result latency
less than 7 seconds, while only about 29 percent GAB
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queries achieve such short latency. In the simulation, we set

a maximal Timeout value of 30 seconds for the queries. A

query returns failure with a latency of 30 seconds. Fig. 9

shows that GAB has more queries that return no results

before Timeout.
Fig. 10 plots the statistical average query result latency

in each run. The statistical average latency of results is

significantly reduced by 26 percent, which is 76 percent of

the potential improvement that can be achieved with an

optimal search selection. We also noticed in Fig. 9 that a

number of queries have average result response times with

only slight differences. This is because the latency of DHT

is decided by the Chord latency, 1
2 logN , where N is the

total number of the structured super peers in the hybrid

P2P network.
P2P traffic has significant impact on the underlying

network. Heavy network traffic limits the scalability of

P2P networks.
We define the traffic cost as network resource used in a

search process of P2P systems, which is mainly a function of

consumed network bandwidth and other related expenses.

Specifically, we assume that all the messages have the same

length. When messages traverse an overlay connection

during a given time period, the traffic is the summed traffic

cost of all the hops. The traffic cost of a hop is given by

Tc ¼M
P

i Li=Bi [13], where M is the size of the message,

and Li and Bi, respectively, represent the length and the

bandwidth of the physical links that this message traverses

on the underlying physical network during this hop in the
overlay.

Fig. 11 plots traffic cost of all the queries. About 73 percent
of QRank queries have a traffic cost less than 2� 104, while
only about 52 percent GAB queries achieve 2� 104 or less
traffic cost. Fig. 12 plots the statistics. The average query
traffic is decreased by 40 percent, which is 75 percent of the
potential improvement that can be achieved with an
optimal search selection.

To better evaluate the overall performance of QRank, we
also define two comprehensive metrics: Search Efficiency and
Search Utility. Search Efficiency is defined as the ratio of FSR to
search traffic cost,Efficiency ¼FSR=traffic cost. It is a more
fair comparison than looking at FSR and search traffic cost
separately [26]. In P2P search, we often desire to achieve
higher recall with lower traffic cost.

Figs. 13 and 14 show the contrast of Search Efficiency
among QRank, GAB, and the optimal. We can see that QRank
greatly outperforms GAB. The statistical average search
efficiency is increased by 61 percent, which is 73 percent of
the potential improvement that can be achieved with an
optimal search selection.

Search Utility, as defined in Section 3, considers
multiple metrics, including average latency of results, FSR,
and traffic cost. As shown in Figs. 15 and 16, QRank
improves Search Utility compared with GAB.

In the simulation, we find it difficult to model the
interest-based locality. We obtain some observation from
the SemreX system [11], which is a P2P system for computer
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science researchers to share literatures. The system is
developed by the Cluster and Grid Computing Laboratory,
Huazhong University of Science and Technology in the
summer of 2005. It shows that a large fraction of researchers
tend to store documents of topics about their research
interest on their hard disks. In such peers, a large fraction of
pdf files belong to only a small number of topics and it is
very common that the files belonging to the same research
topic may have titles containing common keywords. Based
on the observation, we simulate the distribution of the files
in our design.

To better examine the effect of interest locality, in the
simulation for this journal version, we change the degree of
interest-based locality by varying �, the fraction of the peers

that follow the locality principle, and the parameter �, the
fraction of documents that have similar titles in such peers.
The parameter � ranges from 50 percent to 70 percent, and �
ranges from 20 percent to 60 percent. It is difficult to
simulate partial match, so we use the same title for
simulating different documents. That is to say, even there
are two same titles, they are different items. We believe
such a method can simulate the interest-based locality to
some extent.

As aforementioned, we can quantify the degree of
interest-based locality using apTF . We compute aveTF ¼
1
n

P
t apTFt, where n is the number of all the terms in the

synopsis to quantify the overall degree of interest-based
locality in the P2P network. Figs. 17 and 18 analyze the
impact of the interest locality on the improvement of search
performance. We compute QRank’s improvement over GAB
for each query by �U ¼ UtilityQRank � UtilityGAB and plot
the results in Fig. 17. We can see that only about 5 percent of
queries with QRank have a worse search utility than using
GAB, while about 56 percent of queries have better utility. It
is also shown that �U is greatly influenced by the average
apTF value. When apTF increases, QRank achieves a better
�U . This shows that QRank can achieve more improvement
when the degree of interest-based locality increases.

Similarly, in Fig. 18, QRank’s improvement of search
efficiency is influenced by the apTF of terms. About
40 percent of QRank queries have better search efficiency
than that of GAB.

As GAB’s paper discussed [29], we estimate the synopsis
size for the gossip algorithm in our system as follows: The bit
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Fig. 14. Average search efficiency.

Fig. 15. Utility.

Fig. 16. Average utility.
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vector for each unique keyword takes 4 bytes. The average

English word length is five. Thus, each term will take an

average number of 9 bytes in the synopsis. There are about

615,100 distinct terms in the Oxford dictionary. Hence, if each

peer maintains an original full word list, it needs a storage size

of 5.28 Mbytes for gathering the complete global statistics.

The Burrows-Wheeler Transform can reduce the storage size

to 1.78 Mbytes, which is an upper bound of the storage.

According to Zipf’s law of words, which has been demon-

strated in NLP research [17], we can reduce a large fraction of

uncommon words and significantly reduce the size of the

synopsis much lower than the upper bound. On the other

hand, due to the fact that the global statistics in a large-scale

network are slowly changing, infrequent computation of

those statistics is sufficient. Therefore, the communication

cost for the gossiping algorithm is acceptable for a real-world

system.

7 CONCLUSIONS AND FUTURE WORK

Hybrid search provides better efficiency for P2P systems.

To further improve its performance, we need to better

estimate how many peers can answer a given query so as to

determine a proper search strategy for the query. To

address this problem, SimpleHybrid uses a detection-based

algorithm to estimate the item popularity. GAB improves

the search performance by using a non-detection-based

scheme by employing a synopsis gossip algorithm to

estimate the number of items that match a given query.

We find that many items matching a query does not always

mean that flooding is more efficient. To address the issue,

we have proposed QRank, a query difficulty-aware scheme,

which ranks the query difficulty based on global statistical

information and term frequency. QRank uses SVM classifier

to select a proper search strategy. We collect real P2P traces

and design a trace-driven simulator to evaluate this design.

Results show that QRank outperforms GAB in terms of

search efficiency and quality.
In the future, we will implement our difficulty-aware

hybrid search strategy on some open platforms for a real-

world system design. We will also address the transfer

learning issue of SVM-based algorithm for QRank.
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