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Abstract
Robotic motion planning algorithms used for task automation in robotic surgical systems rely on
availability of accurate models of target soft tissue’s deformation. Relying on generic tissue
parameters in constructing the tissue deformation models is problematic; because, biological
tissues are known to have very large (inter- and intra-subject) variability. A priori mechanical
characterization (e.g., uniaxial bench test) of the target tissues before a surgical procedure is also
not usually practical. In this paper, a method for estimating mechanical parameters of soft tissue
from sensory data collected during robotic surgical manipulation is presented. The method uses
force data collected from a multiaxial force sensor mounted on the robotic manipulator, and tissue
deformation data collected from a stereo camera system. The tissue parameters are then estimated
using an inverse finite element method. The effects of measurement and modeling uncertainties on
the proposed method are analyzed in simulation. The results of experimental evaluation of the
method are also presented.

I. INTRODUCTION
Robotic motion planning algorithms being developed to enable robotic surgical assistants
(RSAs) to perform certain surgical tasks autonomously while minimizing the damage to the
tissue and errors in the operation rely on availability of accurate models of target tissues’
deformation. As biological tissues are known to have very large inter- and intra-subject
variability, construction of tissue deformation models using generic tissue parameters is not
desirable. However, a priori mechanical characterization of the target tissues before a
surgical procedure is also not practical. In this paper, a method for estimating the
mechanical parameters of manipulated soft tissue from sensory data collected during robotic
surgical manipulation is presented. The proposed method does not rely on specialized
equipment, sensors, or characterization procedures. Instead, the method uses data collected
during typical surgical manipulations, such as, grabbing and retracting the tissue, from a
force sensor mounted on the robotic manipulator and a stereo camera system to estimate the
tissue parameters. Specifically, the method uses an inverse finite element method to estimate
the parameters of a nonlinear hyper-elastic material model so as to match the estimated
tissue response to measured data (Sections III and IV). Several challenge scenarios were
used to explore the sensitivity of the iterative inverse finite element scheme and the
objective function based on uncertainties resulting from RSAs’ sensing (Section V-A).
Results from experimental evaluation and validation of the method are also presented
(Section V-B).
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II. BACKGROUND
Research on motion planning algorithms for robotic manipulators has traditionally
concentrated on manipulation of rigid objects. However, recently, motion planning
algorithms for manipulation of deformable objects have started to receive attention in the
literature (e.g., [1–8]).

The robotic motion planning algorithms for manipulation of deformable objects use models
of tissue deformation to estimate the behavior of the object under constraints resulting from
the manipulation. Nonlinear finite element models based on continuum mechanics are
widely used in many surgery simulations (e.g., [9–11]) to estimate large deformations
accurately. In general, finite element methods give higher accuracy at the cost of increased
computation. To avoid the computational costs of complex nonlinear finite element
methods, Müller et al. [12] proposed a linear finite element method with co-rotational
support to improve the simulation accuracy under large deformations. However, nonlinear
finite element methods are preferred when the accuracy outcomes are needed to perform in
surgical simulation [10, 11].

Different tissue models have been used to characterize the hyper-elastic deformable object
behavior, such as St. Venant–Kirchhoff [13], Veronda–Westmann [10, 11, 14, 15], Arruda–
Boyce [16], Neo–Hooke [10, 11], etc.

Traditionally, the parameter sets of different models are examined by performing uniaxial
tests. Researchers find the set of parameters that match stress–strain relationship from
experiments according to their strain energy model [14]. Recently, iterative parameters
identifications using inverse finite element analysis have been proposed to determine the set
of parameters. Mehrabian and Samani [15] estimated the set of parameters for tissue
modeled using Veronda-Westmann model by performing uniaxial compression test on
polyvinyl alcohol phantom. Sangpradit et al. [16] identified the parameters of Arruda-Boyce
model by using wheeled probe indentation on a General Electric RTV6166 silicone
phantom.

One of the differences between the present study and the earlier studies in the literature is
that the parameter estimation scheme presented here does not require any specialized
apparatus (such as those used by [17–19]), motions, or procedures (such as the performance
of a uniaxial loading test [15]).

Most parameter estimation studies have been focused on simple motions such as
indentations [16, 20–23] and geometrical tension, compression, and shear test [24, 25]. The
published results for more complicated motions were lacking.

Instead, the proposed estimation scheme uses data collected during typical surgical
manipulation motions of the manipulator (such as during retraction of the tissue by a
gripper). Also, in the present study, the deformations of the object surface at multiple points
were used in the estimation (similar to [24] which used movements of multiple points inside
the tissue as observed through magnetic resonance imaging and which fitted non-linear
material to measured force-displacement samples [21]), unlike earlier studies in the
literature that rely on collocated force-displacement measurements (e.g., [16, 26]).

III. TISSUE MODELS
In this study, nonlinear finite element models were used to model the deformation of the soft
tissues. Nonlinear finite element model stated here means the strain tensor as well as the
stress–strain relationship are nonlinear (i.e., both geometric and material nonlinearities are
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included). For simplification, the analyses were performed for the quasi-static case,
neglecting the inertial and damping effects in the tissue dynamics. This is not a restrictive
assumption, since manipulation velocities and bandwidths are small in typical surgical
manipulations. The finite element simulations were performed using the Salmon finite
element simulation package [11].

Strain energy density function (SEDF) W is a function that relates the Cauchy-Green
deformation tensor C of the material to the to the strain energy density, and is used to
characterize nonlinear stress-strain relationship of isotropic hyper-elastic materials. In this
study, the Neo-Hookean nonlinear material model was used as the underlying material type.
The Neo-Hookean model is a generalization of the St. Venant Kirchoff model [11] and does
not have the element inversion problem [27].

The advantage of using Neo-hookean material is it captures the nonlinear nature of material
while its parameters still have good physical interpretation. However, it is important to note
that the use of the Neo-Hookean material type is not a requirement to the proposed
parameter estimation scheme, which will be introduced in section IV-A. Different material
type can be substituted without any major change to the method.

The SEDF and stress tensor of the Neo-Hookean material model are given by are given by

(1)

and

(2)

respectively [10, 11].

In here, λ and μ, are the Lamé’s first and second parameters respectively, which can be
calculated from Young’s modulus E and Poisson’s ratio v of the material by using the
relationship

(3)

(4)

i1, i2 and i3 are the invariants of the Cauchy-Green deformation tensor C which are defined
by

(5)

(6)

(7)
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IV. PARAMETER ESTIMATION SCHEME
The inputs to the parameter estimation algorithm are the initial geometry of the deformable
object (obtained from preoperative medical imaging), the motion of the robotic end-effector
grabbing the tissue (given by the joint sensors and kinematics of the robotic manipulator),
the tissue interaction forces measured at the robotic end-effector (measured by a 6 axis
force/torque sensor mounted on the manipulator), and the motions of a set of fiducials on the
surface of the deformable object (measured by a stereo camera system). The robotic end-
effector motions, tissue interaction forces, and the motion of the fiducials are assumed to be
synchronously recorded trajectories.

The operation of the parameter estimation algorithm is summarized in Fig. 1 and Fig. 2. The
algorithm starts by an initial estimate of the mechanical parameters of the target tissue being
manipulated (Fig. 1). Using the estimated mechanical parameters, the simulation loop
calculates the deformations of the tissue using a finite element model of the tissue subject to
the boundary conditions resulting from specified motion of the robotic end-effector grabbing
the tissue. The simulation loop then returns the estimates of the interaction forces and the
motions of the fiducials during the manipulation. These estimated interaction force and
fiducial motion trajectories are then compared with the actual trajectories observed by the
sensors by using an objective function (described in section IV-A), and checked for
convergence. If the objective function has not converged, the estimates of the parameters are
updated, and the new parameters are fed back into the simulation loop.

The nonlinear finite element is employed in the simulation loop. The manipulator’s initial
configuration, the initial tissue geometry and the estimated tissue parameters are used by the
nonlinear finite element simulator to solve for the deformation of the tissue in quasi-static
state. Deformation of the tissue in subsequent time steps is then iteratively calculated by
using the nonlinear finite element model. At each time step, the configuration of the tissue at
the end of the last time step is used as the initial tissue configuration, and the boundary
conditions are updated based on the corresponding configuration of the end-effector. The
trajectories of the interaction forces and the locations of the fiducials on the tissue surface
are calculated from the simulation results and are used to evaluate the objective function.

A. The Objective Function
The inverse finite element analysis is used to find the set of tissue’s parameters that fits the
observations. Two different sets of observations are collected from the sensory system. The
first set of observations is the interaction forces between the end-effector and tissue during
the surgical manipulation. The second set of observations is the trajectories of the points of
interest fiducials identified on the surface of the tissue. Young’s modulus and Poisson’s ratio
are the set of parameters that specify the tissue’s mechanical properties, for the material type
used in this study (see section III). The objective function then has two terms. The first term
is a position sensitive term (similar to [21]) and the second term is a force sensitive term.
The objective function is then defined as

(8)

where the subscripts s and o denote, respectively, the simulation and observed outputs, f is
the vector representing the forces exerted on the RSA’s gripper, and x is the vector
representing the trajectories of the points of interest’s positions, and  is the scaling factor
used to match the scales of the force and position variables.
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If desired, the scaling factor can be biased to favor one of the two terms. However, in this
study, instead of using a prescribed set value, the scaling factor is automatically determined
for each estimate problem as

(9)

This e scales both terms equally in the parameter region of interest. Assuming that the
tissue simulations always have errors in the force term, the scaling factor will be always
well-defined. In (9) both of the max terms are estimated by sampling the region of interest of
the parameters while the min terms are determined by performing numerical minimizations.

V. METHODS
A. Simulation Methods

In this section, results of the simulation studies of the proposed method are presented.
Several different simulation scenarios were used to validate the proposed scheme, and
explore its performance under various types of uncertainties.

A limitation of in vivo tissue manipulation is that it is difficult to acquire the true state of the
tissue to initialize computations and it has greater uncertainties compared to ex vivo tests.

The first simulation scenario assumed that the tissue and manipulation geometries were
acquired accurately. The second scenario considered the case when the tissue geometry was
not perfectly modeled. The third scenario considered the case when there were uncertainties
in positioning of the end-effector on the target tissue. And finally, the fourth scenario
considered uncertainties in robots motion.

In the simulations a tissue model in the shape of a square patch, shown in Fig. 3, with
dimensions 10 × 10 × 1 cm was used. The center of the tissue was (0.0,0.0,0.0) in x-y-z
coordinate. The end-effector gripper was assumed to grasp a 2 × 2 cm area on the tissue
without any slip. This was modeled by anchoring the grabbed part of the tissue rigidly to the
gripper by position boundary conditions. The size of the gripper was 2 cm in width and
initially at (0.04,0.0,0.0) m. The tissue was assumed to be anchored on the left sides; and,
the gripper retracted the tissue by pulling in the direction of the arrow shown in Fig. 3. The
stress and strain of the tissue are assumed to be in zero state at the beginning of the
experiment including the effect of gravity.

The Salmon [11] open source finite element modeling and simulation package was used as
the underlying FEM simulation engine, after custom modifications. The Salmon package
offers FEM simulation with geometric and material nonlinearities. The meshing of the
geometric models to use in the FEM simulations was done by TetGen [28].

The SQP algorithm using Quasi-Newton line search, as provided by the MATLAB’s
fmincon function, was used to find minimum of the objective function.

All experiments were conducted on a 2.93 GHz Intel® Core™ i7 CPU, and 12 GB of RAM.
Salmon was implemented in the C++ language and MATLAB® was used to implement the
optimization scheme.

In the simulation scenarios, all vision and force sensing i.e., the trajectories of the fiducials
and the interaction forces, were assumed to be perfectly measured. The reference values of
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the sensing data were computed from simulations of a finite element model with a higher
density mesh, while the estimation of the set of parameters were be performed using a finite
element model with a lower density mesh. Specifically, a mesh with 3122 nodes and 13473
elements was used to generate the sensing data, while a mesh with 991 nodes and 3595
elements was used in the estimation process, unless otherwise noted. The reference
parameters were 15 kPa and 0.49 for Young’s modulus and Poisson’s ratio, respectively.

B. Experimental Methods
In the experiments, we used soft tissue phantom created using Ecoflex® 0030, a two–part
silicone rubber with Silicone Thinner® (non-reactive silicone fluid), from Smooth-On Inc.
which was used in [29]. The silicone phantoms with two different consistencies of Silicone
Thinner (see table VI) were used in order to cover a wide range of parameter values.

The experimental setup is shown in Fig. 4. The tissue phantoms used in the experiments
were similar in shape and size to the models used in the simulation studies described in
section V-A. Specifically, the tissue phantoms were square in shape, with dimensions, 10 ×
10 × 1 cm. The tissue phantoms were placed horizontally on a flat lubricated surface
anchored to a wall on their left side, while being grabbed and retracted by a gripper towards
right. The retraction action was achieved by moving the gripper 10 steps, in 2 mm steps,
towards right, producing a 10% elongation of the tissue phantom. 16 artificial fiducials were
marked on the top surface of the tissue and were tracked by a calibrated stereo camera pair
to measure their deformations during retraction. A Nano17 6 axis force/torque sensor (by
ATI Industrial Automation, Apex, NC) was mounted between the gripper and the actuator to
measure the manipulation forces. The force sensor outputs were recorded via a NI PCI–
6023E multifunction data acquisition system.

The silicone surface was labeled with colored glass beads 2 mm in diameter which were
used as the fiducials. The stereo camera pair was two of Point Gray Research (PGR) Flea 2
cameras which captured images at 640×480 pixels. The camera lenses focal length were 4.5
mm. The stereo camera pair had a inter-camera distance of 35.89 mm. The cameras were
placed at distance of 20 cm to the tissue sample. The cameras were programmed using the
(PGR) Flycapture library and OpenCV. The camera images were calibrated and rectified
using stereo calibrate routines native to OpenCV [30]. The image is analyzed in HSV color
space. The fiducial beads were detected using their color. Once the fiducials were detected,
each individual fiducial location was calculated by distinguishing each fiducial in the image.
After the fiducials were detected in the stereo image pair, the actual location of the fiducials
was triangulated using the camera calibration information.

VI. RESULTS
A. Simulation Results

1) Accurate Tissue and Manipulation Geometry Acquisitions—The first set of
simulation studies were conducted to validate if the proposed algorithm could accurately
identify the tissue parameters under ideal conditions, specifically, when perfect information
about the geometry of the specimen and the geometry of manipulation (i.e., motion of the
end-effector relative to the target tissue) was available. The effect of the density of the finite
element model mesh used in the estimation algorithm on the accuracy of the parameter
estimation was also evaluated.

In case 1, the tissue model in the estimator was discretized into a higher density mesh. In
case 2, the tissue model in the estimator was discretized into a lower density mesh.
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The results in Table I show that the proposed method can accurately estimate the tissue
parameters under low uncertainty conditions, and the accuracy of the method does not
depend heavily on the mesh density (at least, at the range considered here). The parameters
estimated in case 2 were reasonably close to the actual values while the complexity is
tremendously lower. Therefore, in the subsequent studies (sections VI-A.2–VI-A.5), the low
density mesh was used in estimation while the high density mesh was used to generate the
simulated measurement data.

2) Uncertainties in Tissue Geometry—The second set of simulations was conducted to
evaluate the effectiveness of the method when the tissue geometry was not perfectly
modeled. This was evaluated by using reference meshes which were perturbed from the
original shape, while using the original mesh with the smooth surface in the estimation
algorithm. The high density mesh was used to generate the test data while the low density
mesh (described above) was used in parameter estimation.

The rough surfaces in this work were generated using the ridged multifractal terrain
algorithm [31] in MeshLab [32] to represent uncertainties in tissue geometry. The results
reported in Table II shows the sensitivity of the scheme to the size of the perturbations, at
varying 2%, 4% and 8% of the tissue’s original thickness, as can be seen in Fig. 5.

The results demonstrated that the proposed algorithm still handled the problem quite well.
Only the Young’s modulus was estimated by the method was slightly off when the fractal
was higher.

The algorithm that was used to generate fractal in the experiment also grew the tissue. That
is the reason why Young’s modulus estimated from the scheme increased as the perturbation
level increased. It is difficult to model the tissue geometry perfectly in simulation; however,
from the experiments, the model should be accurately modeled at around 5% of the tissue’s
original thickness.

3) Uncertainties in the Position of the Robot’s Target—The third set of simulations
was conducted to evaluate the effectiveness of the method when there were uncertainties in
the positioning of the end-effector on the target tissue.

The simulations were done by randomly changing the center of the robot’s target (the
grasping point) with standard deviation of 5 mm, 10 mm and 20 mm (see Table III).

The algorithm results are acceptable when the grasping point is mislocated up to 10mm. For
20mm mislocation, the parameter reconstructed from the scheme had unacceptably large
variation and especially Poisson’s ratio had an unacceptably large error due to the wrong
assumption of grasping location further to the anchor points.

4) Uncertainties from the Robot’s Motion—This set of simulations was conducted to
evaluate the effectiveness of the method when there were uncertainties in robot motions.
The additive Gaussian noise was generated to study the effect of uncertainties at 10%, 20%
and 50% noise levels (standard deviation of the Gaussian noise as a percent of the
magnitude of the position control signal.) The results are shown in Table IV.

Noise from the control signal appears not to cause a significant effect on the parameter
estimation if the noise level is not extremely high.

5) Parameter Estimation under Complex Motions—The merit of this multiaxial
estimation framework over uniaxial estimation is the ability to estimate the tissue parameters
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under complex surgical manipulations. This set of simulations was conducted to evaluate the
effectiveness of the method when the robot had non-trivial motions during a surgical
manipulation. Fig. 6 shows the five different motions used in the simulations. In the first test
motion, the gripper diagonally pulled the tissue on the orthogonal plane in the horizontal and
up direction. In the second case, the gripper diagonally pulled the tissue in the tissue plane.
In the third case, the gripper horizontally pulled the tissue by simultaneously rotating the
gripper. In the fourth case, the gripper pulled the tissue sideways in the tissue plane. And in
the fifth and final case, the gripper pulled the tissue horizontally in the tissue plane while
rotating the tissue to twist it.

The results in Table VI show that the method can still estimate the parameters with good
accuracy under such complex motions.

B. Experimental Results
Different tissue consistencies were obtained by using different silicone rubber and silicone
thinner proportions during the preparation of the phantoms. The parameter estimates for the
two different tissue phantoms are reported in Table VI. For baseline comparison, the
material parameters (Young’s modulus and Poisson’s ratio) reported in the literature for the
Ecoflex 0030 for the 1:1:0 mixture proportions in [29] are 29.5 kPa and 0.5, respectively.
(Actually, in [29] Poisson’s ratio of 0.5 was assumed, not directly estimated). 1 These
reported parameter values are very close to the values 27.24 kPa and 0.43 estimated here
using the proposed method.

Fig. 7 and Fig. 8 show that the trajectories of fiducial positions and force profile start to
deviate from the actual trajectories for large deformations, even though there is a good
agreement between the estimated and actual trajectories for relatively smaller deformations.
Neo-Hookean might not be the best choice for highly nonlinear materials in some cases.

VII. DISCUSSION AND CONCLUSIONS
This paper presented a new inverse nonlinear finite element based scheme to estimate the
mechanical parameters of soft tissues using data collected during regular manipulation of the
tissue in robotic surgery. The method uses a hyper-elastic material model for the tissue.
Several challenge scenarios and different types of complex motions were considered to test
the sensitivity of the proposed multiaxial framework scheme. Results of the method are
evaluated and validated experimentally as well. The simulation and experimental results
indicated that the proposed scheme is effective in estimating the parameters in general.

Typical surgical manipulation motions are relatively slow. Therefore, the tissue
deformations and interactions forces can be approximated as quasi-static, ignoring the
viscous and inertial effects.

It is also important to note that, the choice of the Neo-Hookean material type is not
fundamental to the proposed method. The same overall tissue parameter estimation method
can also be applied by using different underlying material types.
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Fig. 1.
Flow chart describes the proposed iterative parameter determination scheme.
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Fig. 2.
The diagram illustrates the simulation loop in Fig. 1
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Fig. 3.
The setup of the experiment shows the gripper grasping on the right side of tissue and
pulling in the direction of the arrow.
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Fig. 4.
The physical experiment setup.
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Fig. 5.
Unknown parameter tissue with rough surface generated using the ridged multifractal terrain
algorithm [31].
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Fig. 6.
Figures show the different types of complex end-effector motion used to evaluate the
parameter estimation in section VI-A.5.
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Fig. 7.
The trajectories of fiducial markers from the experiment with Ecoflex 0030 1:1:0 ratio. The
solid circles are the trajectories of the points of interest from the stereo cameras, the hollow
circles are the trajectories obtained from the simulation using the estimated parameters.
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Fig. 8.
The interaction force profile of the experiment with Ecoflex 0030 1:1:0 ratio. The solid lines
represent the actual force data from force sensor in x-y-z and the dash lines represent the
force profiles obtained from the simulation using the estimated parameters.
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TABLE I

Estimation results when accurate tissue and manipulation geometry measurements are available. The
computation time is represented as total time, which is the sum of the time for prescaling (9), and time for the
actual minimization (8). RMSE stands for root mean square error.

Case Case 1 Case 2

Young’s Modulus (kPa) 15.18 14.98

Poisson’s Ratio 0.4897 0.4849

Iterations (Function Counts) 9(30) 15(46)

Time (s) (prescaling+min) 2452(1469+983) 773 (450+90)

RMSE of

  the fiducial’s position (m) 4.32e–6 8.30e–5

  the force profile (N) 6.73e–5 2.37e–3

IEEE Int Conf Robot Autom. Author manuscript; available in PMC 2014 March 26.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript
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TABLE II

Evaluations of the method at different fractal scale levels.

Fractal Max Height Scale 2% 4% 8%

Young’s Modulus (kPa) 17.00 19.40 23.97

Poisson’s Ratio 0.4693 0.4654 0.4607

Iter. (Func. Counts) 11(34) 14(42) 4(12)

Time (s) (prescaling+min) 375 (227+148) 897(729+168) 956(785+171)

RMSE of

the fiducial’s position (m) 1.15e–4 1.25e–4 1.36e–4

the force profile (N) 1.69e–3 1.85e–3 2.17e–3
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TABLE III

Evaluations of the scheme at assuming incorrect grasping points. The parameters and other values are the
results from 20 random experiments

Standard Deviation 5 mm 10 mm 20 mm

Young’s Modulus (kPa) 13.82 ± 12% 12.06 ± 27% 13.33 ± 62%

Poisson’s Ratio 0.4677 ± 4% 0.4574 ± 9% 0.3960 ± 28%

Time (s) 966 ± 27% 1445 ± 79% 1023 ± 60%

RMSE of

  the fiducial’s position (m) 6.22e–4 ± 65% 1.71e–3 ± 79% 2.94e–3 ± 76%

  the force profile (N) 4.22e–2 ± 63% 1.48e–1 ± 63% 1.63e–1 ± 107%

IEEE Int Conf Robot Autom. Author manuscript; available in PMC 2014 March 26.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Boonvisut et al. Page 22

TABLE IV

The results when the gripper position control signal was corrupted with different noise levels. The parameters
and other values are the results from 20 random experiments

Standard Deviation 10% 25% 50%

Young’s Modulus (kPa) 14.65 ± 2% 13.88 ± 8% 13.41 ± 19%

Poisson’s Ratio 0.4852 ± 2% 0.4733 ± 6% 0.4508 ± 13%

Time (s) 1174 ± 23% 1510 ± 36% 1190 ± 45%

RMSE of

  the fiducial’s position (m) 4.14e–4 ± 30% 1.01e–3 ± 29% 2.42e–3 ± 37%

  the force profile (N) 3.05e–2 ± 44% 7.66e–2 ± 34% 1.83e–1 ± 66%
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TABLE V

Parameter Estimation under Complex Motions

Motion Types “Tangent Pull” “ In-Plane Tangent Pull”

Young’s Modulus (kPa) 14.84 14.95

Poisson’s Ratio 0.4845 0.4847

Time (s) 1715(1098+618) 3114(2750+364)

Iter. (Func. Counts) 18(54) 9(27)

RMSE of

  the fiducial’s position (m) 1.00e–4 8.60e–5

  the force profile (N) 1.77e–3 3.00e–3

Motion Types “Gradual Tangent Pull” “Side Pull”

Young’s Modulus (kPa) 15.09 15.85

Poisson’s Ratio 0.4720 0.4495

Time (s) 3057(2215+843) 885(869+16)

Iter. (Func. Counts) 8(29) 1(3)

RMSE of

  the fiducial’s position (m) 2.17e–4 1.36e–4

  the force profile (N) 2.06e–2 1.64e–2

Motion Types “Twist and Pull”

Young’s Modulus (kPa) 15.06

Poisson’s Ratio 0.4762

Time (s) 1604(1014+590)

Iter. (Func. Counts) 17(51)

RMSE of

  the fiducial’s position (m) 1.68e–4

  the force profile (N) 9.99e–3
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TABLE VI

The parameter values estimated in the experiments by the proposed method for different tissue phantom
materials. (A:B:T is proportion of part A of the silicone, part B of the silicone and silicone thinner by mass.)

Material Types (A:B:T) Ecoflex 1:1:0 Ecoflex 1:1:2

Young’s Modulus (kPa) 27.04 6.493

Poisson’s Ratio 0.4287 0.42359

Time (s) (prescaling+min) 856(715+141) 801(676+125)

Iter. (Func. Counts) 12(36) 12(37)

RMSE of

  the fiducial’s position (m) 1.59e–3 2.09e–3

  the force profile (N) 1.31e–1 2.42e–2
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