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Abstract

We propose to use energy minimization in MRFs

for matching-based image recognition tasks. To this

end, the Tree-Reweighted Message Passing algorithm

is modified by geometric constraints and efficiently used

by exploiting the guaranteed monotonicity of the lower

bound within a nearest-neighbor based classification

framework. The constraints allow for a speedup lin-

ear to the dimensionality of the reference image, and

the lower bound allows to optimally prune the nearest-

neighbor search without loosing accuracy, effectively

allowing to increase the number of optimization itera-

tions without an effect on runtime. We evaluate our ap-

proach on well-known OCR and face recognition tasks

and on the latter outperform current state-of-the-art.

1 Introduction

For many image recognition tasks, modeling intra-class

variability is a big obstacle to achieving good recogni-

tion accuracy. This especially holds in face recognition,

where varying facial expressions greatly change the ap-

pearance of the image. Two approaches exist to cope

with this kind of variability: First, features which are

invariant to a number of local deformations such as ro-

tation or scale can be extracted, e.g. SIFT [?]. As often

not only local but also global variability can be found

in images, e.g. due to registration errors, feature-based

recognition becomes hard. A second approach to allow

for strong intra-class variability is to directly incorpo-

rate domain knowledge in a distance function, which

can be used in nearest-neighbor (NN) based recognition

setups.

In this work, we follow the second approach by mod-

elling a distance function which is designed to cope

with arbitrary non-linear deformations: Given a query

image and a reference image, we search for a deforma-

tion of the reference image so that the deformed refer-

ence becomes as similar as possible to the query.

In general, finding the optimal deformations for

a two-dimensional warping (2DW) problem is NP-

complete [5] due to the two-dimensional first-order de-

pendencies. Thus, lots of effort has been put into find-

ing feasible solutions. One technique is to relax the

first order dependencies which results in pseudo-2D [7]

or zero-order models [4]. These relaxations work very

well on problems with comparably small variability,

e.g. optical character recognition (OCR). Another ap-

proach is to approximate the first-order problem for ex-

ample by simulated annealing or beam search. Since

finding the optimal deformation can be formulated as

a Markov-Random-Field (MRF) energy minimization

problem, we propose to use and extend one of the

more recent approaches, specifically Sequential Tree-

Reweighted Message Passing (TRW-S) [6, 10] which

has been shown to work very well on tasks such as

stereo vision and face recognition[1] and has some de-

sirable properties.

The remainder of this paper is structured as follows.

We first give a short introduction on the 2DW and TRW-

S, and propose two extensions of TRW-S greatly reduc-

ing computational costs. In the last two sections, we

experimentally evaluate our algorithm, compare it to the

state-of-the-art, and give an analysis and conclusions.

2 2D-Warping by Energy Minimization

In order do obtain maximum flexibility in the warp-

ing, we define the 2D warping problem as a pixel la-

beling problem where a complete labelling {wij} as-

signs a position label wij to each pixel position ij of

a query image Q. A labelling then defines an energy

E(Q, R, {wij}) of Q to a reference image R and we are

interested in finding the optimal labeling which gives

the lowest energy Ê(Q, R) = min
{wij}

E(Q, R, {wij})

and E is defined as follows.

E(Q, R, {wij})=
∑

ij

[θij(wij)+
∑

n∈N (ij)

θn,ij(wn, wij)] (1)

The unary data term θij(wij) is a local distance ||Qij −
Rwij

||p , N (ij) is the local neighborhood of ij and

θn,ij is a pairwise interaction potential. With this for-

mulation, finding the optimal warping corresponds to

performing MAP inference on Eq. (1). Similar to

[10, 1], we use TRW-S in order to find an approxima-
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tion of Ê, but instead of modelling discrete displace-

ments we propose to model the full warping by directly

using positions in the reference image as labels. There-

fore, we do not separate horizontal and vertical dis-

placements, which leads to a tighter bound.

2.1 TRW-S

Recently, TRW-S [6] has been proposed as general

MRF energy minimization technique which is applica-

ble to large problems w.r.t. nodes and label. It is an iter-

ative algorithm which approximates the lower bound B

of Ê, which is a dual of the LP relaxation of Eq. (1).

The method extends regular tree-reweighted message

passing by using sequential updates which guarantee

a monotonic increase of B and works on subprob-

lems which form monotonic chains. TRW computes

min-marginals Φij(wij), which are forced to be equal

among subproblems, and performs re-parameterization

by passing messages between neighboring nodes. Ex-

ploiting the structure of the subproblems, these compu-

tations can be efficiently combined in TRW-S.

2.2 Constrained TRW-S

In each iteration of TRW-S, a forward and backward

pass over all nodes w.r.t. a total order is performed, up-

dating forward respective backward messages between

neighboring pixels. Marginals are computed along the

way, but we will not go into details here because we

do not change this procedure. Instead, we exemplary

consider the horizontal forward message M fw
(ij),(i+1,j),

which passes L values from ij to i + 1, j, where L is

the number of labels and therefore in our case the di-

mensionality of the reference image. Eq. (2) shows the

update of the forward message from ij to i + 1, j w.r.t.

the label wi+1,j and consists of minimizing over all la-

bels wij of the sum of the corresponding min-marginal,

the local interaction potential, and the respective back-

ward message. Since this has to be computed for all

labels wi+1,j , each message update has a complexity of

L2.

M̂ fw
(ij),(i+1,j)(wi+1,j) = min

wij

{

θ(ij),(i+1,j)(wij , wi+1,j)

− Mbw
(ij),(i+1,j)(wij) + Φij(wij)

}

(2)

It has been shown in [11] that specific constraints are

necessary in order to retain the image structure in the

global labeling. Namely, monotonicity constraints in-

hibit backward steps and thus mirroring parts of the im-

age, and continuity constraints ensure that no large gaps

appear in the labeling. These constraints can be mod-

elled using the interaction potentials as follows. Since

position constraints differ w.r.t. the relative position of

neighboring pixels, we use separate interaction terms

for horizontal and vertical neighborhood relations. We
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Figure 1: Relative runtime of TRW-S compared to

CTRW-S with increasing width of (square) images.

give the definition of the horizontal interaction term θh

w.r.t. the constrains proposed in [11], the vertical term

can be derived analogously. Assume the labels are in

vectorial form with vertical and horizontal components

and ∆w = wij − wi+1,j is the difference vector.

θh(wij , wi+1,j)=

{

||∆w +

 

1

0

!

|| if
 

0

−1

!

≤ ∆w ≤

 

2

+1

!

,

∞ else.
(3)

This results in at most 9 allowed combinations of

wij and wi+1,j and it can be seen that terms with

θ = ∞ do not influence the minimization in Eq. (2) .

Therefore, we propose to pre-calculate sets Sh, Sv for

each label, where S(wij) = {w′
ij |θ(wij , w

′
ij) < ∞}.

Then, minimization in Eq. (2) can be performed on

this pre-calculated sets which have at most 9 elements,

which reduces the complexity of each message update

to 9 · L. Since message updates are the main bottle-

neck of TRW-S, this reduces the complexity of the al-

gorithm by almost L, which easily gets large with grow-

ing dimensionality of the reference image as depicted in

Fig. 1. Note that the calculation of sets Sh, Sv can be

done during the initialisation of CTRW-S and therefore

has no impact on minimization runtime despite few ad-

ditional table lookups.

In [10, 1], the authors also propose to use TRW-S

for non-rigid deformations of images, but with a few

key differences. Most importantly, they model relative

restricted displacements, while we propose to allow full

image-to-image warping. They decompose the full opti-

misation problem into interdependent problems of hor-

izontal and vertical displacements, which leads to a less

tight lower bound. Furthermore, they deform the im-

ages only block-wise and use different constraints on

relative displacements.

2.3 Lower Bound Pruning for NN-search

As the lower bound (LB) of TRW-S is guaranteed to

increase in each iteration [6], it is possible to exploit

the lower bound for efficient NN-search. Consider the

decision rule of the TRW-S based NN-search: r̂(Q) :
Q → C(arg min

R
Ê(Q, R)), where C(R) returns the

class of R. The minimization is performed on all ref-

erence images sequentially and the class of the most

2



 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 1  10  100
 0

 20

 40

 60

 80

 100

E
R

[%
]

O
p

ti
m

a
l[
%

]

# max iterations

Error
optimal energy

Figure 2: Error rate and percent of ǫ-optimal energy val-

ues found on the USPS database using CTRW-S with

increasing number of iterations

similar reference image is returned. Using the informa-

tion of the lowest distance found so far and the special

properties of the lower bound given by TRW-S, it is pos-

sible to stop the energy optimization as soon as the cur-

rent lower bound becomes larger than the lowest energy

found so far. During NN-search for a query image Q,

let σ denote the energy to the current nearest neighbor

R̂. Let Bi(Q, R′) denote the lower bound at iteration

i of the calculation of Ê(Q, R′) for all following ref-

erence images R′. Then, without loss of generality if

Bi(Q, R′) > σ, then Ê(Q, R′) > σ and we can stop

iterating.

Note that this LB pruning does not change the de-

cision, but instead allows to optimize Ê to nearly ar-

bitrary precision without significantly affecting overall

runtime. LB pruning has the largest impact if a low en-

ergy can be found early during the NN search. This

can be promoted by pre-ordering the reference obser-

vations w.r.t. a simple distance measure, e.g. Euclidean

distance. The approach can easily be extended to k-NN

search by keeping track of the k best distances so far.

3 Experimental Evaluation

Here, we shortly introduce the used databases and give

experimental verification and analysis of the proposed

approaches.

USPS. The USPS database of handwritten digits con-

sists of 7291 images used for training and 2007 images

used for evaluation. All images contain 16x16 pixels

with normalized gray values. The database is known to

be a hard task because of high variability of the test set,

where good error rates range from 2% to 3%.

AR-Face. The AR-Face database [8] is widely used

for experimental evaluation of face recognition algo-

rithms. We follow the approach of [2] and use 7 training

images and 7 test images for each of the 110 individu-

als in the database. Faces are detected using the Viola-

Jones face detector from OpenCV, and automatically

cropped and downscaled to 64x64 normalized gray val-

ues. Due to the face detection, large registration errors

have to be compensated.

Labeled Faces in the Wild (LFW, cropped version)

Images of different persons are crawled from the web

and then paired two allow for a face-verification task of

the LFW database [3]. Here, we use a recently pub-

lished modified version of the LFW-database, namely

the LFW-cropped database [9] where faces are cropped

at the same position for all images and scaled to 64x64

pixels, discarding irrelevant image content which may

accidentally influence recognition performance. The

database is divided in a development set, consisting of

2200 training and 1000 test image pairs, and an eval-

uation set which consists of 10 folds with 5400 train-

ing and 600 test image pairs respectively. We follow

the image-restricted approach in our evaluation, which

does not take advantage of the information that the set

of individuals is disjunct in development and evaluation.

3.1 Recognition Setup

For the experiments performed on the USPS and AR-

Face database, we use a simple k-NN decision rule

(with k=3 for USPS and k=1 for AR-Face). For the

experiments on the LFW-cropped database, we calcu-

late distances between all pairs of images and then de-

termine a threshold on the training data, which is then

used to classify pairs of images as same or not same.

Feature-wise, we start our investigation of warping al-

gorithms using simple Sobel gradients, which have been

proven to work very well for image warping in OCR.

For the face recognition tasks, we extract an upright

SIFT (U-SIFT) descriptor [2] which is reduced by a

PCA matrix and then normalized to unit length. Fur-

thermore, we evaluate the use of different local con-

text sizes[4]. In all experiments using message pass-

ing, we stop optimizing E if it becomes ǫ-optimal w.r.t.

to the lower bound. Formally, we stop iterating when

|E(Q, R)−Bi(Q, R)| ≤ ǫ ·Bi(Q, R) with ǫ = 1e− 5
or if a maximum number of iterations is exceeded.

3.2 Results

We start the experimental evaluation by showing how

the maximum number of iterations allowed affects the

performance both w.r.t. classification error and w.r.t. the

percentage of ǫ-optimal optimizations. Fig. 2 shows

both values for maximum number of iterations between

1 and 200. It can be seen that the percentage of ǫ-

optimal optimizations approaches 100%, while the error

rate is only slightly affected with a minimum at 20 iter-

ation, which we will use for all following experiments.

Note that for k-NN experiments, runtime is not affected

by the increase in iterations.

An overview of the results and a comparison to com-

peting methods is shown in Table 1. For all tasks,

we give results for the Image Distortion Model (IDM)

and the Pseudo-2D-HMM (P2DHMM) which are well-
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Table 1: Results on the three databases using different

deformation approaches and state-of-the-art methods.

Model ER[%] on test data

USPS AR-Face LFW-crop.

1x1 3x3 1x1 3x3 3x3

IDM 3.1 2.5 4.5 3.7 31

P2DHMM 2.5 2.7 4.2 4.5 31

TRW-S 3.8 4.3 - - -

CTRW-S 2.1 2.3 4.0 3.7 28.1

P2DHMD[4] 2.1

Matching[2] 4.1

MRH [9] 29.2

evaluated matching algorithms with relaxed dependen-

cies [4]. On the USPS task, CTRW-S outperforms

all competing methods using no additional local con-

text and performs on-par with the best single method

so far, the P2DHMD which is a P2DHMM with ad-

ditional zero order distortions in the columns. Note

that except TRW-S, all methods are far more specific

in the imposed constraints and thus stronger fit to the

task. Special note should also be taken of the results

for regular TRW-S, which is not only slower but also

too unrestricted in the possible deformations, leading

to a much worse recognition performance regardless of

the used context. On the AR-Face database, CTRW-S

performs on par with the best other approaches. Inter-

estingly, even the zero-order models like the IDM and

the SIFT-Matching in [2] are able to achieve very good

accuracy, which may be explained by the comparably

small variance in the task where close matches between

descriptors can be found. This changes on the LFW-

cropped database, where image variability is very high

and thus retaining the geometric structure of the images

helps achieving good accuracy. Here, C-TRWS outper-

forms the current state-of-the-art on this task1. In gen-

eral, it can be concluded that for OCR, CTRW-S is a

out-of-the-box approach which achieves state-of-the-art

performance with very little parameter or feature tun-

ing. For face recognition, it can be seen that on simpler

tasks, using a complex descriptor already leads to very

good results while in a less controlled setting, the full

geometric dependencies implemented in CTRW-S out-

perform all other approaches.

4 Conclusions

In this work, we proposed a general approach to im-

age matching using MAP-inference on MRFs. To this

1Note that [9] also report a slightly higher accuracy, which has

been obtained by applying the unrestricted setting.

end, we directly implemented deformation constraints

into TRW-S, greatly reducing computational complex-

ity. Additionally, we proposed to exploit the properties

of the lower bound given by TRW-S in order to opti-

mally prune NN-searches. The experimental evaluation

showed very good performance on both OCR and face

recognition tasks, emphasizing the generalization capa-

bilities of our approach.
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