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Abstract— This paper presents a new navigation method for 

mobile robots, based on direct kinematics model and predictive 

control approach. It is adaptable to all types of robots taking 

into account their specific constraints. The research of the 

optimal trajectory is shifted in the continuous parameters space, 

which enables the exploitation of all of the robot’s capabilities. 

The use of a stochastic algorithm enables the determination of 

obstacle bypass trajectories, and simulation results show that 

the navigation in cluttered environment is improved. 

I. INTRODUCTION 

HIS paper addresses the problem of mobile robots 

navigation. Indeed, the navigator is key to an 

autonomous mobile robot since it acts as the link between the 

robot’s motion abilities and its environment. Our 

contribution is to consider navigation methods based on 

robot direct kinematics model with a new control approach. 

These navigation methods are independent of the robot’s 

kinematics constraints; the improvement consists in 

developing a predictive control to continuously determine an 

optimal trajectory among a considered class of trajectories. 

More generally, research works pertaining to navigation 

have established three main approaches. A first part of these 

works does not really make the distinction between the path, 

the trajectory and the pilot features. This is the case when 

using neural networks [8][20] or fuzzy logic [7][21], which 

aim to control the robot’s overall behavior in a given 

environment situation such as the one described in their 

learning algorithms. These approaches are simple to 

implement and generate results only in well-defined 

environments. However, they do not provide long term 

planning to ensure the convergence toward the final goal, 

and these methods are subjected to stability issues [13].   

The second part of navigation researches treats the issue 

of following the reference trajectory or the reference path 

provided by the planning module. Since the majority of 

robots are non-holonomic, an inverse model does not exist. 

As a consequence, it is possible that the reference trajectory 

cannot be systematically followed; some approaches resolve 

this problem by using transverse functions [10][17] or flat 

outputs [9]. However, they require the determination of a 

specific model of the robot, which is non-trivial and non-

systematic. Therefore, they do not allow the development of 

a generic method that works regardless of the considered 

robot.   
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The last type of approaches uses the knowledge of the 

robot direct kinematics, dynamic or geometric model. 

Among the robot’s motion abilities, one can choose the 

trajectory that will results in the expected behavior 

[5][12][16]. The advantage of these methods is their 

adaptability to any kind of robots knowing their direct 

model; the disadvantage is that they are discrete by nature. 

The work, presented here, is directed toward the last type 

of approach, and concerns the development of a navigator 

based on the robot’s direct kinematics model. Our main 

contribution is to discard the discrete formalism and to 

propose a continuous one, which better exploit the kinematic 

potential of the robot by using a well-tested method of 

control within regulation processes: the model based control 

[15][18]. Indeed, the notion of trajectory prediction on a 

"temporal horizon" in robotics is comparable to the notion of 

predictive control on a "prediction horizon" when using this 

control theory [4]. Moreover the research of an optimal 

control system on this horizon is continuous. 

In section II, we define our navigator using direct 

kinematics model (DKM) to generate the robot’s trajectories. 

In section III, we define the cost function used for the 

proposed model-based navigator, and discuss the 

optimization tools used to solve the optimization under 

constraints problem. In section IV, we show some 

simulations results of our method applied to different mobile 

robots. 

II. FORMULATION OF THE NAVIGATOR USING THE MODEL 

BASED CONTROL 

There are two types of entries provided to the navigator. 

The first one is a path computed by a path planning module, 

in the form of a continuous path or a list of waypoints. In this 

paper, we have considered a path planning module providing 

successive waypoints. The second entry is a local map of the 

environment provided by a real time mapping module. We 

assume that the robots are programmed to map out their local 

environment. 

The navigator has to determine the admissible trajectories 

for the robot to move safely in a potentially clustered area. It 

is therefore a trajectory generating module, not a trajectory 

following controller. 

In this first section, we present the generation of 

trajectories using the direct kinematics model principle. 
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A. Classical DKM Navigation 

1) Trajectory generation using direct kinematics model 

We consider a prediction horizon Tp, and a control 

function u defined on this ],[ 00 pTtt + horizon. In order to be 

admissible, this control function has to fulfill the robot 

actuators constraints. By injecting this control function in the 

robot DKM, the corresponding evolutions of the robot in the 

cartesian space T
yxX ),,( θ=& are determined. 

By integration of these evolutions on Tp, the robot’s 

motions relatively to its initial position 
T

ttytxtX ))(),(),(()( 0000 θ= are computed. The whole 

trajectory ],[ 00 pTtt +Γ corresponding to the control 

function ],[ 00 pTttu + is generated (Fig.  1).  

 

 
Fig.  1 : the trajectory generation using DKM 

 

2) Navigation using the trajectory projection principle 

The robot is considered to be equipped with exteroceptive 

sensors and is able to draw a local obstacle map. By 

projecting the previous computed trajectory on the local 

obstacle map, the robot is able to determine if the trajectory 

is safe or not (taking into account the errors on the obstacle 

position and the slipping of the robot on ],[ 00 pTtt + ). 

These trajectories must follow a desired path generated by 

a path planner: classically a reference path or a set of 

waypoints. DKM methods must thus follow 3 steps (Fig.  2): 

- to generate a finite number of trajectories, 

- to project them in a local map and eliminate the ones 

colliding with obstacles, 

- to select the trajectory the nearest to the desired path.  

 

 
Fig.  2 : the DKM navigation principle 

 

The control function associated to the selected trajectory 

is sent as an input to the actuators, and applied on a sampling 

time inferior to the prediction time. The whole process is 

then repeated periodically with the new updates on the 

obstacle and robot position, and on the reference path. 

All DKM navigation developments are based on this 

method considering: 

- some focus on a specific control function and associated 

trajectory[6], 

- some focus on the selection criteria [16], 

- some focus on the projection in a neural network map 

[5]. 

Their main advantage is the easy adaptation to any mobile 

robot whose the DKM is known. However, their application 

is limited to a finite number of trajectories due to the 

computation time limits for on-line constraints.  As a 

consequence, the robot motion abilities are limited and so is 

the accuracy with respect to the reference path. That is the 

reason why we propose a new control approach associated 

with it. 

 

B. The proposed method 

1) DKM navigation in a continuous control functions 

space 

The proposed navigation method is based on the same 

trajectory projection principle, but extends this principle to a 

continuous control function space. We propose to use 

parameterized control function, such as linear functions with 

a slope p0, or parabolic functions defined by two parameters 

p1 and p2. By making a continuous variation of these 

parameters, and injecting the corresponding control 

functions in the robot DKM, it leads to the generation of an 

infinite number of trajectories. As a consequence, we do not 

work on a discrete control space and we exploit more 

thoroughly the robot motion abilities. 

Then, we have to determine among this continuous space 

of trajectories, the one that best fits the navigation problem 

on ],[ 00 pTtt + . In order to compare the trajectories, a cost 

function Z is determined. Finding the set of parameters that 

minimizes the cost function corresponds to an optimization 

problem. 

 

2) Cost function and optimal trajectory 

The navigation problem can be translated into an 

optimization problem, whose cost function Z is structured 

with 3 parts (eq. (1)), Fig.  3: 

 envrobotplanif ZZZZ ++=  (1) 

With: 

- Zplanif quantifies the gap between the reference trajectory 

and the evaluated trajectory of the robot, 

- Zrobot is a penalty considering the constraints inherent to 

the robot (actuators saturations dynamic constraints...),  

- Zenv is a penalty considering the constraints inherent to 

the environment (fixed or mobile obstacles). 

A set of parameters pi corresponds to a control function on  

],[ 00 pTtt + and corresponds to a trajectory ],[ 00 pTtt +Γ . 

The set of parameters pi minimizing Z corresponds to the 

trajectory which is the nearest to the reference trajectory, 



  

including all the constraints on the robot and on the 

environment. The navigation problem at t0 and on the 

prediction horizon Tp becomes an optimization one under 

constraints.  

 
Fig.  3 : the cost function Z = Zplanif + Zrobot + Zenv 

 

This problem has to be solved on-line by an optimization 

algorithm, which can be deterministic (convex problems) or 

stochastic (non convex problems) as we will see in section 

III.E. 

The trajectory selected by the optimization algorithm is 

defined on the ],[ 00 pTtt +  interval. The control function 

],[ 00 pTttu + corresponding to the optimal parameters pi is 

applied during a sampling time Te. The problem is updated 

every Te, taking into account the changes on the obstacles 

position, on the planned path and the drift on the robot 

position. The control loop of this system is inherent to this 

updating process at the period Te. 

III. THE NAVIGATION PROBLEM 

A. Class of robot considered 

We consider a car-like vehicle whose DKM is classically 

given by (eq. (2), Fig.  4): 
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Fig.  4 : a considered class of robot 

 

x and y are the abscissa and ordinate of the robot’s control 

point, θ  is its orientation in the basis ),,0( yx , v its 

velocity, ξ its steering angle and L its wheelbase. 

We suppose that the robot circulates on a flat surface, so 

its movements are confined to a plan parallel to the ground. 

We define the robot’s state by the vector X: 

 

],[00 00
)(],[

pTtt
T

p syxTttX +=+ &θ  (3) 

with Tp is the prediction horizon, and s&  its curvilinear 

velocity along the curve. 

Then, we define a control u vector with m lines containing 

the articular inputs, which are then applied to the robot: 
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B. Zplanif : trajectory tracking criteria 

1) The reference curve 

We assume that the path provided to the robot by the path 

planner is given in the form of a series of successive 

waypoints including the speeds and orientations at each 

point. Since the robot drifts from the planned path, a 

reference curve has to be computed in order to link the 

current state of the robot X0 and the desired state Xd 

corresponding to the next waypoint to be reached. This 

reference curve has to be defined based on these points’ 

velocities and orientations.  Hence, a Bezier curve is used in 

order to keep the continuity on the robot’s positions and 

velocities, and is defined by four controls parameters, R1 to 

R4. It passes through the points R1(x1, y1) and R4(x4, y4), 

and the vectors 21RR and 43RR  are tangent to the curve at 

R1 and R4, respectively, where: 
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(5) 

This Bezier curve is geometric and contains no 

information concerning the vehicle’s kinematics. In order to 

obtain a reference trajectory, we conduct a parameterization 

depending on the times shown on this curve  (Fig.  5) and 

developed in 2). 

 
Fig.  5 : the reference curve and reference trajectory 



  

 

2) Reference trajectory 

D is designated as the length of the Bezier curve. When 

considering the distance 
pdref TsD *&= that the robot is likely 

to travel during the prediction horizon Tp, the equation of the 

reference trajectory is given by: 
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with t
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t d .'
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The complete reference trajectory equation is: 
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with 1.],,0[ ≤∈ t
D

s
Tt d

p
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 This reference trajectory does not take into account the 

local environmental constraints and those related to the 

robot’s movements. 

 

3) The robot’s admissible trajectories 

There is an infinite number of control functions u defined 

on the prediction horizon [t0, t0+Tp] that fulfills the robot’s 

kinematic constraints. Among these functions, we consider a 

class of control families, which are parameterized by a finite 

number of parameters np. Therefore, each control function 

will be entirely defined by the set of parameters 
1p  to

pnp .  

To be applied to a car-type mobile robot, the control 

functions are then defined by two parameters pv1 and pv2 for 

the velocity control and two parameters pξ1 and pξ2 for the 

steering radius (eq. (8)(9), Fig.  6).  
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Fig.  6 : The u parameterized control family 

 

The use of this control family into the robot’s kinematic 

model enables the generation of a trajectories family; we 

then obtain an infinite number of admissible trajectories 

defined by the set of parameters. A few of these trajectories 

among this infinite number are represented in Fig.  7. These 

trajectories show that 2 parameters on the velocity control 

and 2 parameters on the steering control are sufficient to 

generate bypass trajectories. 

 
Fig.  7 : wheel prints of a sample of admissible 

trajectories with (0,0) initial position and a zero initial 

velocity  

 

Among this infinite number of trajectories, we need to 

determine the one, which will be the closest to the reference 

trajectory previously determined with respect to a criterion 

described in the following section. 

 

4) The cost function 

The difference between the planned trajectory of the robot 

according to the control applied and the references curve is 

quantified by a cost function, Zplanif. It assigns a Zplanif(X0, t0, 

Tp, u) value to each control function u over [t0,t0+Tp] and is 

written in the following general form: 

 

∫
+

++=
pTt

t

ppplanif
duXlTtxuTtXZ

0

0

)),(),(())((),,,( 000 ττττψ
 

(10) 

The cost function is composed of a function quantifying 

the stage cost l and a function quantifying the terminal cost 

ψ, relying on the quadratic distances between the planned 

trajectory X(t) of the robot and the reference trajectory 

Xref(t) : 
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with kfinal and kstage  of  the decoupled weighting matrix.  

 

C. Zrobot : Constraints on the robot 

Zrobot is defined as the penalty function considering the 

robot’s constraints. These constraints are noted as: 

{ }ri niuttXC ,...,1,0),,,( 00 ∈≤ , (12) 

where nr is the number of constraints. The constraints are 

related to kinematic constraints and actuator saturations (the 

wheels maximum rotation velocity, maximum acceleration 

and deceleration). The saturations on the set of parameters 



  

are given by: 

 

2
*)

2
(

2
*)

2
(:,

2
*

2
*:,

*)
2

(
2

*)
2

(:,

2
*

2
*:,

,:,

,:,

max02max01211

max01max0109

max02max087

max01max065

max21min43

max21min21

pp

v

pp

p

v

p

p

v

pp

p

v

p

vv

TT
tp

TT
tCC

T
p

T
CC

T
accel

T
tvp

T
decel

T
tvCC

T
accelvp

T
decelvCC

ppCC

vppvCC

ξξξξ

ξξξξ

ξξ ξξ

&&

&&

++≤≤−+

+≤≤−

++≤≤−+

+≤≤−

≤≤

≤≤

 

(13) 

These constraints are integrated into the cost function 

using an hyperbolic functions iB  defined by : 

max

1

ii

i
CC

B
−

−=  
(14) 

Thus, the Zrobot cost function associated with the robot’s 

constraints is given by: 
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D. Zenv : contraints on the environnent 

The second type of constraints is related to the 

environment. We assume that a mapping of the robot local 

environment is known, e.g. an on-line refreshed occupancy 

grid. The idea is to assign a value of 1 or 0 to each square 

depending on whether or not it is occupied [19]. In order to 

be able to assimilate the robot’s trajectory to a single point 

trajectory, the obstacles’ size is extended to a dimension 

corresponding to the robot’s length. 

The family of trajectories generated is projected into this 

grid. A penalty threshold Zthreshold is added in case the robot’s 

trajectories intersect any occupied squares.  
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E. Optimization 

The whole navigation issue is now contained in the 

criterion Z (1), in the continuous parameters space. The 

optimization algorithm has to find all the parameters pv1, pv2, 

pξ1 and pξ2 minimizing this Z criterion.  
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The optimization algorithms under constraints are 

classified into two categories: the deterministic and the 

stochastic algorithms. 

The deterministic algorithms generally present the best 

convergence properties and enable to obtain more precise 

and quicker solutions; however, they are very sensitive to 

local minima problems. Moreover, introducing discrete 

constraints, due to obstacles, has the effect of breaking the 

cost function convexity and introducing local minima.  

Among deterministic algorithms, the widely used 

Levenberg-Marquardt algorithm was chosen; its convergence 

step is defined by: 

  

iii GIH
1)( −+=∆ λ  (18) 

 

with H the Hessien and G the gradient of the cost function 

for the considered parameters, and λ a setting parameter 

which increases when the cost function diverges. 

The second algorithm category is stochastic algorithms, 

which are based on probabilistic approaches. They are less 

accurate and are slower to converge; however, they have the 

advantage of being less sensitive to local minima problems, 

which enables them to find obstacle bypass trajectories in 

cluttered surroundings. The stochastic algorithm considered 

is a simulated annealing [1] whose transition rule probability 

is defined by: 

 

kT

Z

eP

∆
−

−=1  (19) 

 

With Tk respecting the following cooling function: 
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Fig.  8 illustrates a situation for which the robot 

encounters an U-trap shape obstacle, unplanned for by the 

path planner (Fig.  8 upper left and right figures). In this 

case, the local minima of the cost function Z(pi) are 

generated in the parameters space representation planner 

(Fig.  8 lower left and right figures). The deterministic 

algorithm is trapped in this local minimum in the parameters 

space (Fig.  8 - top left and bottom left) and cannot find the 

pi parameters corresponding to the global minimum of the Z 

cost function. The stochastic algorithm manages to find the 

parameters regardless the initial settings (Fig.  8- top right 

and bottom right); this algorithm’s drawback is that there is 

no convergence clue.  

The convergence of the deterministic algorithm to find the 

global minimum highly depends on the parameters 

initialization and on local minima. The simulated annealing 

algorithm enables to escape from local minima without 

warranty to reach the global minimum within a finite time. 

 



  

 
Fig.  8 : comparison between  deterministic and 

stochastic algorithms in the presence of local minima 

 

The complete bypass trajectory on several iterations of the 

navigator is shown in Fig.  9. 

Therefore, choosing either a stochastic or deterministic 

algorithm depends on the type of terrain covered (open or 

cluttered), as well as on whether or not the path planner takes 

into account any potential obstacles. The simulated 

annealing stochastic algorithm [1] was used to proof the 

robustness of the navigator when faced with an incomplete 

planning in cluttered surroundings. 

 

 
Fig.  9 : bypass trajectory performed through simulated 

annealing algorithm 

 

IV. RESULTS 

A. Application: the  CyCab mobile robot 

The proposed predictive control navigator was applied to 

a CyCab vehicle (Fig.  10). The particularity of this vehicle 

is its double steering radius (front and rear axle) which 

improves its maneuverability in cluttered places, such as 

urban areas.  

 
Fig.  10 : the CyCab robot 

 

Fig.  11 shows the scheme of the CyCab robot. In [16], we 

have developed the CyCab kinematic model: 
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(21) 

 

where C is the control point of the vehicle, ρ the steering 

radius and L the wheelbase. When the steering angle on the 

front axle equals ξ, that of the rear axle equals kξ. 

 

 
Fig.  11 : the CyCab model 

 

Fig.  12 and Fig.  13 show the navigation simulations for 

the CyCab robot circulating around obstacles. The path 

planner indicates four successive waypoints (large crosses); 

the square zones on an occupancy grid measuring 40x40 m² 

represent the obstacles’ position. The continuous line 

represents the robot’s trajectory; each cross indicates a new 

iteration of the navigation algorithm navigation (period Te). 

At the end of the robot’s trajectory, two trajectories are 

represented: the reference trajectory computed from the 

current state of the robot and the next waypoint, and the 

trajectory determined by the optimization algorithm on the 

next prediction horizon.  

 



  

 
Fig.  12 - scenario 1: navigation  of the CyCab robot in a 

cluttered environment 

 

Fig.  12, shows the case in which the path planner does not 

take into account any obstacles; this engenders reference 

trajectories colliding into them. This may occurs for example 

when dynamic obstacles are present in the environment. 

Despite this occurrence, the navigator is able to determine 

the obstacle bypass trajectories, enabling the robot to reach 

its various waypoints without causing a collision. Indeed, 

using a simulated annealing algorithm helps us to find 

solutions avoiding the local minima (induced by the breaking 

of the convexity of Z due to the presence of obstacles). 

Besides, using an adapted temporal horizon enables the 

generation of trajectories, which are long enough to bypass 

obstacles. We propose the following relationship: 
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where is D0 the average length of the obstacles’ diagonal, 

chosen in order to determine the appropriate horizon. 

 

 
Fig.  13 - scenario 2: navigation of the CyCab robot in a 

cluttered environment with U traps 

 

Fig.  13 shows an even more constraining scenario (with 

several traps in U). We note that the robot’s complete 

trajectory avoids obstacles and follows the interpolated 

reference path, validating the overall navigation method in 

cluttered surroundings. 

Fig.  14 presents results on this thirty-second navigation 

scenario: the distance measures between the robot's 

trajectory and the nearest obstacle (red line), and the distance 

between the robot's trajectory and a reference path computed 

from the waypoints provided by the path planner (blue line). 

This comparison shows that the navigator presents enough 

autonomous properties to diverge from the reference path 

when needed (i.e. due to obstacles presence).  

 

 

Fig.  14: comparison between the robot's distance from 

the initial reference path and from the nearest obstacles 

in scenario 2 

 

B. Application to a differential wheeled robot 

The navigation method was also applied to a differential 

wheeled robot with the same two scenarii (section IV.A) in 

order to test the adaptability of the method to different types 

of kinematics. Fig.  15 and Fig.  16 show these simulation 

results. The robot moves safely among obstacles, using 

specific trajectories inherent to its movement abilities. 

 

 
Fig.  15 - scenario 1: navigation of a differential wheeled 

robot in the same environment 

 

We notice in Fig.  15 and Fig.  16 that the robot makes 

maneuvers by itself. It is due to the control family used that 

enables the reverse motions. This behavior can be controlled 

through the trajectory criteria Zplanif. 

 



  

 

Fig.  16 - scenario 2: navigation of a differential wheeled 

robot in a cluttered environment with U traps 

V. CONCLUSION 

In this article, we have developed a new generation of 

mobile robot navigators thanks to the predictive control 

approach, which we have adapted to solve navigation issues. 

This method is based upon a direct kinematic model, which 

typically can be adapted to all types of robots taking into 

account their specific constraints. Furthermore, using the 

predictive control method, which shifts the optimal trajectory 

research in the continuous parameters space in lieu of the 

discrete approach, enables the exploitation of all the robot’s 

kinematics capabilities. In addition, by integrating the 

parameterized functions we are able to master the robot’s 

behavior throughout its motion. By choosing a stochastic 

algorithm to solve the optimization problem under 

constraints we are also able to determine any obstacle bypass 

trajectories as well as to remedy an inadequate path 

planning. 

This navigator is a pivot between the reactive and 

deliberative parts of the robot control architecture. From a 

deliberative point of view, the simulations showed that the 

robot is capable of anticipating obstacles bypass trajectories 

on its predictive horizon Tp. From a reactive point of view, it 

takes into account unplanned obstacles during its sampling 

period near Te. Therefore, these simulations show that the 

proposed navigator is capable of circulating correctly in 

cluttered surroundings by avoiding obstacles not accounted 

for by the path planner. These capabilities facilitate the link 

between the deliberative part (path planning) and the reactive 

part of the control architecture. The next phase of this work 

involves its application to different robots, which will enable 

us to test proof the compatibility of this method with respect 

to computing time as well as the perception and 

environment’s model. 
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