
Solution Space Reasoning to Improve IQ-ASyMTRe
in Tightly-Coupled Multirobot Tasks

Yu Zhang and Lynne E. Parker

Proc. of IEEE International Conference
on Robotics and Automation, Shanghai, China, 2011.

Abstract— In our prior work, we proposed the IQ-ASyMTRe
architecture as a general method to combine coalition forma-
tion and execution for tightly-coupled multirobot tasks. IQ-
ASyMTRe extends the ASyMTRe architecture by introducing
several new mechanisms to provide more flexibility for coalition
formation as well as to facilitate coalition execution. On the
other hand, these mechanisms also change the process of
reasoning about solutions and further increase the complexity
of the solution space. In this paper, we provide improvements
for utilizing the IQ-ASyMTRe architecture based on reasoning
about the solution space. We introduce a method in which the
exponential growth of the number of potential solutions to be
searched can be avoided; instead, the search space is only of
linear size for certain tasks. Unnecessary potential solutions
are removed to further increase online efficiency. Moreover,
the relationships between the created solution space and the
complete solution space are studied, and are utilized to provide
more coverage of the complete solution space for arbitrary
tasks. Although these improvements are discussed with respect
to IQ-ASyMTRe, they are also applicable to architectures that
approach the generality that IQ-ASyMTRe achieves. Robot sim-
ulation and experimental results are provided to demonstrate
that the generation and searching of the solution space can be
done online (which was impractical previously even for tasks
with relatively modest complexities) for certain tasks, and to
illustrate how our approach impacts the solution space.

I. INTRODUCTION

Many architectures [3], [5], [7] are proposed which aim
at solving the coalition formation problem with multi-robot
teams, in which each assigned task may require the co-
operation of multiple robots, as individual robots may not
have all the capabilities to accomplish the task. The coalition
formation problem has been shown to be NP-hard and the
tasks are often referred to as multirobot tasks [4]. In order to
reason about robot coalitions to solve multirobot tasks, while
most of the architectures divide these tasks into subtasks or
roles that individual robots can accomplish, the ASyMTRe
[6] (Automated Synthesis of Multi-Robot Task Solutions
through Software Reconfiguration) architecture enables a
finer resource sharing by defining robot capabilities in terms
of sensory and computational level schemas, as well as
communication and motor schemas. As a result, ASyMTRe
is able to reason about how to accomplish multirobot tasks
through utilizing these schemas, hence providing a more
flexible method for forming coalitions. However, an issue
with ASyMTRe is that robot configurations and dynamic and

This material is based upon work supported by the National Science
Foundation under Grant No. 0812117.

Yu Zhang and Lynne Parker are with the Distributed Intelligence
Laboratory in the Department of Electrical Engineering and Computer
Science, University of Tennessee, Knoxville, TN 37996-3450, USA,
{yzhang51,parker}@eecs.utk.edu.

environmental factors are not considered, hence limiting the
application of the architecture to arbitrary tasks.

In our previous work [9], we introduce the IQ-ASyMTRe
(extended ASyMTRe with Information Quality) architecture,
which extends the ASyMTRe architecture and utilizes in-
formation quality measures [8] to account for robot con-
figurations and dynamic and environmental factors, so as
to provide a method for combining coalition formation and
execution in the same architecture. These extensions signif-
icantly change the solution space created by the reasoning
process. While IQ-ASyMTRe guarantees forming executable
coalitions and provides even more flexibility, the compu-
tational complexity for reasoning about coalition solutions
also increases. The complexity needs to be greatly reduced
to facilitate online execution. Moreover, the relationships
between the created solution space and the complete solution
space need to be studied. Such relationships can be utilized,
when necessary, to provide more coverage of the complete
solution space so as to further improve the flexibility and
robustness of the approach.

In this paper, we formally study the influence of these
extensions on the reasoning of the solution space for the IQ-
ASyMTRe architecture and provide improving techniques.
A review of the IQ-ASyMTRe architecture is first given
to provide the basic background knowledge (Section II),
which includes formal definitions of information type and
information conversion. In Section III, after studying the
complexity of the solution space, we introduce a way to
restrict the exponential growth of the number of potential
solutions required to be searched for tasks with certain
properties, such that the online generation and searching of
the solution space becomes practical. Then, we discuss how
unnecessary potential solutions can be efficiently removed
from the solution space to further increase online efficiency.
Finally, we continue our discussion on the relationships
between the created solution space and the complete solution
space for arbitrary tasks. Although full coverage of the com-
plete solution space cannot be guaranteed, an approximation
algorithm is provided. Simulation and experimental results
are provided in Section IV that illustrate the importance of
these improving techniques. Finally, we make some conclu-
sions in Section V.

II. THE IQ-ASYMTRE ARCHITECTURE

The ASyMTRe architecture [6] defines basic building
blocks of robot capabilities to be collections of environmen-
tal sensors (ESs), perceptual schemas (PSs), motor schemas
(MSs) [1], and communication schemas (CSs). Each schema



can be activated when its input is satisfied and may produce
certain output. To characterize the input and output, a set
of information types F = {F1, F2, ...} is introduced to label
them. In ASyMTRe, information types differ from data types
(e.g., integers) in that they have semantic meanings (e.g., a
robot’s global position). Then, according to a set of rules,
connections can be created among the schemas on the robots
to allow information to flow through the system to activate
the required motor schemas to accomplish the tasks.

However, the inconsideration of robot configurations and
dynamic and environmental factors of ASyMTRe prevents
its application to arbitrary tasks. First of all, as the semantic
meanings of the information are not fully captured in the
definition of information type, potential solutions do not
always represent feasible solutions. Another problem with
ASyMTRe is that information conversion is not explicitly
modeled. Furthermore, dynamic and environmental influence
is not considered. To address the above issues, we first
introduce the extended architecture, IQ-ASyMTRe, in our
previous work [9]. IQ-ASyMTRe introduces a complete def-
inition of information type and explicitly models information
conversion by using a special type of perceptual schemas.
To account for dynamic and environmental influence, IQ-
ASyMTRe incorporates information quality measures [8].
We provide formal definitions of the extensions of repre-
sentation as follows.

A. Information Type and Information Instance
The incompleteness of the definition of information type

in ASyMTRe is due to the fact that the relationships between
entities (which can be locations, agents or other objects that
can be identified in the environment) and information are
not specifically captured. Intuitively, information must be
specified with a set of referents. For example, the information
of rA’s global position is meaningless without specifying rA.
IQ-ASyMTRe uses both information type and information
instance for a complete specification of information. We use
F to represent the information type in ASyMTRe.

Definition 2.1: Information Type – An information type in
IQ-ASyMTRe is specified by a pair, (F , N ), where N is the
number of referents that should be associated with F .

In order to reason about the complete semantic meaning
of information, information type alone is not sufficient.

Definition 2.2: Information Instance – An information in-
stance of a particular information type, (F , N ), can be
represented as F (Ref1:N ), where Refi is used to refer to the
ith referent for the information instance.

Each referent, Refj , can be instantiated to a particular
entity or remain uninstantiated, waiting for a future in-
stantiation. Fully instantiated information instances represent
actual information that can be used. Partially instantiated
information instances represent a class of information. For
example, FG(X) can be the global position information of
any entity that X is instantiated to.

B. Information Conversion (Rule PS)
The Rule PS (denoted by RPS henceforth) is introduced

in IQ-ASyMTRe as a special type of PS to express informa-

TABLE I
RPS’S USED IN OUR APPROACH

RPS Description

1. FG(X)+FR(Y,X) ⇒ FG(Y ) global+relative ⇒ global

2. FR(Y,X) ⇒ FR(X,Y ) relative ⇒ relative

3. FR(X,Z)+FR(Y, Z) ⇒ FR(X,Y ) relative+relative ⇒ relative

4. FG(X)+FG(Y ) ⇒ FR(Y,X) global+global ⇒ relative

tion conversions. RPSs expressed in IQ-ASyMTRe can be
specified in the Backus-Naur Form (BNF) as follows.

Definition 2.3: Information Conversion – Information
conversions in IQ-ASyMTRe express relationships between
composite information instances (abbreviated as comp ins
in the BNF specifications).

The composite information instance on the right hand side
can be converted from the composite information instance on
the left hand side using the information conversion:

< info conversion >::= < l-comp ins >⇒< r-comp ins >

The BNF of a composite information instance is given as
follows, in which info ins is an abbreviation for information
instance. Information instances are combined into composite
information instances using the operators {iAND, iOR},
which have similar meanings as the AND and OR operators
in propositional logic. Since iOR operators on the right hand
side are not well defined, the definition for the two are
different:

< l-comp ins >::=(< l-comp ins > iAND < l-comp ins >)

| (< l-comp ins > iOR < l-comp ins >)

| < info ins >

< r-comp ins >::=(< r-comp ins > iAND < r-comp ins >)

| < info ins >
For the following discussions, we denote the iAND op-

erator by ‘+’, for conciseness. Table I shows some basic
RPSs. The conversions are general since the referents can
be instantiated to different entities. However, constraints exist
such that the same referent labels must be instantiated to the
same entities.

C. Solution Space and Potential Solutions

Note that both the ASyMTRe and IQ-ASyMTRe are
inspired by the information invariants theory [2]. Hence, we
can consider schemas as components. The solution reasoning
process then is to check how these components can be
permuted in various situations (e.g., with different robot con-
figurations) to build sensori-computational systems providing
the same functionalities. These systems are hence equivalent
for the current task. Based on this understanding, potential
solutions represent ways to connect these components within
the systems. The difference, though, is that the reasoning
process of ASyMTRe and IQ-ASyMTRe is concentrated
on the semantic meanings extracted from the input and



(a)

Fig. 1. (a) The graphical representation of a solution space for a robot to
obtain its global position with only a camera sensor. The referent local refers
to the robot itself. The solution space encodes two potential solutions. One is
to have another robot send over its global position (CS: FG(X) ⇒ FG(X))
and use the camera sensor to sense the relative position of the robot to itself
(PS: Camera ⇒ FR(X, local)). An RPS (PS: FR(Y,X) ⇒ FR(X,Y ))
is used to convert FR(X,R1) to FR(R1, X). The other solution (tOR)
is to have both information instances (CS: FG(X) ⇒ FG(X) and CS:
FR(R1, X) ⇒ FR(R1, X)) sent over by another robot.

output of components and hence avoids much mathematical
complexity.

A solution space encodes all potential solutions for re-
trieving certain information instances needed to solve a given
multirobot task. In order to create the solution space, the IQ-
ASyMTRe reasoning algorithm checks all schemas that can
output the input information instances to activate the required
motor schema. The algorithm then checks recursively for the
inputs of those schemas. Figure 1(a) shows a solution space
for retrieving the global position information for a motor
schema. The tOR node is introduced to manage multiple
options of connection. In order to simplify the solution space,
additional constraints for schema connections are introduced
in IQ-ASyMTRe. (For details, see [9].) After the solution
space is created, potential solutions can be extracted from the
solution space by making decisions on which schema node
to use at each tOR node (the rest of the nodes are trimmed),
as the extraction proceeds from the root to the leaves.

III. IMPROVEMENTS FOR IQ-ASYMTRE

In the previous section, we have provided some basic
knowledge of IQ-ASyMTRe and discussed how solution
space is created. Next, starting with analyzing the solution
space, we discuss issues with IQ-ASyMTRe and provide
improving techniques.

A. Complexity of the Solution Space

As we can see from the previous section, the solution
space is created based on the required input information
instances for the motor schemas. For multi-robot systems,
the size of the complete solution space is clearly exponen-
tial. In this respect, IQ-ASyMTRe aims to reduce the size
of the solution space by allowing uninstantiated referents
and restricting schema connections. We first analyze their
impact on the solution spaces with a single required input

information instance about which to reason. Figure 1(a) gives
an example of such a solution space. The following notations
are defined for the complexity analysis:

• Nc: the maximum number of information conversions
producing the same information type.

• Nt: the number of information types related to (i.e.,
through RPSs) the information instance to be reasoned.

• Nr: the maximum number of referents associated with
information instances for all related information types.

Since the maximum length of any reasoning path,
subject to all constraints imposed in IQ-ASyMTRe, is
O(Nt2

Nr ), the number of all distinct reasoning paths is then
O(Nc

Nt2
Nr

). Since all reasoning paths are distinct in IQ-
ASyMTRe according to the reasoning process, the worst
case complexity of both time and space for the solution
space is O(Nt2

NrNc
Nt2

Nr

). Notice that all notations in this
complexity analysis (i.e., Nc, Nt, Nr) represent constants
with respect to certain problem domains and are independent
of variables such as the number of robots. Hence, the
complexity of the solution space for reasoning about a single
information instance is constant given the problem domain,
as is the number of potential solutions in the solution space.

Now, let us extend the discussions to the more complex
cases and suppose that the number of required information
instances for activating a desired motor schema is Ni. Al-
though the space and time complexity for the creation of the
solution space is linear with respect to Ni, the number of po-
tential solutions grows exponentially. Fortunately, very much
like the fact that independencies among random variables can
restrict the exponential growth of the joint probability table,
we can define similar independence relationships between
information instances to address this problem.

Definition 3.1: Independence of Information Instance –
An information instance is independent of another if there
are no uninstantiated referents labeled the same in both
information instances (such referents are required to be
instantiated to the same entity in IQ-ASyMTRe).

In other words, an information instance is independent of
another if there are no constraints for referent instantiation
between the two, since then the two information instances
can be reasoned about separately without interfering with
each other. The notion of independence of information
instance can be easily extended to sets of information in-
stances, such that the independence relationships divide the
information instances into mutually independent sets and the
number of potential solutions that must be searched can be
significantly reduced. If the maximum number of information
instances in any of these mutually independent sets is H
(in the worst case, however, H could be Ni), instead of
having an exponential search space of O(exp(Ni)), the
search space grows exponentially with H and linearly with
Ni (i.e., O(Niexp(H))), since the solution space for each in-
dependent set can be searched independently. This reduction
of search space from exponential to linear growth makes the
online searching of the solution space practical. For example,
for the set {FR(box, robot), FR(goal, robot)}, as there are



no uninstantiated referents, the independence relationship
trivially holds. Hence, the set can be divided into two
independent sets and each set contains one of the information
instances. To obtain the potential solution to retrieve the two
information instances, we can independently search through
the solution space for each and simply combine the chosen
solutions for both as the final potential solution. On the
other hand, {FR(box,X), FR(goal,X)} cannot be divided
and every possible combination of potential solutions (hence
exponential) from the solution spaces for retrieving each
information instance must be searched to cover the original
solution space, as one can influence the other through the
referent of X (i.e., X must be instantiated to the same entity).

B. Semantic Reasoning

The previous section discussed the independence relation-
ships between the information instances to reduce the search
space. For further improvements, we begin by studying
the semantics expressed using information instances in this
section. This serves as the basis for our discussions in
the following sections. First of all, we notice that in IQ-
ASyMTRe, information instances of different types express
disjoint semantic meanings, as the semantic meanings of
different information types are naturally separated.

Lemma 3.1: Given that information instances of different
types have disjoint semantic meanings, the semantic meaning
related to any information requirement (i.e., specifying the
required input information instances for a particular MS)
can be expressed using only the logic operators (AND, OR).

Proof: Given the fact the information requirement
conveys admittance rather than denial, the NOT operator
would naturally be absent. As a result, we can represent the
semantic meaning for any information requirement with the
following process using only (AND, OR). The process starts
by listing the maximum required number of information
instances of the same type for all relevant information types
(with all referent uninstantiated), connected using AND. Then
for each possible way to fully instantiate these information
instances (using different entities), we check to see if the
set of information instances satisfies the requirement. This
makes sure that all possible input information that may
potentially satisfy the requirement would be checked. Finally,
we simply need to use OR to connect all sets of infor-
mation instances that satisfy the requirement. We call this
constructed form as the perfect-instantiated form. Clearly, it
is also in a disjunctive normal form.

However, expressing any semantic meaning using the
perfect-instantiated form may lead to very large represen-
tations, due to the size of the entity set. (For generality,
sometimes we may want to assume that the entity set is
countably infinite.) The fact that IQ-ASyMTRe allows the
referents of information instances to be uninstantiated pro-
vides a more concise way to express the semantic meanings.
For example, FG(X) represents the semantic meaning of the
global position information of any entity. In cases we need
to exclude specific entities from the uninstantiated referents,
they can be considered as exceptions in a final validity check.

Lemma 3.2: The semantic meaning related to any in-
formation requirement can be expressed by IQ-ASyMTRe
exactly. Furthermore, assuming that the entity set is count-
ably infinite and the information requirement has a finite
representation, the finite set of information instances required
for the exact expression is always the same.

Proof: The proof is a constructive one. Once we obtain
the perfect-instantiated form (which is unique by construc-
tion) for the information requirement, we simply combine the
conjunctive clauses (including single information instances)
that can be combined using uninstantiated referents (as-
suming that we can check whether the entire entity set is
covered or not). The combined conjunctive clauses join the
combination processes immediately. When there are no more
distinct combinations possible, the process terminates and
we simply remove any conjunctive clauses that have been
combined at least once in the combination processes. Note
that the same conjunctive clauses can be used multiple times.
Finally, we can simplify each conjunctive clause to remove
information instances that have no instantiated referents and
no referent instantiation constraints (i.e., such information
instances would not be informative). As the process performs
all possible distinct combinations, the result must be the most
concise representation and hence the representation must be
finite. Note that at any state prior to the termination, the
representation would be infinite if the entity set is countably
infinite. Furthermore, as the process only terminates when
there are no more distinct combinations, and as the perfect-
instantiated form is unique, the final set of information
instances must also be unique. Hence, the conclusion holds.

One important note is that the representation of any
information requirement in IQ-ASyMTRe, created from the
process above, is still in a disjunctive normal form. Hence,
each conjunctive clause independently represents a sufficient
condition for a solution.

C. Removing Unnecessary Solutions

In this section, we introduce information instance set and
information source set, which can represent the conjunctive
clauses in the previous section and are used in our discussion
on how online efficiency can be further improved.

Definition 3.2: Information Instance Set – An information
instance set (IIS) is a set of information instances, and can
be represented as {F1, F2, F3, ...}, in which each Fi rep-
resents an information instance (for conciseness, associated
referents are not shown). All information instances within the
set are assumed to be connected using the AND operator.

Definition 3.3: Information Source Set – An information
source set (ISS) is an IIS which also shows the sources
of the information instances. An ISS can be represented
as {ES1:F1, ES2:F2, ..., CS:FM+1, CS:FM+2, ...}. F[1:M ]

represents information instances that must be retrieved using
local sensors and F[M+1:...] represents information instances
that must be communicated.

In the following discussions, we require the IISs and
ISSs to only include distinct information instances. Note



that the independencies of information instances serve to
reduce the search space without changing the number of
solutions encoded in the solution space. To further improve
the online efficiency, we notice that another issue with the
IQ-ASyMTRe solution space is the inclusion of unnecessary
potential solutions. To remove them, it is not difficult to see
that the leaf nodes (i.e., nodes at the farthest end from the
MS) of any potential solution necessarily comprise an ISS,
as the ultimate information source can only be an ES or CS.
Furthermore, each ISS fully describes the interactions with
other entities through specifying the information instances to
be communicated. Hence, potential solutions with the exact
same ISS are equivalent for task solving, although they may
have different local schema connections. Hence, each distinct
ISS describes a set of potential solutions and all but one can
be removed from the solution space without losing solutions.

Unnecessary potential solutions can also be introduced
by specific information conversions (e.g., the 2nd RPS in
Table I) which only switch the ordering of the referents;
on the other hand, these information conversions are
necessary for more flexibility. Another note is that referent
instantiation constraints are also important to determine
whether a solution is necessary or not. For example, one of
the potential solutions of {CS:FG(X), CS:FR(X, local)}
and {CS:FG(Y ), CS:FR(local, Y )} can be used to
represent both, as X and Y have exactly the same
referent instantiation constraint in both ISSs. Note that
{CS:FG(X), CS:FR(X, local), CS:FR(X, box)} and
{CS:FG(Y ), CS:FR(Y, local), CS:FR(X, box)}, on the
other hand, represent different potential solutions, since they
have different referent instantiation constraints.

Lemma 3.3: For any two potential solutions, if they have
the same number of distinct labels (including instantiated
referents) and for all distinct labels in one, we can sequen-
tially find a matching label not previously matched in the
other with the same set of information types having the same
instantiated referents and the same referent instantiation
constraints, then only one of them is necessary.

Proof: The proof is quite obvious since we can simply
replace the labels of the uninstantiated referents in one
with those of the matching uninstantiated referents in the
other, respectively. The equivalence implies that if there is a
solution for one, it would also be a solution for the other.

The independence of information instances can also be
utilized to reduce the computational cost for removing
unnecessary potential solutions. Suppose that the IIS re-
lated to the information requirement for a desired motor
schema has Ni information instances and can be divided
into K mutually independent sets, with N

[1:K]
i information

instances, respectively. The maximum number of information
instances in any of these sets then is H = Max(N

[1:K]
i ).

Suppose that the numbers of potential solutions (i.e., size
of the solution space) for retrieving these sets are R[1:K]

respectively. The computational cost for removing unnec-
essary solutions would be O(ΣjRj

2) = O(Niexp(H)
2
)

(i.e., every unchecked potential solution is to be compared
with the ones that have already been checked for necessity,

hence the squared term) according to our discussion in the
previous section, while the computational cost without taking
advantage of the independencies would be O(ΠjRj

2) =

O(exp(H)
2Ni). In the experimental section, we show the

practical computational savings achieved using this approach.

D. Towards More Complete Solution Spaces

As we have seen previously, for IQ-ASyMTRe to ac-
complish a task, the desired MSs require certain input
information instances to be satisfied in order to be acti-
vated. The input information associated with the MSs can
significantly influence the task execution. For one particular
MS, there may be several possible options for the input
information; how to choose from them so that the created
solution space is more complete remains an issue. For
example, one possible set of input information instances
for the go-to-goal MS is {FG(robot), FG(goal)}. Another
possible set of input information instances, if we have an
overhead camera system, is {FR(X, robot), FR(X, goal)}
(i.e., we can use any camera X). As another example, for
the push-box MS, one possible set of input information
instances is {FG(robot), FG(goal), FG(box)} and another
is {FR(box, robot), FR(goal, robot)}. How to choose the
proper set of input information instances for the MSs in
different situations is equivalent to the problem of gener-
ating a sufficiently complete solution space that contains the
alternative solutions.

In this section, we study the relationships between IISs.
A relational operator (�) is defined and used to describe
relationships between them. By studying the relationships,
we are able to answer how options of the input information
should be chosen to provide the maximum flexibility. Note,
however, that these options can be ambiguous to determine
the information requirement. For example, {FG(rA)} and
{FG(rB)} can be options for {{FG(rA)} OR {FG(rB)}} or
{{FG(X)}}. To avoid this ambiguity, we require the options
of the input information to be unambiguously specified
such that if an uninstantiated referent for an information
instance suffices, no options should restrict the referent to be
instantiated. Otherwise, even if we know from our experience
that {FG(ri), i ∈ [1 : Z]} (for a large Z) are all sufficient,
we still cannot claim that {FG(X)} is the exact requirement.

Definition 3.4: Reduction of IIS – For any two IISs, s1
is said to be reducible to s2 (denoted by s1 � s2) if the
following condition is satisfied: any information instance in
s2 is present or can be converted (i.e., using information
conversions) using information instances in s1.

Definition 3.5: Equivalence of IIS – Two IISs (s1 and s2)
are equivalent if they satisfy the following conditions: s1 �
s2 and s2 � s1.

For example, {FG(rA), FR(rB , rA)} is equivalent to
{FG(rA), FG(rB)} given this definition. Note that for all
IISs that can be possible sets of input information in-
stances to the desired MS, the reduction relation de-
fines a partial ordering for the IISs. As in the exam-
ples given at the very beginning of this section, for the
push-box MS, we have {FG(robot), FG(goal), FG(box)} �



{FR(box, robot), FR(goal, robot)}, since we can use the
RPS of FG(X) + FG(Y )⇒ FR(Y,X) to do the reduction.
For the go-to-goal MS, however, there is not a reduction
relation between the two listed sets.

From Lemma 3.2, we know that any information require-
ment with finite representation can be specified exactly using
multiple IISs connected with OR, represented as {∪kIISk}.
As we have already mentioned, each IIS represents a suf-
ficient and independent IIS for the requirement. We notice
that the information requirement of the MS can be related
to multiple unrelated methods which determine what infor-
mation is required for the MS. For example, to accomplish
a site clearing task, a robot can either clear the obstacles by
itself or ask another teammate to come to the site to help. In
the first situation, the robot needs to obtain site location and
the relative positions of the obstacles while in the second,
it only needs to know the site location and transfer it to
the helper robot. Each method requires different information
and represents different behaviors. The reduction relationship
divides the IISs in the exact expression into groups, and every
IIS is equivalent to the others within the same group. These
different groups then naturally define the different methods as
they represent different information requirements. In reality,
different methods can be separately regarded by considering
them as different MSs (i.e., clear-self and clear-help), so that
each MS would correspond to only one particular method.
Next, we further introduce the following definitions:

Definition 3.6: Power Set of IIS – The power set of any
IIS s, (denoted by P (s)), includes all information instances
that are present in s and all information instances that can
be converted from s using the information conversions. An
IIS that cannot produce new information instances using
information conversions is called a maximum IIS (MaxIIS).

For example, for the go-to-goal MS, we
have P ({FG(robot), FG(goal)}) = {FG(robot),
FG(goal), FR(robot, goal), FR(goal, robot)}, and
P ({FR(X, robot), FR(X, goal)}) = {FR(X, robot),
FR(robot,X), FR(X, goal), FR(goal,X), FR(robot, goal),
FR(goal, robot)}. Notice that the power set of any IIS is
also a MaxIIS according to this definition.

Definition 3.7: Kernel IIS – For any IIS s, the kernel
IIS (denoted by K(s)), can be any subset of information
instances in P (s) which satisfies: any information instance
in K(s) cannot be converted from any other information
instances in the K(s) and K(s) � s.

For example, for the go-to-goal MS, we list one possi-
ble kernel IIS: K({FG(robot), FG(goal), FR(goal, robot),
FR(robot, goal)}) = {FG(robot), FG(goal)}.

Definition 3.8: Minimum IIS – For all IISs that can satisfy
the information requirement of a MS, the minimum IIS
(MinIIS) (denoted as smin) is a MaxIIS which satisfies: for
any IIS s that satisfies the information requirement of the MS,
we have smin ⊆ P (s) and smin satisfies the requirement.

Now the question is whether the MinIIS for arbitrary MSs
exists or not. For the purpose of practicality, we restrict our
attention to MinIISs with finite representations.

Theorem 3.4: For any MS, given that the exact informa-

tion requirement has a finite representation, the MinIIS with
a finite representation exists and is unique.

Proof: Let us first prove its uniqueness. Suppose that
there are two MinIISs for a MS, denoted by s1 and s2. From
the definition, we can easily conclude that s1 ⊆ P (s2) and
s2 ⊆ P (s1). As both are also MaxIISs, we have s1 ≡ s2.

From Lemma 3.2, we know that a unique set of infor-
mation instances can be used to express the information
requirement of a MS exactly. It follows that the IIS created
(denoted by s∗) by connecting this unique set using AND
is the MinIIS for the MS. First of all, s∗ clearly satisfies
the information requirement and s∗ must be a MaxIIS or
otherwise it would not be unique. Furthermore, according to
our previous dicussions, we can conclude that all IISs for
expressing the information requirement are equivalent in the
exact expression. Hence, they must also be equivalent to s∗.
Moreover, since the exact expression encodes all possible
solutions, any IIS s satisfying the information requirement
must be able to reduce to one of the IISs in the exact
expression. Hence we have s∗ ⊆ P (s) and s∗ is the MinIIS.

Corollary 3.5: Expressing the information requirement
using any kernel set of the MinIIS maximizes the number
of distinct potential solutions.

Proof: First, it is easy to see that any kernel IISs of
the MinIIS are equivalent. Hence, any input information that
satisfies one would also satisfy the others. Furthermore, for
any IIS s satisfying the information requirement, according
to Theorem 3.4, we have s̃ ⊆ P (s) (s̃ is any kernel IIS of the
MinIIS). Hence, any input information that satisfies s also
would satisfy s̃. Hence, the number of potential solutions
with s̃ cannot be less than any IIS for the MS.

Now we know that expressing the information requirement
using any kernel set of the MinIIS is the best choice,
but how do we find the MinIIS? For simple cases, the
MinIIS is obvious to determine. However, for more complex
cases, it is not so obvious. Although it is not difficult to
prove that finding the MinIIS using known options of the
input information that satisfy the information requirement
is impossible (i.e., when the same information instance is
arbitrarily added to all known options but not used, there
is no way to identify that the unused information instance
should not be in the MinIIS). However, if we know multiple
options of the input information that satisfy a MS, we can
approximate the MinIIS, using Algorithm 1.

Algorithm 1 Approx. the MinIIS using known options
for all IISi ∈ known options do

Compute Si = P (IISi).
end for
return S = ∩i(Si).

For the go-to-goal MS, the algorithm would output
{FR(goal, robot), FR(robot, goal)}. Interestingly,
without any knowledge of the MinIIS for the MS,
the algorithm actually outputs the MinIIS (though the



TABLE II
SOLUTIONS WITH THE FIRST THREE RPS’S IN TABLE I

1. Laser:FG(local)

2. Fiducial:FR(X, local), CS:FG(X)

3. CS:FG(X), CS:FR(local,X)

4. CS:FG(X), CS:FR(X, local)

5. CS:FG(X), CS:FR(local,X)

6. CS:FG(X), CS:FR(local, Y ), CS:FR(X,Y )

7. CS:FG(X), CS:FR(X,Y ), CS:FR(local, Y )

system cannot determine whether it is the MinIIS) in
this case. For the push-box MS, after applying the
algorithm, we can obtain the approximated MinIIS,
{FR(rA, box), FR(box, rA), FR(rA, goal), FR(goal, rA),
FR(box, goal), FR(goal, box)}. In this case, it is also the
MinIIS for the MS. Actually for the push-box MS, one of
the inputs itself is a kernel IIS of the MinIIS.

IV. SIMULATION & EXPERIMENTAL RESULTS

We demonstrate the importance of our approach for cre-
ating complete solution spaces that are efficiently searchable
by applying it to several applications in simulation and with
physical robots.

A. Simulations

First, we show how the removal of unnecessary potential
solutions can improve the online performance. For a simple
demonstration, we first compare the potential solutions for
the go-to-goal MS in the robot navigation task as presented
in [9] using only the first three RPSs in Table I. In this task,
the robot is assumed to know the global goal position and
have a laser sensor for localization and a fiducial sensor for
sensing its relative positions to other entities. The result is
shown in Table II, in which the potential solutions shown
in red are unnecessary potential solutions that are removed
based on our approach. For this simple case, to find solution
6 after the removal, the reasoning process needs to process
only 4 solutions instead of 6 each time it is triggered online.

Let us now look at more complicated situations. We first
study the influence of the number of RPSs on the solution
space. For this reason, we add in another new RPS (i.e.,
which increases Nc) as shown in Table I (the 4th RPS).
As more information conversions allow more flexibility, the
number of potential solutions would also increase. Another
influential factor is the number of required information
instances for the task. Table III provides the number of po-
tential solutions (PoSs) before and after removal for various
configurations for MSs in different tasks.

In Table IV, we compare the solution spaces for choosing
different sets of inputs for different MSs. All information
conversions in Table I are used. We can clearly see the
effects of choosing the kernel IIS of the MinIIS on the
solution spaces: more potential solutions are encoded such
that the solution spaces for satisfying the MSs are more
complete. Furthermore, it is clear that the number of po-
tential solutions grows exponentially with the number of

TABLE III
INFLUENTIAL FACTORS FOR THE SOLUTION SPACE

Go-to-goal : RPSs Used # PoSs After rem.

FG(local) : 1 - 3 7 4

FG(local) : 1 - 4 9 5

FG(local), FG(goal) : 1 - 3 14 8

FG(local), FG(goal) : 1 - 4 18 10

Push-box : RPSs Used
FG(local), FG(box) : 1 - 3 14 8

FG(local), FG(box) : 1 - 4 18 10

FG(local), FG(box), FG(goal) : 1 - 3 28 16

FG(local), FG(box), FG(goal) : 1 - 4 36 20

TABLE IV
MINIIS AND INDEPENDENCE OF INFORMATION INSTANCE

Go-to-goal # PoSs After rem. Use Ind.

FG(local), FG(goal) 18 10 7

FR(goal, local) 31 15 15

Push-box
FG(local), FG(box), FG(goal) 36 20 9

FR(box, local), FR(goal, local) 961 185 30
Time for a full search (s) 15.1 2.9 0.02

the required input information instances to be reasoned.
Without taking advantage of the independence of information
instances, even after the removal of unnecessary solutions,
a significant number of potential solutions would still have
to be searched. If we take advantage of the information
independence, the number of potential solutions required to
be searched can be greatly reduced. This effect can be seen
from the last row of Table IV, which also shows the time
for a full search of the potential solutions for the push-box
MS. Information independence can also be used to reduce
the computational cost for removing unnecessary solutions
from the solution space. In our simulations, the time to
reduce the number of potential solutions from 961 to 185
(Table IV) is approximately 14.8s, while the time to reduce
from 961 to 30 solutions is merely 0.02s (not the search
time reported in Table IV) when taking advantage of the
information independence. All times are wall-clock times
and the computation is based on a 2.4GHz Core 2 Duo
laptop with 2GB memory. We can see that the coupling of
the two approaches can work together to achieve a much
more manageable search space for certain tasks.

B. Physical Robot Experiments

For the physical robot experiments, we create sev-
eral scenarios for the cooperative robot box pushing
task to show how the MinIIS can benefit task exe-
cution in different situations. For this set of experi-
ments, we choose two sets of inputs of the go-to-goal
MS for comparison. The first set is chosen arbitrar-
ily as {FG(local), FR(box, local), FG(goal)} (we replace
FG(box) with FR(box, local) because the latter is easier to
obtain using laser scan matching); the second set is an kernel



TABLE V
ARBITRARY DECISION VS. MINIIS

Configurations Arbitrary Decision Using MinIIS

1. Localize, Global Goal All retrievable All retrievable
2. Localize All retrievable All retrievable
3. No Localize No FG(goal|local) All retrievable
4. Blocked, Int. Localize All retrievable All retrievable
5. Blocked, Int. No Localize No FG(goal|local) All retrievable

IIS of the MinIIS, {FR(box, local), FR(goal, local)}, which
is chosen according to the MinIIS approach.

We start with the simplest scenario (shown in Figure 2(a)),
in which the pusher robots know where the global goal posi-
tion is and can localize themselves. For the arbitrary decision
approach, the global positions are directly known or can be
sensed, while for the MinIIS approach, the FR(goal, local)
can be computed based on the global positions using the 4th
RPS in Table I. For both approaches, the FR(box, local) is
obtained using laser scan matching.

Now we start imposing more constraints. If the global
position is not known and must be observed (Figure 2(b)),
robots utilizing both approaches can still obtain the required
information. The global position of the goal can be computed
using its relative position to the robot for the arbitrary deci-
sion approach, while FR(goal, local) is directly retrievable
using the camera for the MinIIS approach. However, what
if the pusher robots cannot localize themselves? No solution
for the arbitrary decision approach is feasible (i.e., neither
FG(local) nor FG(local) can be retrieved) while the MinIIS
approach is still successful.

In the next scenario (Figure 2(c)), we further block the
view of the goal from one of the pusher robots. However,
the blocked pusher robot can see an intermediate robot
teammate that can detect the goal. If the robot teammate can
localize itself, then both approaches can retrieve the required
information instances by requesting information from the
intermediate robot. However, the intermediate robot may
not have a localization capability. The arbitrary decision
approach again would not be able to find any feasible
solutions; on the other hand, for the MinIIS approach, the
blocked pusher robot reasons out that FR(goal, local) can
be obtained using FR(goal, other) and FR(local, other)
and applying the 3rd RPS in Table I. The results for these
scenarios are reported in Table V. In this experiment, we can
see the importance of choosing the proper inputs for the MSs
in various situations, as it leads to the discovering of viable
coalitions that otherwise would not be found. More complete
solution spaces are extremely important for task execution in
dynamic environments with many unknown factors.

V. CONCLUSIONS

In this paper, we provide some improving techniques for
the IQ-ASyMTRe architecture. First of all, the complexity
of the solution space for IQ-ASyMTRe is analyzed; we
have shown that for tasks having certain properties, the
exponential growth of the number of potential solutions that

(a) (b)

(c)

Fig. 2. (a) A box pushing scenario where the global position of the goal
is known. (b) A box pushing scenario in which the goal must be observed.
(c) A box pushing scenario in which the visibility of the goal is blocked.
In all scenarios, the barcode markers can be detected to extract the relative
position information using cameras.

have to be searched can be eliminated, instead resulting in
a linear search space. This fact makes the online generation
and searching of the solution space practical. Unnecessary
potential solutions are also discussed and an efficient method
is proposed to remove them to further improve online effi-
ciency. Finally, the MinIIS for a task is introduced and is
shown to provide a complete solution space for arbitrary
tasks. We present results that illustrate the importance of
these approaches for achieving online reasoning that can
find dynamic solutions for tightly-coupled multirobot tasks.
Although these improvements are discussed with respect to
IQ-ASyMTRe, they are also applicable to architectures that
approach the generality that IQ-ASyMTRe achieves.

REFERENCES

[1] R.C. Arkin. Motor Schema – Based Mobile Robot Navigation. The
Int’l Journal of Robotics Research, 8(4):92–112, August 1989.

[2] B.R. Donald, J. Jennings, and D. Rus. Information invariants for dis-
tributed manipulation. The International Journal of Robotics Research,
16(5):673–702, 1997.

[3] C.H. Fua and S.S Ge. COBOS: Cooperative backoff adaptive scheme
for multirobot task allocation. IEEE Transactions on Robotics,
21(6):1168–1178, 2005.

[4] B.P. Gerkey and M.J. Mataric. A formal analysis and taxonomy of
task allocation in multi-robot systems. The International Journal of
Robotics Research, 23(9):939–954, September 2004.

[5] N. Kalra, D. Ferguson, and A. Stentz. Hoplites: A market-based
framework for planned tight coordination in multirobot teams. In Proc.
of the IEEE Int’l. Conf. on Robotics and Automation, 2005.

[6] L.E. Parker and F. Tang. Building multirobot coalitions through
automated task solution synthesis. Proc. of the IEEE, 94(7):1289–1305,
July 2006.

[7] L. Vig and J.A. Adams. Multi-robot coalition formation. IEEE
Transactions on Robotics, 22(4):637–649, 2006.

[8] Y. Zhang and L.E. Parker. A general information quality based
approach for satisfying sensor constraints in multirobot tasks. In IEEE
International Conference on Robotics and Automation, 2010.

[9] Y. Zhang and L.E. Parker. IQ-ASyMTRe: Synthesizing coalition for-
mation and execution for tightly-coupled multirobot tasks. In IEEE/RSJ
Int’l Conference on Intelligent Robots and Systems, 2010.


