
Automatic Data Driven Vegetation Modeling for Lidar Simulation

Jean-Emmanuel Deschaud, David Prasser, M. Freddie Dias, Brett Browning, Peter Rander

Abstract— Traditional lidar simulations render surface mod-
els to generate simulated range data. For objects with well-
defined surfaces, this approach works well, and traditional
3D scene reconstruction algorithms can be employed to au-
tomatically generate the surface models. This approach breaks
down, though, for many trees, tall grasses, and other objects
with fine-scale geometry: surface models do not easily represent
the geometry, and automated reconstruction from real data is
difficult. In this paper, we introduce a new stochastic volumetric
model that better captures the complexities of real lidar data
of vegetation and is far better suited for automatic modeling of
scenes from field collected lidar data. We also introduce several
methods for automatic modeling and for simulating lidar data
utilizing the new model. To measure the performance of the
stochastic simulation we use histogram comparison metrics to
quantify the differences between data produced by the real
and simulated lidar. We evaluate our approach on a range of
real world datasets and show improved fidelity for simulating
geo-specific outdoor, vegetation scenes.

I. INTRODUCTION

Lidar simulators are regularly used to test UGV auton-
omy systems, typically using surface models (e.g., triangle
meshes) to represent objects in the scene. The simulators
use ray tracing, or z-buffering, to approximate the ranging
operation of the lidar: determining the range from the simu-
lated sensor to the nearest object (e.g. [1], [2]). Measurement
errors are usually modeled as additive noise (e.g., [3]).

The fidelity of this modeling and simulation approach
depends greatly on the environment. Indoor, underground,
and urban environments often work well because they pri-
marily contain relatively large, solid objects that are well
approximated by a polygon mesh with large elements. In
contrast, off-road terrain is a greater challenge because it
often contains large amounts of vegetation in which the
widths of objects (e.g., small tree branches, leaves, and
grasses) are often on scale or smaller than the beam width
of the lidar (typically 10mm). This situation is one example
of the well known mixed pixel problem [4]: there is more
than one ”correct” range value because the small geometries

This work was sponsored by U.S. Army Engineer Research and De-
velopment Center (ERDC) under cooperative agreement “Fundamental
Challenges in World and Sensor Modeling for UGV Simulation” (Number
W912HZ-09-2-0023). The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S. Government.

All work was done at the National Robotics Engineering Center, Carnegie
Mellon. Deschaud is with the Mines ParisTech, CAOR - Robotics Center,
Mathematics and System Department, 60 Bd Saint-Michel 75272 Paris,
jean-emmanuel.deschaud@mines-paristech.fr.
All other authors are with the National Robotics Engineering
Center and Robotics Institute, Carnegie Mellon University,
Pittsburgh PA, USA, {dprasser,mfdias,brettb,rander}
@rec.ri.cmu.edu.

������������9

�
�
�
�
�
�
�
�
�
�
�
�
�
��

Fig. 1. Normalized histograms of lidar range measurements on two
different points of a tree. Approximately 1500 range returns were used
to generate each red curve. The histograms in green are produced by our
simulation using the whole data to build the volumetric model.

reflect only a portion of the beam, allowing the the beam to
propagate further and generate additional returns.

To demonstrate this behavior, we collected more than one
thousand range scans of a small tree, shown in Fig. 1 (inset),
from a stationary lidar. The red curve in the top graph
shows the normalized histogram of returns from a beam
repeatedly hitting a relatively small portion of the tree of
similar size to the laser spot. The curve shows a single clear
peak well approximated by a single surface with additive,
approximately Gaussian, noise. The lower graph on the other
hand, shows data for a nearby beam angle of the same laser
and exhibits dramatically different behavior: it appears multi-
modal and asymmetric. Simple additive noise is poorly suited
to capturing such large variation in range distributions.

This problem can be overcome by using multi-sample
raytracing methods to model the non-zero laser beam width
and by building geometric models at the scale of the
blades of grass [3]. This generates more realistic behav-
ior in mixed-pixel scenarios and automated tools (e.g.,
http://www.bionatics.com/) can even simplify the construc-
tion process. Of course the models grow dramatically –
what might have been just a few polygons in a solid-ground
simulation could become millions of polygons per cubic
meter – but that may be acceptable if real-time simulation
is not needed. The greater challenge is the effort required to



make the virtual model match the real world. Many semi-
automated techniques can reconstruct large-scale models
of building exteriors, roads, and other larger solid objects
but these techniques perform poorly when attempting to
reconstruct sub-pixel geometries of something as mundane
– and common – as knee-high grass. (See results at the end
of this paper.)

We propose an alternative model that efficiently accounts
for the variability of the scene and which can be automati-
cally estimated from measured lidar data. Our model captures
the statistical distribution of the lidar range directly into the
model without recovering surfaces. Range noise and mixed
pixel effects are both built into the model without need
to explicitly recover them, either. This model is substan-
tially simpler to estimate and lends itself to straightforward
simulation using ray tracing. The green curves of Fig. 1
are histograms of 150,000 simulated range returns striking
the two same parts of the tree used to generate the red
histograms, demonstrating that our approach can reproduce
the statistics of the real data to a high degree of accuracy.

Section II reviews related efforts in the lidar simulation
area. We then describe our model in section III and the
corresponding simulation in section IV. Section V shows the
experimental system used to acquire data for testing, while
section VI investigates the performance of the various mod-
els. Section VII concludes the paper and lays out possible
directions for future work.

II. RELATED WORK

Lidar range sensing is a topic that has been studied in
a number of different areas including robotics, computer
vision, graphics, and remote sensing. Lidar has been most
heavily studied in the field of remote sensing, with extensive
studies on atmospheric propagation, scattering phenomenon,
and interaction with vegetation, primarily driven by its use-
fulness for aerial measurements in remote sensing (e.g. [5]).

Simulating a pulsed, time-of-flight lidar requires modeling
the physical generation and propagation of the light pulse out
of the sensor and through the atmosphere, the object/terrain
interaction leading to reflection or back scatter, the return
journey back into the sensor, and the physical mechanism
for sampling and reporting the detected range. At every step
of this process, un-modeled or poorly calibrated deviations
can occur that lead to errors in sensed range. [6] have studied
the physical sensor errors, which can be simulated as in [7].
The physics of atmospheric propagation, absorption, and
scattering are reasonably well understood [8], and empirical
data for some robot sensors exists [9], [10].

In this paper, we focus on the interaction of lidar with
the surfaces in the terrain. Ignoring atmospheric effects, for
surfaces with approximately Lambertian reflectance and with
surface geometries much larger than the lidar beam width,
the range error is dominated by limits of the physical sensor
and are small and approximately Gaussian. As a result,
representing the surface as a triangular mesh and performing
ray tracing (or z-buffering), with optional additive Gaussian
noise, produces a reasonable approximation of reality. This

approach is commonly used in mainstream robot simulation
environments [1], [2], [11], and performs well for materials
such as bare soil, dry cement, brick walls, and so on. Straight
forward extensions to the ray tracing approach can model
highly specular (e.g. quartz, metal) or transparent (e.g. water,
glass) surfaces. However, the approach fails to capture the
intricate behavior of vegetation.

Lidar interaction with vegetation is complicated due to the
complex, multi-path reflection, absorption, and transmission
that happens within plant cells (e.g. in the leaf cell struc-
ture [5]). Furthermore, the dense geometries of plant surfaces
create additional complex multi-path reflections. This latter
effect can be seen on any surface boundary, as shown by
Tuley et al. [4] where they demonstrated that lidar beams
striking two or more surfaces at different depths can produce
one or more returns that in some cases may not correspond
to the range of either surface, an effect they called “mixed
pixel returns”. For vegetation, with its complicated, small
surface geometries that are on the scale of lidar beam width,
mixed pixel returns can dominate causing non-trivial range
distributions as shown in Fig. 1.

Simple approaches to compensating for this behavior, such
as modifying the additive noise model, do not work as
they do not correctly capture the angular dependence of the
returns. Using fine grained triangular meshes combined with
dithered multi-ray, ray traced simulations can approximate
the behavior [3] but at substantial computational cost. Con-
sider for example, the amount of memory and computing
resources required to simulate 100 km2 of wild grassland.

A second limitation is the generation of the model. For
generic, non-geo-specific models, one can use approaches
such as the Lindenmayer-systems (L-systems) [12] to gen-
erate realistic looking vegetation. However, while there has
been work to estimate a tree’s large scale structure from
lidar data [13], there are no techniques that would allow
one to tune an L-system virtual tree to match real data
from a specific location (i.e. a geo-specific scene). Secondly,
approaches like L-systems do not approach the diversity of
leaf structure found in real terrains and cannot capture the
complex reflectance properties of real leaves which are often
laser wavelength dependent.

In this work, we attempt to fill this niche by learning
models for lidar simulation from collected data in a terrain
that capture the complexities of vegetation and yet still
represent “simple” surfaces well.

III. VOLUMETRIC MODELING

In this section, we present the volumetric modeling con-
cept and model estimation techniques.

A. Key Concept

Capturing intricate behavior in a scalable way is chal-
lenging. Rather than using a non-scalable approach such
as very fine surface modeling, we instead approach this
problem by aiming to capture the statistical behavior of lidar-
world interaction. Thus, the question of modeling changes
from how to represent the surfaces in the world, to how to



Fig. 2. Two dimensional example of permeability. Of the 4 rays that enter
the left ellipse, 3 terminate, and 1 passes through. The left ellipse therefore
has permeability of 1/4. The right ellipse has no rays passing through, so it
has 0 permeability.

efficiently and accurately capture the statistical properties of
lidar-world interaction.

One conceivable approach is to use surfaces and augment
them with a stochastic penetration depth model. That is,
when lidar strikes a surface, the resulting sensed range is
augmented by an additional depth randomly sampled from
an appropriate distribution to produce results like that shown
in fig. 1. The difficulty with this approach is that for real
vegetation, the distribution model is far from simple and,
as our later results show, the distribution is dependent upon
spatial position, and the incident angle of the ray. Estimating
such a complex model would be very difficult.

Instead, we use a volumetric approach which introduces
two key ideas. The first is to break space into small volumes,
each with its own range return distribution. In this way,
we can capture both spatial and incident angle variations.
Secondly, we introduce the notion of permeability to capture
the ability of lidar beams to potentially travel significant
distance through material before striking a surface. That
is, permeability separates the size of volumes from the
maximum penetration depth of lidar beams.

Fig. 2 shows a 2D example of this concept with boxes
representing volumes, and the ellipsoids representing the
range distributions (no ellipsoid means it is free space).
Permeability encodes the ability of the lidar ray to pass
through each volume. The ellipsoid on the left is formed
by 3 points, but one ray passes through without striking, so
it is partially permeable. The ellipsoid on the right has no
rays passing through it, so it is not permeable.

B. Model Representation

To represent the model, we must decide upon how to
partition occupied space into volumes, how to represent
range returns, and how to model permeability.

There are many ways to partition occupied space, in-
cluding tetrahedral meshes (simplicial complexes), voxels,
and so on. All of these can be regular in size and axis
aligned, or variable. In this work, we focus on regular, axis
aligned voxels due to their speed and efficiency. We have also
considered tetrahedral volumes, but these offer comparable
performance and so are not discussed further here.

To represent range returns, we take the simple approach
of representing point cloud distributions inside each volume
with a 3D Gaussian distribution. That is, the probability of
a point occurring at a location q ∈ <3 inside the volume i is

simply q ∼ N(µi,Σi), where N(.) is the normal distribution
with mean µi ∈ <3 and covariance Σi ∈ S3. Finally, we
represent permeability simply with a Bernoulli distribution.
Hence, the probability of a ray passing through a volume i
is given by ρ ∈ [0, 1]. We discuss how to sample from such
a model in section IV.

C. Model Estimation

To estimate the model from data, we assume that we have
a set of lidar returns with sensor pose information that we
can use to calculate a set of lidar beams (origin and ray) and
a corresponding 3D point cloud. Lidar beams may of course
result in no return, meaning the ray traveled to the limit of
the sensor range.

We consider three variations to estimating the volumetric
model from the data. In the first model, we divide the
world into a regular voxel grid of side s and estimate the
point distribution and permeability independently for each
occupied volume. In the second model, we follow the top-
down clustering approach of [14]. We drop the notion of
voxels and instead encode volumes by ellipsoids that are
isosurfaces of the fitted point distributions. Finally, we have
considered a bottom-up region growing approach follow-
ing [15]. The algorithm is significantly slower in model
construction and generally performs worse than top-down
and regular modeling. We do not present the results here
due to space constraints.

1) Regular Voxel Estimation: The regular voxel model
estimates via Maximum Likelihood (ML) from the data a
Gaussian distribution for the point density in each volume.
That is, for each regular voxel containing 3D points, the
sample mean and covariance are estimated and form the
model parameters. Although more complex distributions
could be learned, for small voxels there is likely insufficient
data to estimate these reliably. Indeed, even for 3D Gaussian
distributions, care must be taken.

One approach to estimating permeability would be to use
the ML estimate based on the number of lidar beams that
pass through the voxel compared to those that terminate
inside the volume. However, we refine this approach further
by requiring the lidar beam to not just pass through the
voxel but to also pass sufficiently close to the fitted point
distribution. We evaluate “closeness” using the Mahalanobis
distance to account for the anisotropic shape of the Gaussian
distribution. That is, for a lidar beam originating from p0
traveling in the direction of unit vector r̂, we find the point
on the ray p = p0 + tr̂, that has the minimum Mahalanobis
distance, d(t) = ‖p− µi‖Σi

to the Gaussian with mean µi

and covariance Σi. This is given by:

t =
[
r̂T Σ−1

i r̂
]−1

r̂T Σ−1
i (µi − p0) (1)

Defining m as the number of points that pass through the
volume with distance t < τm, for some threshold τm, and
n as the number of points that terminate within the same
threshold, we estimate permeability as ρ = m

m+n . Fig 2
shows a simple example of this approach in which the left



Fig. 3. (Left) A synthetic input point cloud built from two planes with
Gaussian range noise. (Right) Volumetric model with isosurfaces drawn at
τ = 2.0.

ellipse has ρ = 0.25 and the right ellipse has ρ = 0. (We
use τm = 2.0 in the results shown later.)

To demonstrate the model, fig 3 shows an example of
a synthetic point cloud from two planes and the resulting
regular voxel grid model estimated from the data. Each
Gaussian is shown as an isosurface.

2) Top-Down Clustering: One possible problem with the
regular voxel method is artifacts caused by arbitrary voxel
boundaries. Thus, we explore a top-down clustering method
that instead aims to “follow the data”. The top-down cluster-
ing method we use is based on [14]. It operates by recursively
performing K-means clustering, with K = 2 on the point
cloud data. That is, initially, the entire dataset is split into
two via K-means. Each portion is then recursively split
until there is insufficient data in each cluster to continue.
The flexibility of no longer having regular voxel boundaries
comes with a price. As the technique must touch more
data early in the process, it is much slower to execute.
Additionally, the recursive partitioning is greedy and may
force potentially bad cluster boundaries early in the process
when the data is very non-Gaussian in appearance. Once
the volume distributions are created, permeability is then
estimated as above.

We have also considered variations on K, and termination
criteria based on how well the cluster represents a “Gaus-
sianess” distribution. Here, for space reasons, we only report
on the same implementation as described in [14].

3) Bottom-up Region Growing: The bottom-up method
follows [15] and initially splits the data into many small
ellipsoids that are merged together subject to a point density
constraint. Permeability is then estimated as described above.

IV. SIMULATION

We now introduce the process to draw samples from the
model in order to simulate a lidar sensor interacting with the
world. There are three parts to the process: beam sampling,
permeability sampling, and range sampling.

We use a stochastic ray tracing approach for simulation.
Conventional approaches to lidar simulation separate the
sensor model from the world model. Our sensor model
captures pointing errors due to the angular resolution of
the laser scanner angle encoder and errors due to beam
divergence and range measurement (e.g. [16]). We first
sample a ray from this model, i.e. uniformly sampling a ray
from the truncated cone representing the range of possible
rays from the lidar. For surface models, this ray is traced (or
z-buffered) to find the first intersecting surface. The range

to that surface, corrupted by additive noise, is the sampled
sensor measurement.

We use a similar concept for volumetric modeling. A ray is
sampled from the sensor model to generate the lidar beam.
This is ray marched through space to find the first inter-
secting, non-empty volume element. As with permeability
calculations, we perform the intersection with the isosurface
of the point distribution. That is, we consider beam-volume
intersections when the ray passes within a threshold of the
Mahalanobis distance for that volume. We use the same
distance threshold τ = 2.0 as for permeability estimation.

Once an intersecting volume is found, we draw a Bernoulli
sample to determine if the beam intersects a reflecting surface
in that volume (a “hit”) or instead propagates through due to
its permeability (a “pass through”). If the ray passes through,
then we continue tracing the ray until it intersects a volume
in a hit or reaches the maximum range of the sensor.

When the ray “hits” a volume, say i, then we draw a range
sample. To draw a range sample, we effectively draw a point
from the Gaussian distribution N(µi,Σi) constrained to be
on the ray p = p0 + tr̂. This results in a univariate Gaussian
distribution with range given by with t ∼ N(µt, σ

2
t ), where:

µt = r̂T Σ−1
i (µi − p0)σ2

t (2)

σ2
t =

[
r̂T Σ−1

i r̂
]−1

(3)

V. EXPERIMENTAL SETUP

Two experiments were conducted: one to quantify the per-
formance of the modeling and simulation method on a variety
of representative targets; and the second to demonstrate the
system operating as a lidar simulator for off-road terrains.
In both cases the volumetric model is first constructed from
a training dataset. A second dataset collected in the same
area is used to evaluate the simulation quality. The reported
sensor poses from the test dataset are used to simulate
range returns using the model. These simulated returns are
compared against the actual data measured in the test dataset
using a variety of metrics. We compare the different models
and evaluate their performance along with a more traditional
non-permeable surface model.

A. Static Lidar Simulation

To quantify the performance of the non-deterministic sim-
ulation a large amount of data is required for a meaningful
comparison. The lidar scanner used in these experiments
was a Velodyne HDL-64E, a 3D laser scanner which makes
range measurements at periodic intervals as it rotates. The
sensor makes 1.33 million measurements per second using 64
individual lasers. As the lidar rotates it reports its orientation
using a 4,000 count per revolution encoder. For all targets
5 minutes of lidar data was recorded, this means that for
each reported orientation of the lidar every individual laser
will have recorded approximately 1,500 range measurements.
One fifth of each target’s dataset was used as training data
for model building and the remaining data for testing.

There were six targets in the experiment: a pair of in-
tersecting planes; three trees with low, medium and high



density foliage; a sample of tall grass and a sample of short,
mowed grass (Fig. 4). Each of these experimental targets was
scanned from a distance of approximately 8m.

B. Mobile Lidar Simulation

To test the volumetric modeling and simulation method at
a larger scale, we have collected data with a mobile platform
in an outdoor, off-road, lightly forested area using the same
lidar. The mobile platform uses a calibrated, high quality
RTK GPS/INS and camera system to colorize the lidar points
and position them in a global coordinate frame. Two separate
runs through the course along an unsealed trail produced two
independent datasets with nearby, but not the exact same,
sensor poses (Fig. 5). One dataset is used for training to
build the models. The second dataset is used as the test data
set. This experiment provides a qualitative test of the model’s
suitability for simulating a lidar mounted on a UGV.

C. Comparison Surface Model

The surface model is similar to the conventional polygonal
mesh model used in most robotic simulation packages. In
our implementation the surface model is a set of triangles,
each of which is represented by the 3D coordinates of its
vertices. We use the Robust Implicit Moving Least Squares
method [17] with marching cubes to estimate the surface
mesh over the point cloud. The main parameters to this
algorithm control the resolution of the triangle mesh and the
level of smoothing of the surface. In our implementation we
use a single ray trace operation to determine which triangle
the beam intersects and the range at which this intersection
occurs. After determining the exact range we add zero mean
Gaussian noise to produce the simulated range. This noise
was estimated from a large number of range measurements
against a planar target as σ = 5mm. This result is similar
to that found previously [18].

VI. RESULTS AND ANALYSIS

A. Static Lidar Simulation

We tested the surface modeling and volumetric modeling
techniques for datasets collected on the targets outlined in
section V.

Fig. 6 shows histograms of the real and simulated data
generated using surface and volumetric models for four of

Fig. 4. Top row from left, the planar target and the high, medium and low
density trees. Bottom left, the tall grass and right, the short grass.

Fig. 5. The trajectory of the mobile platform while acquiring the training
data (green) and the test data (red). In both cases the mobile platform was
traveling towards the Northwest.

the targets. These two dimensional histograms are binned
by laser angle (at the resolution of the encoder: 0.09◦

for the Velodyne HDL-64E) and by range (with the same
resolution of the lidar’s range returns, 2mm). Effectively
each histogram is a planar slice through the point cloud. For
these results we used a voxel size of 5cm which is larger than
the size of the fine features in the targets. The comparison
surface model was constructed with RIMLS and marching
cubes over voxels of size 1cm, with a kernel of 4cm for a
high quality reconstruction.

The first two columns of Fig. 6 show that the planar target
and the high density tree are simulated satisfactorily by both
the surface and volumetric models, although both models do
introduce some slight smoothing into the outline of the high
density tree. However, for the low density tree and the tall
grass the volumetric model produces a better approximation
of the real data than the surface model, which filters out
some of the variation in the data.

The performance of the two models against the complete
set of targets is summarized in Table I. This table shows the
Bhattacharyya distance between the 2D histograms of the
simulated and real data using the same bins as before. An
additional range bin for each orientation is used to represent
range measurements that pass entirely through the target and
generate no return to ensure that the comparison accounts for
differences in object permeability produced by the modeling
methods. The metric comparisons indicate that, except for the
planar target, the volumetric model produces a more faithful
simulation. The surface model does not work well on the
more permeable targets, although its bad performance on the
short grass is likely due to the low grazing angle the grass
presents to the lidar.

B. Mobile Data Simulation

Fig. 7 shows the real point cloud and the simulated point
clouds generated using the surface and volumetric models



Plane High Density Tree Low Density Tree Tall Grass

R
ea

lit
y

Su
rf

ac
e

Vo
lu

m
et

ri
c

0
◦

H
is

to
gr

am

Fig. 6. Real and simulated results for four of the test targets. Each graph is a 2D histogram of bearing and range values from an individual laser and
shows a cross section of 5◦ of angle and 0.6m in range. The bottom row shows the 1D range histograms for 0◦ of bearing (a vertical cross section taken
along the center of the 2D histograms). The real data is in red, the surface model in blue and the volumetric model in green.

TABLE I
BHATTACHARYYA DISTANCE BETWEEN THE REAL AND SIMULATED

DATA FOR SURFACE AND VOLUMETRIC MODELING.

Target Surface Volumetric
Plane 0.019 0.068
High Density Tree 0.111 0.074
Medium Density Tree 0.896 0.125
Low Density Tree 0.622 0.054
Tall Grass 0.888 0.095
Short Grass 1.229 0.091

for the mobile testing dataset. The volumetric voxel size and
surface mesh resolution are 0.3m to match the point cloud
density from the mobile data (the surface reconstruction
kernel was 0.4m). Since the test data in this case comes from
a moving vehicle it is not possible to perform a statistical
comparison between the results. It is clear, however, that the
volumetric model produces a significantly better simulation
of the tree canopy than the surface model.

Also shown in Fig. 7 is the result of using the top-down
clustering method. The clustering method appears to work

appropriately on surface areas such as the road but makes
poor choices for volume location and size in vegetation
which reduces the simulation quality. The top-down splitting
criteria used [14] was not conceived for permeable objects
or significant sensor noise and better clustering criteria is an
area of future work. Even with a naive implementation, the
voxel-based modeling techniques are near real-time. Initial
explorations of GPU implementations show promise for
faster than real-time simulation for all methods.

VII. CONCLUSION

We have presented a new automatic method to model com-
plex vegetation from collected data to improve the simulation
of a lidar sensor in the same scene from novel poses. The
combined permeability and volumetric model capture the
distribution of points inside vegetation and show significant
improvements over more traditional surface models. More-
over, our volumetric approach requires only modest increases
in memory and computation is tractable. Future work will
examine whether the approach can transfer to simulate a
different lidar to the one used for model building.



���:

��
��

A

��
��B

��
��C

Fig. 7. Top left, the real data with the route taken by the mobile platform indicated by a red arrow. Top right, the simulated point cloud using surface
reconstruction. Bottom, the simulated point clouds using our volumetric modeling using top down (left) and voxel (right) segmentation. For visualization
the simulated points have been colorized using the real data (the arrow in red shows the path of the mobile platform to collect the data). (A) returns on
branches within the tree are too sparse for the surface reconstruction or top-down segmentation to capture the underlying trends; (B) The strong returns
on the surface of the bush generate an overly solid surface model; (C) the limited noise in the surface model reveals the scan pattern of the lidar while the
volumetric model better preserves the underlying statistical distribution.

ACKNOWLEDGMENTS

The authors thank Tom Pilarski, Scott Perry, and Cliff
Olmstead for their generous support in maintaining and
deploying the data collection equipment used in this paper.

REFERENCES

[1] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in Proceedings IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 2004.

[2] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “US-
ARSim: a robot simulator for research and education,” in Proceedings
of the International Conference on Robotics and Automation, 2007.

[3] C. Goodin, R. Kala, A. Carrrillo, and L. Liu, “Sensor modeling for the
virtual autonomous navigation environment,” in Sensors, 2009 IEEE,
2009, pp. 1588–1592.

[4] J. Tuley, N. Vandapel, and M. Hebert, “Analysis and Removal of
artifacts in 3-D LADAR Data,” in Proceedings of the International
Conference on Robotics and Automation, 2005, pp. 2203–2210.

[5] H. Jones and R. Vaughan, Remote sensing of vegetation: principles,
techniques, and applications. Oxford university press, 2010.

[6] C. Mallet and F. Bretar, “Full-waveform topographic lidar: State-
of-the-art,” ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 64, no. 1, pp. 1–16, 2009.

[7] A. Kukko and J. Hyyppa, “Small-footprint Laser Scanning Simulator
for System Validation, Error Assessment, and Algorithm Develop-
ment,” Photogrammetric Engineering and Remote Sensing, vol. 75,
no. 10, pp. 1177–1189, 2009.

[8] H. Hulst, Light scattering by small particles. Dover Pubns, 1981.
[9] J. Ryde and N. Hillier, “Performance of laser and radar ranging devices

in adverse environmental conditions,” J. Field Robot., vol. 26, pp. 712–
727, 2009.

[10] C. Dima, C. Wellington, S. Moorehead, L. Lister, J. Campoy, C. Valle-
spi, B. Jung, M. Kise, and Z. Bonefas, “PVS: A system for large
scale outdoor perception performance evaluation,” in Proceedings of
the International Conference on Robotics and Automation, 2011.

[11] J. P. Gonzalez, W. Dodson, R. Dean, G. Kreafle, A. Lacaze,
L. Sapronov, and M. Childers, “Using RIVET for parametric analysis
of robotic systems,” in Proceedings of the 2009 Ground Vehicle
Systems Engineering and Technology Symposium (GVSETS), 2009.

[12] A. Lindenmayer, “Mathematical models for cellular interactions in
development,” Journal of Theoretical Biology, vol. 1, pp. 280–315,
1968.

[13] Y. Livny, F. Yan, M. Olson, B. Chen, H. Zhang, and J. El-Sana, “Au-
tomatic reconstruction of tree skeletal structures from point clouds,”
ACM Transactions on Graphics, vol. 29, no. 6, Dec. 2010.

[14] A. Kalaiah and A. Varshney, “Statistical geometry representation for
efficient transmission and rendering,” ACM Trans. Graph., vol. 24, pp.
348–373, 2005.

[15] F. Pauling, M. Bosse, and R. Zlot, “Automatic segmentation of 3d laser
point clouds by ellipsoidal region growing,” Australasian Conference
on Robotics and Automation (ACRA), 2009.

[16] C. Glennie, “Rigorous 3d error analysis of kinematic scanning lidar
systems,” Journal of Applied Geodesy, vol. 1, pp. 147–157, 2007.

[17] A. C. Oztireli, G. G., and G. M., “Feature Preserving Point Set
Surfaces based on Non-Linear Kernel Regression,” Proceedings of
Eurographics, Computer Graphics Forum, pp. 493–501, 2009.

[18] C. Glennie and D. D. Lichti, “Static Calibration and Analysis of the
Velodyne HDL-64E S2 for High Accuracy Mobile Scanning,” Remote
Sensing, pp. 1610–1624, 2010.


