Newcastle
University

ePrints @

Tarawneh G, Mokhov A, Naylor M, Rast A, Moore SW, Thomas DB, Yakovlev

A, Brown A. Programming Model to Develop Supercomputer Combinatorial

Solvers. In: Tenth International Workshop on Parallel Programming Models

and Systems Software for High-End Computing (P252). 2017, Bristol, UK: IEEE.

Copyright:

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

DOI link to article:

https://doi.org/10.1109/ICPPW.2017.35

Date deposited:

09/10/2017

Newcastle University ePrints - eprint.ncl.ac.uk

http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=239779
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=239779
https://doi.org/10.1109/ICPPW.2017.35

Programming Model to Develop
Supercomputer Combinatorial Solvers

Ghaith Tarawneh,* Andrey Mokhov,* Matthew Naylor,T Alex Rast,¥ Simon W. Moore, !
David B. Thomas,® Alex Yakovlev,* Andrew Brown?
* School of Electrical and Electronic Engineering, Newcastle University, UK
t Computer Laboratory, University of Cambridge, UK
1 Electronics and Computer Science, University of Southampton, UK
§ Electrical and Electronic Engineering, Imperial College London, UK

Abstract—Novel architectures for massively parallel machines
offer better scalability and the prospect of achieving linear
speedup for sizable problems in many domains. The development
of suitable programming models and accompanying software
tools for these architectures remains one of the biggest challenges
towards exploiting their full potential. We present a multi-layer
software abstraction model to develop combinatorial solvers on
massively-parallel machines with regular topologies. The model
enables different challenges in the design and optimization of
combinatorial solvers to be tackled independently (separation of
concerns) while permitting problem-specific tuning and cross-
layer optimization. In specific, the model decouples the issues
of inter-node communication, node-level scheduling, problem
mapping, mesh-level load balancing and expressing problem
logic. We present an implementation of the model and use it
to profile a Boolean satisfiability solver on simulated massively-
parallel machines with different scales and topologies.

I. INTRODUCTION

Modern massively parallel machines can now support
millions of cores [1]. On this scale, full connectivity, global
synchronization and complete ordering become untenable,
so novel architectures emerged in which these ideals were
abandoned, e.g. SpiNNaker [2]. In these architectures, cores
are connected through a mesh network that is embedded
in an n-dimensional space (e.g. a torus or a hypercube).
Cores perform computations by exchanging messages with
a limited number of other cores, usually their immediate
neighbours. There is no global state and computations may
proceed independently in different regions of the mesh (partial
ordering). This model lends itself naturally to many problems
in scientific computing where the problem domain (usually
physical space) can be partitioned and mapped to the mesh of
cores [3]. We refer to massively parallel machines that adopt
this architecture as “hyperspace computers” (Figure 1).

Hyperspace computers offer better scalability for computa-
tional problems that can be decomposed and solved without
having to exchange data between all sub-problems (i.e. without
global communication). An important class that falls in this
category is combinatorial optimization: problems that involve
minimizing an objective function over a finite space of possible
solutions. Parallelizing combinatorial solvers on conventional
architectures is generally difficult because of load balancing,
scheduling and communication costs [4]. These costs become

increasingly prohibitive as more cores are added and therefore
impose an upper bound on the speedup that can be achieved.
Hyperspace computers are free from these limitations since
problems can be decomposed, distributed and solved across the
mesh without global communication. Cores can therefore be
added without contributing to memory contention or imposing
other performance limits on existing cores.

Despite these favourable scaling characteristics, developing
combinatorial solvers for hyperspace computers is challenging.
First, end users are often limited to using a less familiar
programming model (e.g. message passing) so existing
algorithms in imperative form or other styles must be re-
formulated from the bottom up. Second, the programming
model is often directly based on the execution model of the
architecture. Users must therefore be intimately familiar with
the underlying hardware and its capabilities and are likely to
produce architecture-specific solutions with poor portability.
Third, apart from expressing problem logic, user programs
have to address other issues including problem mapping and
load balancing, resulting in a poor separation of concerns.

This paper presents a software framework to tackle the
above challenges. The contributions of this work are:

(1) We propose a multi-layer software abstraction model to
develop combinatorial solvers for hyperspace computers.
The model decouples problems that are typically
addressed collectively when developing software for
hyperspace computers (e.g. problem logic, mapping
and load balancing) so that they can be addressed
independently (separation of concerns).

(2) We present a prototype implementation of the model
to showcase layer organization and separation of
concerns, focusing on two issues that are particularly
relevant to hyperspace computers: problem mapping and
programming model conversion.

(3) We discuss an implementation of a Boolean satisfiability
(SAT) solver, based on the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm, as a use case of the model.

(4) We present empirical results obtained by running the
solver from (3) on a simulator backend. We compare
solver scalability for different hyperspace topologies and
problem mapping algorithms.

@A)

h
el
.

(B) ©

Figure 1. Hyperspace computers: (A) transputer array in a grid configuration, (B) four-dimensional hypercube (e.g. NCUBE [5]) and (C) a modern hyperspace
computer arranged as a torus (e.g. SpiNNaker [2]). All consist of relatively low-performance processors communicating via message passing.

II. BACKGROUND

This section reviews the history and development of
hyperspace computers. Our aim here is to present the key
features of hyperspace architectures and establish a baseline
for discussing their programming models.

A. Hyperspace Computers

Parallel architectures based on low-latency connections
between relatively low-performance processing units date
back to transputers nearly three decades ago [6]. Transputers
were a family of microprocessors intended for parallel
programming (Figure 1A). Each transputer unit had serial
point-to-point communication links, allowing it to connect to
other transputers, host computers and input/output devices.
Systems based on transputers had the appeal of modularity
and extensibility as nodes (transputers) could be arranged
in different configurations and existing systems upgraded by
adding more nodes. This provided a clear route to scalable
performance and a favourable alternative to making individual
microprocessors faster. Transputers were co-developed with
Occam [7], a concurrent programming language based on
Communicating Sequential Processes (CSP) [8] and featuring
built-in operators for channel communication. Occam inherited
the rigorous foundation of CSP [9], [10] and greatly simplified
the development of software for transputer arrays [11].

The regular topology of hyperspace architectures was
popularized by hypercube computers in the same era [12].
Hypercubes were n-dimensional binary cubes containing
N = 2" processors with n neighbours each (Figure 1B).
Nodes were typically assigned n bit addresses where each
bit denotes position along one dimension and any two
nodes whose addresses differ by a single bit were adjacent.
Similar to transputers, hypercube computers emphasized
having a plenitude of processors over individual processor
performance. Their distinguishing feature, however, was the
hypercube topology. Even though the topology was first
adopted because of its efficient physical layout [13], it also
offered attractive properties for software development. First,
it is node-symmetric; all nodes have symmetric perspectives
to other nodes in the system and there are no special cases.
Second, communication latency and number of links both
scale efficiently with the number of nodes: for 2" nodes,

there are n/N/2 links and any two nodes are at most n links
apart. Third, hypercubes can embed other topologies including
trees and lower-dimensional meshes efficiently [14]-[16].
These properties contributed to the popularity of hypercubes
and spawned many applications in scientific computing and
combinatorial optimization [17], [18].

More recently, the high integration densities of modern
VLSI processes made it possible to create massively
parallel machines with thousands of times more cores than
was possible during the transputer and hypercube era.
This motivated the creation of SpiNNaker, a (hyperspace)
supercomputer intended primarily for spiking neural network
simulations (although also capable of addressing a wider range
of scientific computing problems [19]). Each SpiNNaker chip
contains 18 ARMO cores and a Network-on-Chip to route
packets between cores and across inter-chip links [2]. The core
mesh is arranged as a torus (Figure 1C) but the underlying
communication infrastructure permits arbitrary topologies to
be virtualised efficiently. At the time of writing the machine
consists of 500,000 cores but once complete it will house more
than a million cores.

B. Programming Models

Most hyperspace computers have been co-developed with
specialized programming models and software tools that
reflect their architectures. The Occam language, for example,
is specifically tailored to transputers (transputers were in fact
developed as specialized processors to execute Occam [20]).
The direct mapping between the two can be observed clearly in
many of Occam’s features. For example, Occam has blocking
channel control operators (! and ?) that force processes
to synchronize when transferring data, corresponding to
the synchronous links of transputers.! Conversely, some
architectural features of transputers are adapted for Occam.
Occam programs, for example, are composed of many
concurrent processes with independent scopes so transputer
general purpose registers were eliminated in favour of
faster context switching [22]. Transputers and Occam are
not the only architecture and programming model that
correspond in this fashion. Hypercube computer software is

!Compare these operators with more flexible communication schemes such
as the rendezvous mechanism in Ada where the receiver can pre-process
incoming data, selectively block and return data to the sender [21].

Layer Concerns

5 Application = User algorithm

4 Recursion = Programming model conversion

= Activity estimation

3 Mapping = Load balancing (mesh-level)
. = Context switching
2 Scheduling = Load balancing (node-level)
= Link state management
1 Message Passing = Buffering and reliability

= Bandwidth and latency

Possible Implementations Exposed Programming Model

= SAT/SMT Solver

« Computer Chess = Arbitrary, nondeterministic

= Co-routines (Python)
= async/await (C#) L]
= Continuation Monad (Haskell)

Arbitrary, nondeterministic

= Status messages

= Work sharing/stealing " Message Passing

= Round-robin

= Preemptive = Message Passing

= Computer cluster + MPI

= Single processor + event loop * Message Passing

Figure 2. Proposed software model. Each layer addresses specific concerns when developing software for a hyperspace computer. The model decouples these
concerns and makes it easier to tackle them independently. At the top layer (application), message passing and load balancing details are hidden from users
and applications can be expressed in arbitrary high-level programming styles (e.g. imperative, functional).

predominantly based on message passing, usually through
language extensions that provide direct access to message
passing hardware facilities. Similarly, both the architecture and
software of SpiNNaker are based on an asynchronous event-
driven model. When a message arrives at a SpiNNaker core, it
triggers an interrupt and causes execution to jump to a special
handler. SpiNNaker programs are correspondingly expressed
as initialization routines and event handlers [23], [24].

The direct correspondence between software and architec-
ture means that all the machines discussed above assume
programming models that are based on their underlying
execution models [25]. This simplifies hardware/software co-
design and makes hardware organization evident in software
constructs [22]. These advantages, however, come with costs.
First, programmers must be familiar with the architecture to
develop efficient software that runs on top of it. Second, when
an efficient program to solve a given problem is produced,
the result is often tied to the specifics of the architecture
and has poor portability [26]. Even across platforms with
similar execution models, variations in hardware topology or
supported features mean that programs must be adapted or
entirely re-written. For example, when porting a message-
passing program, changes in scale or topology may prompt
non-trivial code changes [27]. Third, programs must contain
intertwined portions of problem logic and low-level hardware
calls, resulting in poor readability and maintainability [28].

The status quo in massively-parallel and hyperspace
programming models is considerably different compared to
desktop computing. Commodity platforms have deep stacks
of abstraction layers that isolate users from architectural
details and support a rich variety of programming paradigms
(e.g. imperative, functional, dataflow and event-driven). Each
of these paradigms is an ecosystem of software tools

and design patterns that have proved useful in addressing
different classes of computational problems [29]. Parallel and
hyperspace machines on the other hand support fewer (and
often unfamiliar) programming models that are directly based
on their execution models. This lack of software support
contributes to the lower appeal of these platforms and is
recognized as one of the main challenges facing parallel
computing in general [30]-[32].

III. SOFTWARE MODEL

This section presents a multi-layer software abstraction
model to develop combinatorial solvers (henceforth solvers)
for hyperspace computers. In this context a hyperspace
computer is a parallel machine consisting of a regular mesh
of processors, typically representing a high-dimensional space.
We assume that solvers work by “unfolding” the solution
space across the mesh dynamically while searching for valid
or optimal solutions.

The model provides a solver development framework
to overcome the issues discussed in Section II-B, namely
(1) abstracting away architectural details, (2) improving code
reusability and maintainability and (3) providing end-users
with high-level programming models. The key feature of
the model is hierarchical organization: solver development
is split into a number of concerns that can be addressed
independently at different abstraction levels (Figure 2). We
discuss the organization and advantages of the model below.

A. Layer Organization

1) Message Passing: The base layer consists of a computer
architecture that can emulate a message passing system. This
can be an architecture with bare-metal support for message
passing (e.g. SpiNNaker), a network of interconnected

processors (commodity computers on an Ethernet network
using MPI) or a software event loop running on a single
processor. This layer handles data communication concerns
and exposes a message passing interface while hiding
hardware details from the layers above.

2) Scheduling: This layer maintains a number of concurrent
processes that communicate via the message passing functions
provided by layer 1. Each process has a state that is initialized
at startup and then transformed by a handler function when a
message is received. The layer is responsible for scheduling if
processes are more numerous than hardware threads. Processes
can be mapped to threads or managed at user level using
microthreads or concurrency libraries [33], [34]. This layer
allows top layers to run applications that are expressed as state
initialization and message handling functions.

3) Mapping: The third layer is responsible for balancing
work across the mesh. Similar to layer 2, it allows upper layers
to run applications expressed as message handling routines.
However, it prevents communication between arbitrary nodes
and instead allows the application to request that a message be
delivered without specifying its destination. The destination is
then chosen based on estimated activity levels in subregions
of the mesh. Since messages cannot be identified by their
source or destination, alternative means of identifying related
messages must be used. For example, applications can include
identifying information in messages and quote them in later
correspondence. Internally, this layer can rely on message
queues and work stealing mechanisms to distribute messages.

4) Recursion: While bottom layers are responsible for
providing a reliable, efficient and load-balanced message
passing interface, the purpose of layer 4 is to hide message
passing entirely and run recursive applications written in a
high-level programming model (e.g. imperative or functional).
The conversion between message passing and the target
programming model is achieved using continuation: the ability
to suspend a program, preserve its state then resume its
execution sometime later. This feature is used as follows.
First, the recursive function starts executing sequentially in a
node A. When a recursive call is encountered, a continuation
of the function is saved in a lookup table at A, alongside a
unique callback identifier ¢d. The recursive call parameters
and callback identifier are then sent as a message to another
node B which then repeats the same process. When B
finishes executing, it returns the function result to A in a
message, quoting id. Node A then looks up and invokes the
continuation. This process is executed behind the scenes in a
manner that is transparent to the user and application.

5) Application: At this layer of the model, message
passing, scheduling, mapping and other issues have been
abstracted away. Users now have a high-level programming
model that allows them to focus on expressing problem
logic and developing their applications. With few syntactic
modifications, this layer can execute arbitrary recursive
functions in the programming model provided by Layer 4.

B. Model Advantages

1) Separation of Concerns: The model decouples a number
of issues that are encountered when developing applications
for hyperspace computers. Loose coupling enables solutions
to these issues to be implemented as independent modules
which can then be integrated, exchanged, reused or revised
without affecting each other. For example, if a more efficient
mapping algorithm for a particular topology is developed
(layer 3), it can be integrated into existing applications without
affecting modules in other layers. This can be compared to a
situation where, for example, an application is implemented
as a “flat” message passing program. Changing the problem
mapping procedure would then require changes throughout the
program, possibly affecting other parts that were based on the
old mapping implementation (e.g. message passing).

2) Problem-specific Tuning: In practice, it is unlikely that
any single implementation at a given layer will be best for
all applications. An application that makes a fixed number of
recursive subcalls, for example, has a predictable unfolding
behaviour and may be more efficiently executed by a static
mapping algorithm. A static mapper does not exhaust the
underlying message transfer infrastructure by exchanging
status updates to maintain an accurate record of activity levels
within the mesh. The modularity provided by the model makes
it easier to explore such options and re-use good solutions to
develop applications that share similar characteristics.

3) Cross-layer Optimization: One disadvantage of having
strict decoupling between layers is that high level information
is hidden from low-level algorithms. While this makes it easier
to address problems independently (Section III-B1), it also
prevents low-level algorithms from exploiting this information
to improve performance. For example, solvers often employ
lazy evaluation functions to prune the search space if the
likelihood of finding a good solution falls below a certain
margin. This heuristic can serve as an estimate of sub-problem
size and hence the amount of computation likely to ensue.
Mapping algorithms can exploit such knowledge to further
optimize load balancing across the mesh (e.g. by delegating
larger sub-problems to less utilized sub-regions of the mesh).
The model allows such information to “fall through” by
providing optional means to pass information to lower layers.
This mechanism can be implemented via optional parameters
that are passed at layer interfaces. At the application layer,
end users can use software constructs such as annotations,
decorators or pragmas to pass information to lower layers.

IV. IMPLEMENTATION

We present and discuss a prototype implementation of the
proposed model, with emphasis on the mapping and recursion
layers specifically (layers 3 and 4). We do not aim to present
algorithms that are necessarily optimal (or even efficient).
Instead, we focus on presenting a concrete implementation
as an example of the organization outlined in Section III.

A. Message Passing and Scheduling (Layers 1 & 2)

We implemented a software backend to simulate a message
passing system on a single processor. The backend initializes
an array of node states and message queues then runs an
event loop to deliver messages. On each simulation time step,
a message is popped from each non-empty queue and passed to
a handler function (receive) to update the respective node’s
state. While executing receive, the node can queue further
messages for transmission using a send handler (send). The
following is a simple application that can run on this backend:

1 | function init(node):

2 state «+ {visited: False}

3 return state

4

5 | function receive(node, state, sender, msg, send
neighbours):

6 if state[visited] = False then

7 state[visited] < True

8 foreach n in neighbours do

9 send(n, EMPTY_MSG)

Listing 1. Message-passing node traversal algorithm

In the above example, the initial state of each node is
computed by an initialization function (init), in this case a
dictionary comprising a Boolean field (visited). The receive
handler implements a basic traversal algorithm: if a message
arrives and visited is false then each neighbouring node
is sent an empty message (EMPTY_MSG), where the list of
neighbours (neighbours) is determined by topology. After
initializing all nodes, the backend kickstarts computations by
sending EMPTY_MSG to a user-selected node.

B. Mapping (Layer 3)

In the mapping layer we replace node identifiers with a
ticket system that selects message destinations automatically.
We introduce a slightly modified receive handler that replaces
sender identity with a unique identifier (a ficket) that can be
quoted to send reply messages. If no ticket is quoted, the
send handler selects the destination automatically based on
estimated activity levels within the node mesh. An example
application that uses this programming style is shown below:

1 | function receive(state, ticket, msg, send):
2 if msg = Call(n) then

3 if n<l then

4 send (Result (0), ticket)

5 else

6 ticket < send(Call(n—1))

7 state « Continue(ticket, n)

8 else if msg = Result(total) then

9 if state = Continue(ticket, n) then
10 send(Result(total + n), ticket)
11 else

12 state < Done(total)

13 else if msg = Trigger then

14 send(Call(10))

Listing 2. Message-passing algorithm to calculate the sum 1 to 10

This application is message-passing implementation of the
recursive function

sum(n) = {0’

n+ sum(n — 1),

n<l
otherwise

and is here used to calculate sum(10), as follows.
An incoming message is first classified as an (1) evaluation
call, (2) a returned result or (3) an initialization trigger.
Evaluation calls are handled in lines 2-7: if n < 1 then a
reply message with payload Result(@) is sent immediately,
quoting the incoming message’s ticket number (base case).
Otherwise, a subcall message is sent requesting another node
to evaluate sum(n — 1), and the parent call ticket is stored
for bookkeeping (alongside n). When the result is returned
(lines 8-10), it is added to n then returned to the parent node,
quoting the stored ticket number.

To start the computation, the backend sends a trigger
message to a user-selected node K, causing it to make a
subcall to evaluate sum(10) (line 14). This initiates a chain
of subcalls, spanning multiple nodes, which then terminates
with a back propagation of result messages. When K finally
receives a result message, it stores the value sum(10) in a field
total that is read by the user (line 12).

C. Recursion (Layer 4)

The programming pattern used in Listing 2 provides a way
to implement generic recursive functions as message passing
algorithms. However, its control flow is difficult to trace and
likely to become unwieldy for anything but trivial recursive
functions (especially if more features were introduced, e.g.
concurrent subcalls). We resolve this by implementing an
extended form of this programming pattern independently as
layer 4. This layer allows users to express their algorithms in
a more concise form, converting subcalls to messages behind
the scenes and hiding the complexity of call bookkeeping.

Figure 3 shows a basic mechanism to implement layer 4
using Cilk-like syntax [35]. The purpose of this mechanism
is to (1) implement a form of fork-join parallelism and
(2) use the underlying message passing system in layer 3
to delegate subcalls to other nodes. Here, we wish to
“intercept” recursive subcalls, suspend the current context
then resume execution when the subcall result is returned.
Although this can be implemented using multi-threading,
many modern programming languages support lightweight
forms of user-managed threads that are better suited for our
purposes. Here, we use a yield operator as a mechanism
for communication between layer 4 and application code.
yield is a modified return statement that returns execution
to the parent function while preserving the current context.
The parent function (layer 4) may then resume executing the
context later, and optionally pass data to the application as the
result of evaluating the yield statement.

The proposed mechanism (Figure 3) works as follows.
Layer 4 maintains a record of invoked calls (call records).
When the recursive function wants to make a subcall, it yields

function recur(args):

yield Call(argsl)
yield [is_valid, Call(args2_a), Call(args2_b)]
resultl, result2 « yield Sync()

Call Records Ticket Result
Call 1 > 1 | None |
Call 2| is_valid
Ticket Result
2 None
3 None

Figure 3. An implementation of layer 4 using the yield operator

a Call object with the subcall parameters (first yield statement
in Figure 3). Layer 4 then sends a message through layer 3,
asking another node to evaluate the subcall. The ticket number
issued by layer 3 is stored in call records, alongside an empty
slot for a pending computation result. Anytime layer 3 returns
a result message, its ticket number is inspected and the payload
(evaluation result) is stored in the result field of the appropriate
call record. The recursive function can receive the results of
the last calls made by yielding a Sync object. Layer 4 will then
lookup and return the results of all recent subcalls from call
records (blocking execution if any results are still pending).
This pattern can be extended to support non-deterministic
choice as follows. The recursive function yields a list
consisting of a validation function ¢s_valid and several Call
objects (second yield statement in Figure 3). Layer 4 issues
multiple messages, corresponding to each subcall, then stores
all tickets in the same call record. When a subcall evaluation
e is received and is_valid(e) = true, execution resumes
(returning e as a result) and the remaining evaluations are
ignored. If all evaluations are returned but none satisfy
is_valid then a null value is returned to the application.

D. Application (layer 5)

The advantage of extracting then hiding subcall message
handling logic become obvious when considering the re-
implementation of Listing 2 in the style provided by layer 4:

function calculate_sum(n):
if n<l then
yield Result(0)
else
yield Call(n—1)
total « yield Sync()
yield Result(total + n)

NN R W~

Listing 3. An algorithm to calculate the sum 1 to N recursively

This implementation contains application logic only and is
therefore more concise, readable and easy to maintain. Behind
the scenes, layers 1 through 4 continue to manage message
delivery, scheduling and load balancing.

V. EVALUATION

We describe the implementation and optimization of a
Boolean satisfiability (SAT) solver as a use case for the
proposed model. Due to the theoretical and growing practical
relevance of SAT, considerable effort continues to be invested
in developing ever more powerful SAT solvers, particularly
using parallel approaches [36]-[38]. However, parallelizing
SAT is hampered by the difficulty of workload balancing
on shared memory architectures [39], [40]. This makes the
problem a good candidate for solving on a hyperspace
computer and a practical use case for evaluating the model.

A. Simulated Architectures

We used the simulation backend described in Section IV-A
for our evaluation. The machines we simulated had hyper-torus
topologies of either 2 or 3 dimensions and varied in number
of cores. We assumed that messages can be communicated
between adjacent cores only (no underlying message delivery
network) and that inter-node message queues were sufficiently
large to accommodate all pushed messages without blocking
send handlers. As a baseline for comparison, we also simulated
fully-connected machines under the same assumptions.

B. Solver Implementation

The solver is based on a barebone implementation
of the Davis-Putnam-Logemann-Loveland (DPLL) algorithm
(Listing 4), working as follows. First, the problem is simplified
using procedures that can infer variable assignments, either
because a variable is the only unassigned one in a clause
(unit propagation, lines 6-8) or because it always occurs with
the same polarity (pure literal assignment, lines 9-11). The
simplified problem is then decomposed into two sub-problems
by selecting one variable (using an algorithm-independent
heuristic) and assigning it true and false values (lines 12—
14). Finally, the subproblems are evaluated concurrently
using the mechanism for non-deterministic choice outlined
in Section IV-C (line 15). This ensures that, if a solution to
one of the sub-problems is found, the application will resume
execution without waiting for other result.

1 | function solve_sat(problem):

2 if consistent(problem) then

3 yield Result (SAT)

4 if exist_empty_clause(problem) then

5 yield Result (UNSAT)

6 for clause in problem[clauses] do

7 if unit_clause(clause) then

8 unit_propagate(problem, clause)
9 for literal in problem[literals] do

10 if literal_pure(literal) then

11 assign_pure(problem, literal)
12 L < select_literal(problem)

13 subpl < assign(problem, L, True)

14 subp2 < assign(problem, L, False)

15 yield [is_SAT, Call(subpl), Call(subp2)]
16 result <« yield Sync()

17 yield result

Listing 4. DPLL algorithm for solving Boolean satisfiability problems

10 T
O 2D Torus +RR
) * 3D Torus + RR
£ A 2D Torus + LBN
S 3D Torus + LBN
3 Y Fully connected .. N
2 L APA
<§ 102} X“-"A M
n

8 4% 9 20000000
£ A
5 ¥ &
a v A

10° 1 > 3

10 10 10

Number of Cores

Figure 4. Comparison of SAT solver scalability for different topologies and
mapping algorithms. RR is round-robin mapping and LBN is least-busy-
neighbour mapping. Each data point is the average performance over 20
benchmark SAT problems from [42].

In practice, many state-of-the-art SAT solvers implement
additional heuristics such as conflict-driven learning and non-
chronological backtracking to prune the search space [41].
However, our focus here is (1) finding efficient ways to map
problem instances across the mesh and (2) evaluating the
impact of topology on scalability. To this end we choose a
basic implementation of DPLL for our evaluation.

C. Simulation Procedure

Because the application code for the SAT solver (Listing 4)
is decoupled from the mapping algorithm, we can profile
and optimize the application’s mapping process independently.
To do so, we chose a collection of uniform random 3-SAT
problems for our benchmark (20 variables and 91 clauses each,
all satisfiable [42]). For each simulation run, we configured the
simulator backend to output the state of each message queue
buffer as a time series, covering the entire simulation. From
the output log we calculated:

(1) Computation time: the number of simulation time steps
between the first (trigger) and last messages,

(2) Interconnect activity: the total number of queued
messages across the mesh versus time, and

(3) Node activity: the total messages delivered to each node
during the simulation.

We use computation time to compare performance across
runs and interconnect/node activities to profile the temporal
and spatial unfolding of computations across the mesh.

D. Mapping, Topology and Dimensionality

We ran a series of simulations to explore the impact of
mapping algorithm, hyperspace topology and dimensionality
on the absolute performance and scalability of our SAT

Round Robin Least Busy Neighbour

250 250
3 3
§ 200 § 200
8 150 8 150
= =
o 100 g 100
> >
2 50 2 50
o S O s O A\ \\-

50 100 150 200 50 100 150 200

Simulation Time Step

Figure 5. The temporal and spatial unfolding of SAT problems for the two
mapping algorithms. Top row plots are superimposed simulation traces for
different problems running on a 196-core 2D torus machine. Bottom row plots
are heatmaps of total messages delivered across the mesh for one problem.

Simulation Time Step

solver application. We classify mapping algorithms as
static or adaptive depending on whether their behaviour is
determined apriori or influenced by the runtime behaviour
of the application. Adaptive mapping algorithms involve
under-the-hood message-passing mechanisms to estimate
activity levels between neighbouring cores and map problem
instances correspondingly. We chose to compare two mapping
algorithms, one of each class:

(1) Round robin (static): map sub-problems to adjacent cores
in circular order.

(2) Least busy neighbour (adaptive): Embed a count of total
messages received in all outgoing messages and maintain
a record of neighbouring node counts. Map sub-problems
to neighbour with the smallest count.

Figure 4 shows scalability plots for the different topologies
and mapping algorithms. We observed that increasing dimen-
sionality and using adaptive (least-busy-neighbour) mapping
improved solver scalability. Adaptive mapping had a negative
impact on absolute performance for smaller topologies (< 100
cores) but improved performance significantly at larger sizes.
The benefit of adaptive mapping is almost as pronounced as
increasing dimensionality; large 2D machines with adaptive
mapping performed just as well as 3D machines with static
(round-robin) mapping while large 3D machines with adaptive
mapping performed nearly like fully connected machines.

E. Spatial and Temporal Unfolding

Figure 5 shows interconnect and node activity plots obtained
by simulating the SAT solver on a 196-core 2D torus. These
results are consistent with the performance trends observed
in Figure 4. Least-busy-neighbour mapping results in a larger
degree of spatial unfolding, more astute message queuing and
hence faster execution compared to round-robin mapping.

VI. DISCUSSION

We discuss the relationship between our model and some
work in literature. In particular, we compare it to (1) existing
software abstractions that build on top of message passing and
(2) parallel programming extensions for high-level languages.

A. Related Models and Abstractions

Many message passing platforms either support or are built
from the grounds up to conform to the Message Passing
Interface (MPI) standard. MPI provides a common base for
developing portable message-passing applications that execute
efficiently on different architectures. Even though the standard
hides hardware details from users, developing MPI programs
involves controlling data and control flows at a fine level of
detail and can therefore be viewed as a form of low-level
programming [43], [44]. The prevalence of message passing
in parallel computing is not surprising since (1) low-level
programming allows fine-grained performance optimizations
and (2) parallel applications are developed specifically for high
performance. Low-level programming, however, compromises
code expressiveness and user productivity, both important
factors in the software development cycle [45]. Several parallel
programming models and libraries that build on message
passing attempt to address this by either:

(1) Implementing common functionality likely to be needed
by many parallel applications (e.g. fault-tolerance [46]),

(2) Addressing specific shortcomings and development needs
(e.g. reusability [47] and verifiability [48]), or

(3) Providing complete solutions for specific applications
(e.g. neural simulation using NEST [49]).

In general, these abstractions tend to gravitate towards being
either too thin (1 and 2) or too deep (3), catering to either
performance or expressiveness. The proposed hierarchical
model combines the best of both worlds; it provides a high-
level programming interface at the top and yet supports a high
degree of tuning to meet performance goals.

B. Related Languages and Extensions

Several language extensions and independent programming
languages provide design patterns and constructs for parallel
programming in styles other than message passing. For
example, OpenMP adds work sharing constructs to C [50]
and Cilk similarly provides fork-join semantics [35]. These
extensions are similar to the proposed model in that they
expose a high-level programming style to isolate users from
parallel execution details. However, there are some notable
differences. Both OpenMP and Cilk target shared memory
architectures and are concerned primarily with handling
scheduling and multi-threading on behalf of users. Hyperspace
architectures are distributed systems where the individual
processors are not fully connected and therefore cannot be
managed by a global scheduler. In addition, due to the
massive scale of hyperspace systems, additional concerns
that are not handled by these frameworks such as inter-
node communication and problem decomposition/mapping

play a central role in maximizing the degree of parallelism.
Therefore, these frameworks are not independently suitable for
hyperspace computers. Nevertheless, they can be integrated
into the proposed model as implementations for layer 2.

C. Generality and Limitations

We have discussed the proposed model as a software
framework to develop combinatorial solvers that are ex-
pressed as single recursive functions. However, the fork-
join mechanism exposed at the top layer is in fact more
general. The model can therefore be used to develop other
types of applications, including ones with multiple functions
and complex call graphs. Even though this is within the
model’s remit, such applications have problem domains that
are difficult to describe and map, making them less attractive
for porting to hyperspace computers [13].

The question also arises of whether scientific computing
problems can be expressed using the proposed model. As
is the case with desktop computing, no single programming
paradigm is likely best to encode and compute all types of
problems. Many scientific problems involve exchanging state
updates between nodes and this may best be encoded using
message passing. In addition, scientific problems often have
a static problem domain that is known apriori and does not
require dynamic/adaptive mapping to the core mesh. In this
case, the functional equivalent of layers 1 and 2 (message
passing and scheduling) may be sufficient to encode and
compute scientific problems efficiently.

VII. CONCLUSION

We presented a hierarchical software abstraction model to
develop combinatorial solvers for massively-parallel machines
with regular topologies. The model decouples several
concerns in the design of these solvers including inter-node
communication, node-level scheduling, problem mapping,
mesh-level load balancing and expressing problem logic. In
addition, it can expose arbitrary programming models on top of
the underlying message passing system, enabling users to re-
use existing design patterns, libraries and algorithms in high-
level programming styles. The proposed hierarchy allows users
of massively parallel machines to combine the expressiveness
of high-level programming with the fine degree of performance
tuning permissible by low-level programming. One possible
realization of the model is to have a repertoire of modules
(representing alternative implementations for each layer) tuned
for specific architectures or applications. This repertoire can
be populated by both architecture and application developers.
New applications for hyperspace machines can then be
developed quickly by assembling the appropriate set of
modules from this repertoire and configuring or modifying
them to suit the application as needed.

ACKNOWLEDGMENTS

This work was supported by EPSRC grant EP/N031768/1
(project POETS).

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]
(18]

(19]

[20]
[21]

[22]

(23]

[24]

[25]

REFERENCES

H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang, W. Xue,
F. Liu, F. Qiao et al., “The Sunway TaihuLight supercomputer: system
and applications,” Science China Information Sciences, vol. 59, no. 7,
p. 072001, 2016.

S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker
Project,” Proceedings of the IEEE, vol. 102, no. 5, pp. 652-665, May
2014. [Online]. Available: http://dx.doi.org/10.1109/jproc.2014.2304638
G. C. Fox, “What have we learnt from using real parallel machines
to solve real problems?” in Proceedings of the third conference on
Hypercube concurrent computers and applications-Volume 2. ACM,
1989, pp. 897-955.

R. Martins, V. Manquinho, and I. Lynce, “An overview of parallel SAT
solving,” Constraints, vol. 17, no. 3, pp. 304-347, 2012.

J. P. Hayes, T. N. Mudge, Q. F. Stout, S. Colley, and J. Palmer,
“Architecture of a Hypercube Supercomputer.” in /CPP, 1986, pp. 653—
660.

C. Whitby-Strevens, “The transputer,” in ACM SIGARCH Computer
Architecture News, vol. 13, no. 3. IEEE Computer Society Press, 1985,
pp. 292-300.

A. J. Hey, “Transputers, OCCAM and general-purpose parallel
computing,” Proceedings: 1989 CERN School of Computing, Bad
Herrenalb, Federal Republic of Germany, 20 August-2 September 1989,
vol. 90, no. 6, p. 93, 1990.

C. A. R. Hoare, “Communicating sequential processes,” in The origin
of concurrent programming. Springer, 1978, pp. 413-443.

K. R. Apt, N. Francez, and W. P. De Roever, “A proof system
for communicating sequential processes,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 2, no. 3, pp. 359—
385, 1980.

G. M. Reed and A. W. Roscoe, “A timed model for communicating
sequential processes,” Theoretical Computer Science, vol. 58, no. 1, pp.
249-261, 1988.

D. J. Pritchard, C. Askew, D. Carpenter, I. Glendinning, A. J. Hey,
and D. A. Nicole, “Practical parallelism using transputer arrays,”
in International Conference on Parallel Architectures and Languages
Europe. Springer, 1987, pp. 278-294.

J. P. Hayes, T. Mudge, Q. F. Stout, S. Colley, and J. Palmer, “A
microprocessor-based hypercube supercomputer,” IEEE micro, vol. 6,
no. 5, pp. 6-17, 1986.

J. Hayes and T. Mudge, “Hypercube supercomputers,” Proceedings of
the IEEE, vol. 77, no. 12, pp. 1829-1841, 1989. [Online]. Available:
http://dx.doi.org/10.1109/5.48826

M.-Y. Chan, “Embedding of d-dimensional grids into optimal
hypercubes,” in Proceedings of the first annual ACM symposium on
Parallel algorithms and architectures. ACM, 1989, pp. 52-57.

S. N. Bhatt and I. C. Ipsen, “How to Embed Trees in Hypercubes.”
DTIC Document, Tech. Rep., 1985.

K. Efe, “Embedding mesh of trees in the hypercube,” Journal of Parallel
and Distributed Computing, vol. 11, no. 3, pp. 222-230, 1991.

M. T. Heath et al., Hypercube Multiprocessors 1986. Siam, 1986.
——, Hypercube Multiprocessors, 1987: Proceedings of the Second
Conference on Hypercube Multiprocessors, Knoxville, Tennessee,
September 29-October 1, 1986. Siam, 1987, vol. 29.

A. D. Brown, R. Mills, K. J. Dugan, J. S. Reeve, and S. B. Furber,
“Reliable computation with unreliable computers,” IET Computers &
Digital Techniques, vol. 9, no. 4, pp. 230-237, 2015.

P. Walker, “Transputer.” Byte, vol. 10, no. 5, pp. 219-237, 1985.

N. H. Gehani and W. D. Roome, “Rendezvous facilities: Concurrent C
and the Ada language,” IEEE Transactions on Software Engineering,
vol. 14, no. 11, pp. 1546-1553, 1988.

R. Dettmer, “Occam and the transputer,” Electronics and Power, vol. 31,
no. 4, pp. 283-287, 1985.

A. D. Rast, X. Jin, F. Galluppi, L. A. Plana, C. Patterson, and S. Furber,
“Scalable event-driven native parallel processing: the SpiNNaker
neuromimetic system,” in Proceedings of the 7th ACM international
conference on Computing frontiers. ACM, 2010, pp. 21-30.

A. D. Brown, S. B. Furber, J. S. Reeve, J. D. Garside, K. J. Dugan,
L. A. Plana, and S. Temple, “SpiNNaker - Programming Model,” I[EEE
Transactions on Computers, vol. 64, no. 6, pp. 1769-1782, 2015.

L. Bouge, “The data parallel programming model: A semantic
perspective,” in The Data Parallel Programming Model. Springer, 1996.

[26]

(271

(28]

[29]

(30]

[31]
[32]
[33]
[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

J. D. Mooney, “Portability and reusability: common issues and
differences,” in Proceedings of the 1995 ACM 23rd annual conference
on Computer science. ACM, 1995, pp. 150-156.

J. Y. Cotronis, “Reusable message passing components,” in Parallel and
Distributed Processing, 2000. Proceedings. 8th Euromicro Workshop on.
IEEE, 2000, pp. 398-405.

J. R. Donaldson, “Structured programming,” in Classics in software
engineering. Yourdon Press, 1979, pp. 179-185.

P. Van Roy et al., “Programming paradigms for dummies: What every
programmer should know,” New computational paradigms for computer
music, vol. 104, 2009.

K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer,
J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek et al.,
“A view of the parallel computing landscape,” Communications of the
ACM, vol. 52, no. 10, pp. 56-67, 2009.

S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the future of parallel computing,” IEEE Micro, vol. 31, no. 5,
pp. 7-17, 2011.

D. B. Kirk and W. H. Wen-Mei, Programming massively parallel
processors: a hands-on approach. Morgan Kaufmann, 2016.

C. Tismer, “Stackless python,” 2000.

J. M. Bjgrndalen, B. Vinter, and O. J. Anshus, “PyCSP-Communicating
Sequential Processes for Python.” in CPA, 2007, pp. 229-248.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, Cilk: An efficient multithreaded runtime system.
ACM, 1995, vol. 30, no. 8.

W. Chrabakh and R. Wolski, “GrADSAT: A parallel sat solver for the
grid,” in Proceedings of IEEE SC03, 2003.

Y. Hamadi, S. Jabbour, and L. Sais, “ManySAT: a parallel SAT solver,”
Journal on Satisfiability, Boolean Modeling and Computation, vol. 6,
pp. 245-262, 2008.

C. Sinz, W. Blochinger, and W. Kiichlin, “PaSATAATParallel SAT-
checking with lemma exchange: Implementation and applications,”
Electronic Notes in Discrete Mathematics, vol. 9, pp. 205-216, 2001.
M. B6hm and E. Speckenmeyer, “A fast parallel SAT-solveraATEfficient
workload balancing,” Annals of Mathematics and Artificial Intelligence,
vol. 17, no. 2, pp. 381-400, 1996.

H. Zhang, M. P. Bonacina, and J. Hsiang, “PSATO: a distributed
propositional prover and its application to quasigroup problems,” Journal
of Symbolic Computation, vol. 21, no. 4, pp. 543-560, 1996.

J. P. Marques-Silva and K. A. Sakallah, “GRASP: A search algorithm for
propositional satisfiability,” IEEE Transactions on Computers, vol. 48,
no. 5, pp. 506-521, 1999.

“Satlib - benchmark problems,” http://www.cs.ubc.ca/~hoos/SATLIB/
benchm.html, accessed: 2017-03-28.

C. Rodrigues, “Supporting high-level, high-performance parallel
programming with library-driven optimization,” Ph.D. dissertation,
University of Illinois at Urbana-Champaign, 2014.

B. L. Chamberlain, S.-E. Choi, E. C. Lewis, L. Snyder, W. D.
Weathersby, and C. Lin, “The case for high-level parallel programming
in ZPL,” leee computational science and engineering, vol. 5, no. 3, pp.
76-86, 1998.

W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel
programming with the message-passing interface. ~MIT press, 1999,
vol. 1.

J. J. Wilke, K. Teranishi, J. C. Bennett, H. Kolla, D. S. Hollman, and
N. Slattengren, “Evolving the Message Passing Programming Model via
a Fault-Tolerant, Object-oriented Transport Layer,” in Proceedings of the
Sth Workshop on Fault Tolerance for HPC at eXtreme Scale. ACM,
2015, pp. 41-46.

J. Cotronis, “Message-passing program development by ensemble,”
Recent Advances in Parallel Virtual Machine and Message Passing
Interface, pp. 242-249, 1997.

J. Carter and W. B. Gardner, “A formal CSP framework for message-
passing HPC programming,” in Electrical and Computer Engineering,
2006. CCECE’06. Canadian Conference on. IEEE, 2006, pp. 1466—
1470.

M.-O. Gewaltig and M. Diesmann, “Nest (neural simulation tool),”
Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

L. Dagum and R. Menon, “OpenMP: an industry standard API
for shared-memory programming,” IEEE computational science and
engineering, vol. 5, no. 1, pp. 46-55, 1998.

http://dx.doi.org/10.1109/jproc.2014.2304638
http://dx.doi.org/10.1109/5.48826
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

