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Abstract— This paper considers how a multi-limbed robot
can carry out manipulation tasks involving simultaneous and
compatible end-effector velocity and force goals, while also
maintaining quasi-static stance stability. The formulation mar-
ries a local optimization process with an assumption of a
compliant model of the environment. For purposes of illus-
tration, we first develop the formulation for a single fixed
based manipulator arm. Some of the basic kinematic variables
we previously introduced for multi-limbed robot mechanism
analysis in [1] are extended to accomodate this new formulation.
Using these extensions, we provide a novel definition for static
equilibrium of multi-limbed robot with actuator limits, and
provide general conditions that guarantee the ability to apply
arbitrary end-effector forces. Using these extended definitions,
we present the local optimization problem and its solution for
combined manipulation and stance. We also develop, using
the theory of strong alternatives, a new definition and a
computable test for quasi-static stance feasibility in the presence
of manipulation forces. Simulations illustrate the concepts and
method.

I. INTRODUCTION

This paper considers how a multi-limbed robot can carry
out manipulation tasks involving simultaneous control of
compatible position and force goals while maintaining a sta-
ble quasi-static stance in the presence of gravity. A particular
motivation for this work comes from our experience with
using the RoboSimian robot (see Fig. 1) to compete in the
DARPA Robotics Challenge (DRC). Each of RoboSimian’s
four limbs incorporate 7 actuated revolute joints and three
retractable fingers on the distal end of the limb. Each limb
can either be used as a leg to enable locomotion, or as a limb
to carry out manipulation tasks, aided by the distal fingers.

Some of the DRC tasks, such as turning a water valve
handle mounted on a wall (see Fig. 1), require the vehicle to
simultaneously execute a complex manipulation task involv-
ing both position and force control of the end-effector on
one limb, while also maintaining stance stability throughout
the task execution using the other limbs. In the valve turning
example, the manipulating limb must generate a significant
torque about the valve’s rotational axis, while also controlling
the limb and gripper to compatibly track the motion of
the grasped valve handle as it rotates. We may need to
coordinate all of the actuators of the entire body, not just
of the manipulating limb, to generate the needed forces.
Additionally the end-effector forces generated during the task
must not destablize the robot’s stance.

This paper introduces a new method to implement com-
plex tasks of this sort, involving both end-effector task and
motion goals, as well as stance stability. Moreover, we
construct the control algorithm through a novel formulation
whose locally optimal solution can be reduced to a very
efficient convex program. This approach allows us to im-
plement real-time solutions on robots having the complexity
of RoboSimian. The approach’s underlying formalism also
allows us to develop new definitions and new criteria for
the feasiblility of quasi-static stances under the influence of
manipulation forces.

Fig. 1. Photograph of the Four-Limbed RoboSimian Robot used by the
JPL/Caltech team in the DARPA Robotics Challenge. This snapshot shows
RoboSimian turning a value on the vertical wall in the background using
one of its limbs, while maintaining quasi-static stance stability using its
other three limbs.

Relation to Prior Work. Our problem is closely related
to several important and historical problems in the field of
robotics. There is a vast prior literature on simultaneous con-
trol of end-effector force and position during manipulation
tasks using a fixed-based robot manipulator [2]. Numerous
frameworks for this problem have been introduced, such
as hybrid position-force control [3], impedance control [4],
stiffness control [5], [6], and operational space control [7].
Each of these approaches in turn has a rich literature concern-
ing the design, analysis, and control of manipulation tasks
within the respective framework. The method put forth in this
paper can be seen as a form of stiffness or admittance control
for multi-limbed robots that also incorporates stance stability



criteria into the formulation. We also use a novel Quadratic
Programming (QP) approach to formulate the problem. We
have shown in previous work [1], [8] that such a framework
can very efficiently solve the complex kinematic coordination
problems that arise in multi-limbed robot coordination tasks.

Our approach can also be considered as a form of whole
body manipulation [9] and mobile manipulation [10]-[12] for
the particular class of quasi-statically stable legged robots. As
opposed to fixed based manipulators, where stability is not an
issue, or wheeled-based manipulators where stability analysis
is straightforward, manipulation by multi-limbed walking
robots must also incorporate stance stability into the overall
manipulation planning process. We provide new explicit
results on quasi-static stability for the class of problems
defined above.

While this paper considers quasistically stable robots (with
n > 3 legs on the ground at all times), humanoid robots
must also contend with manipulation tasks while maintaining
postural stability, and previous studies have analyzed and
developed techniques for bipedal robots to carry out manip-
ulation [13]-[15]. Theoretical advances in Convex Program-
ming, and the associated introduction of efficient numerical
optimization codes, allow us to propose new approaches
which have not only serious computational speed advantages,
but also allow added flexibility and generality in specifying
the task objectives. We are not the first to propose the use of
Convex Optimization or Quadratic Programming techniques
for local motion planing of highly articulated mechanisms.
For a review of related work, see [8]. We do not consider
dynamic effects in this paper. However, many (e.g. [16],
[17]) have obtained controllers for full dynamic models
of humanoids with contact from simple convex QPs, for
balancing and walking.

Structure of the Paper. Section II summarizes the motion-
force task compatibility and stiffness-compliance modeling
assumptions that underly the proposed method. Section III
introduces our optimization-based framework for task control
in the context of a fixed base serial chain manipulator
mechanism. Section IV reviews some basic and essential
kinematics of multi-limbed mechanisms that we introduced
in previous work [1], while Section V extends the framework
of Sections II-IV to the multi-limbed robot case, while
incorporating quasi-static stance constraints. Section VI uses
the theory of strong alternatives to analyze the problem of
force balance in a multi-limbed robot working under both
manipulation and stance constraints. An explict set of criteria
is derived to describe the conditions under which a multi-
legged robot would not be able to maintain a quasi-static
stance in the presence of manipulation forces.

II. TASK COMPATIBILITY AND COMPLIANCE

The section describes our procedure to encode simulta-
neously feasible force and velocity goals. Our formulation
adopts the invariant form [18] of the classical Raibert/Craig
hybrid position-force control [3] framework, and combines
it with an assumed compliance model of the environment.

We assume that a set of constraint or task wrenches to
be controlled by application of end-effector forces are given.
These task wrenches are assumed to lie in a wrench space,
Wiask, having integer dimension, Ny ,:

w1
Wiask = span [W; Waw] £ Bw | @ |, (D
W Ny
forallw; € R, i=1,...,N,. The vector W; is the i basis

element for the wrenches associated with an [-dimensional
task space (I = 3 for planar tasks, and [ = 6 for spatial
tasks). We assume that NV,, < [. We term the matrix By the
wrench basis matrix for the task, as it defines the space of
wrenches to be controlled.

The velocity (or infinitesimal displacement) task goals
must reside in a compatible Ny -dimensional space of ve-
locities [19]:

v
Viask = Sparn [51 fNV] = Dy 2
’UNV

where Ny + Ny = [. The matrix Dy is said to be the twist
basis for the manipulation task. Each twist basis vector, &;
must have the following compatibility relationship with each
element of the wrench basis [18]:

& - Wi =0

for all ¢+ = 1,...,Nw and j = 1,..., Ny. When the
twist and wrench basis elements are represented in screw
coordinates, the associated screws must be reciprocal to
each other. Whenever this compatibility is violated, either
the goals are antagonistic (for some 4,7, W;-V; < 0) or
infeasible (for some 4, j, W; - V; > 0) [20].

p

—

Fig. 2. A Simple Model for Compliance

In general, a wrench basis B maps a contact wrench (f)
to a full wrenches F' as F' = Bf, and a twist basis D maps
a contact velocity v to a full twist V as V = Duv.

Next, we adopt a specific relationship between forces
and motions when the end-effector is in contact with its
environment. We initially assume a simple compliance model
that relates task wrenches at the end-effector to velocities
(or infinitesimal displacements) of the end-effector along
directions defined by the wrench basis.

For simplicity, let us first suppose that the robot interacts
with a rigid surface that in turn is attached to a spring, as
shown in Fig. 2. The robot contacts the surface at position p
in the world frame, and the robot applies a force f along the



normal to the rigid surface. Assuming the spring is linear,
the force applied by the robot and position of the contact
satisfy Hooke’s law,

f=kp

were p represents displacement from some initial contact
position given by p(0) = 0. To establish and maintain
a constant task force f;, the manipulator must move the
contact to p = 1 fa.

In practice, we may want to apply an arbitrary wrench
(i.e., a combination of forces and torques, and not a simple
Cartesian force) at the contact. In order to extend this very
simple linear compliance to handle this more general case,
recall that Poinsot’s theorem states that every wrench can be
interpreted as a ‘screw’ force — the combination of linear
force along an axis and a torque about the same axis.
We hypothesize a ‘screw-spring’ relationship between the
movement of the end-effector contact along a screw axis
to the wrench produced by this movement (as illustrated
by Fig. 3). Let £ (a unit twist) describe a particular screw
displacement. Then the contact wrench, F’, as a function of
end-effector position p along this screw is given by

F = (kp)§ .

Let the intial wrench at the end-effector be given by Fy,

Fig. 3. Extending the Model to 3D

corresponding to position py = 0, and suppose the desired
wrench is Fj;. The change in the wrench to be applied by
the robot is AF = Fy — F;. With this assumption, pgé =
—%AF; the desired wrench can be realized by moving the
contact point along p4€.

More generally, suppose we can compute

AF‘:F‘meas_F‘dv

where Fie,s 1s the measured wrench, during execution. Then,
we can achieve the desired wrench by moving the end-
effector with velocity

I
V=-EAF
k b)

where p is an arbitrary proportional gain. For convenience,
we set ;1 = 1 henceforth.

To extend this principle to the case of multiple con-
tact wrenches, suppose that a manipulator is required to
achieve a task wrench Wi,y lying in the span of By =
[Wi...Why,,]. Since each of the W; are associated with a

different contact, they may each be endowed with a different
stiffness k; > 0. Define a stiffness matrix to have the form

ki 0 0
K=o - o | 3)
0 0 ky,

In general, the only requirement on a stiffness matrix K is
that it is positive semidefinite. However, the wrench basis
can always be selected so that it is diagonal and positive as
in (3).
Now, suppose that the end-effector moves along a screw
E. Let
pi = (" Wi)p;

it represents the displacement along the direction of W;.
Then, the net contact wrench is

Nw
F =) kpWi =pKBwBj¢
i=1

Again, letting AF = Fpe,s — Wiask, We can achieve the
desired wrench by moving with a velocity V satisfying

Bw KBV = —AF. 4)

Eq. (4) is a general linear compliance relationship that allows
us to understand how motions result in forces; going forward,
we use this relationship in planning motion locally, to achieve
position and force goals. The relationship (4) is well known;
for example, it is along the same lines as the compliance
models in [21] and [6].

We recognize that there are shortcomings with our as-
sumed model for the environment.

1) The model assumes a linear elastic response of the en-
vironment. However, non-linear stiffness or compliance
models are readily incorporated via linearization of the
elastic model [21], [22] to construct a configuration
dependent stiffness matrix.

2) In most situations, the stiffness of the contact is not a
priori known accurately. In fact, very poor assumptions
about the environment’s compliance can lead to catas-
trophic results. To ensure safety, the assumed contact
stiffness should be assumed larger than the true contact
stiffness. The price to pay for this conservative modeling
approach is the potentially increased time needed to
reach a desired contact wrench. E.g., if the true stiffness
is £ and we assume it to be I~c, if we do not measure
force, then we apply a force equal to £ f. If an accurate
measurement, f.,,, of the force is available, the desired
force can be regulated with a simple motion control
law (e.g. law p = %( fa — feur) results in exponential
asymptotic convergence to the desired force.)

Our approach is motivated by the following practical
considerations in working with the RoboSimian vehicle, and
many similar robots. To realize a very high strength to weight
ratio, the motors in RoboSimian’s legs are highly geared (us-
ing harmonic drives), preventing us from exercising accurate
control of joint torques. However, very fine control over joint



displacements are possible, suggesting that we need a control
design approach which models the relationship between joint
motions and end-effector forces. Moreover, the distal tips of
each RoboSimian limb are covered with a thick compliant
rubbery pad, which can be accurately modeled using the
simple methods of this section. In the language of impedance
control, we must design an admittance for such systems.

III. SIMULTANEOUS FORCE AND POSITION CONTROL:
FIXED BASE MANIPULATOR

To gain intuition for the problem we wish to solve with
a multi-limbed robot, we first consider the simpler case of
a fixed base manipulator, and the corresponding simplified
problem. For a fixed base serial chain manipulator with
the ability to measure end-effector wrenches, we wish to
implement a local planning and control system which solves
the following word problem:
How do we move our joints so that
1) The end effector moves in the direction of a pose goal
along the subspace of allowed motions
2) The manipulator controls the applied wrenchs along
the allowed wrench subspace, based on a compliance
model.
3) The resulting manipulator motion is minimal when there
are redundant degrees of freedom.
We can formalize the solution to this intuitive word
problem as the following constrained minimization:

i Sllo = vall3+ SIA7 = (fa = fuas) 13+ J163)
subject to DLV =w
BLV =K'Af
J(0)§ =V

Where «, 8 and +y are positive weighting coefficients, Byy is
a wrench basis that spans the space of wrenches that are to
be applied by the end-effector, and Dy is a twist-basis whose
range includes the compatible subspace of end-effector ve-
locities. fy and f,eqs are the desired and measured wrenches
in the basis By/’s coordinates. The quantity (fq — fimeas)
is the end-effector wrench error, expressed in the wrench
basis, which should be controlled to zero by motions of the
manipulator. The coefficients « and 3 trade off the relative
importance of errors in the velocity and wrench goals, while
~v weights the importance of using a minimal motion to
solve the given problem. The first two constraints ensure
the compatibility relations described in the last section,
and we require that By, and Dy, when expressed in a
common frame, satisfy the relationship BI?VDV = 0. The last
constraint describes the manipulator’s kinematic relationship
between joint motions and end-effector velocities.

To simplify the form of the problem and its solution, define

Ui £ OzDv’Ud + ﬁBWK_l(fd - fmeas)~

which can be interpreted as the weighted instantaneous end-
effector displacement which moves towards the task goals.
With this definition, the constrained minimization problem

can be converted into an unconstrained minimizaton prob-
lem:

min %GT(P + 1) —n"'(J0) (5)

where
P = J(0)T(aBL Bw + BDLDy)J(6) .

It can be shown that a solution to (5) exists whenever «, £,
~ are nonnegative. When they are all positive, the solution
at each instant is given by

0 = (P +~I)"tJTy.

The resulting motion .J (9)9* can be interpreted as a weighted
or oblique projection of 1 onto the range of J(#). The extent
to which the force and motion goals are locally satisfied by
9:* is governed by the ratio of « to 5. Moving according to
0* gives us a method to locally step towards achieving the
task goal. In practice, this solution could be used iteratively
for planning and control, or to bias samples in a randomized
planner, and thereby make global search attempts tractable.

IV. REVIEW OF MULTI-LIMBED ROBOT KINEMATCS

Fig. 4. Key Reference Frames for Stance and Reach.

Although multi-limbed stance and reach kinematics is the
subject of our previous work [1], this section briefly reviews
some key concepts that are crucial to the present work. We
assume that the robot has N > 4 limbs so that it can maintain
balance in a quasi-static sense as one or more limbs engage
in manipulation tasks. As shown in Fig. 4, we assume a
fixed world frame, W, and an abdomen frame, A, attached
to the robot’s body. The frame attached to the manipulating
end-effector is £ (extending the model and methods to
accommodate multiple, simultaneously manipulating limbs
is straightforward). A shoulder frame, S;, is situated where
each limb attaches to the body, and can be thought of as the



base frame of the i*" limb mechanism. The joint angles in
the 5™ limb are denoted by 6; = (92»71 9i7ni)T, where
n; is the number of joints in the i*” limb. Joint angles
in the manipulating limb will be denoted by 6¢. Contact
frames c¢;, ¢ = 1,..., M (where M > 3) are fixed to the
environment where each of the M limbs makes contact with
the world. Note that if the manipulating limb makes contact,
M includes the manipulating limb. The z-axis of the ¢; frame
points along the inward normal to the surface, and the z and
y-axes are tangent to the surface. The end-effector’s contact
frame is denoted cg, and is attached to the task surface. The
origin of the center of mass is at C.

Each contact with world has a wrench basis B., that
spans the wrenches that the contact can sustain !. Forces
at the ground contacts f = [f1... fM]T are related to the
net wrench at the abdomen as seen abdomen frame, Fy4,
according to [1]

Fp=5f
where S is known as the stance map [1], and is given by

S=—[Ad". B, - Adl. BCM}7

Acy Acys
where Ad,,, transforms a velocity expressed in frame b to
one expressed in frame a [19]. The motion of the abdomen
is a function of joint motions, and is given by

Js(z0,0)0 = STV, .
where Js(xo, 5) is the Stance Jacobian [1]:

BT Ad;l J1(61) 0

gsicq

(6)

0 BT Ad-1!

%) Isprenr

It (Oar)

The variable g includes contact locations, orientations and
other information about the robot’s current posture. The
velocity V.5 should be read as ‘the velocity of b with respect
to a as seen in frame c’.

In the equations above, and throughout the paper, 0 is the
vector of all of the joint rates in the supporting legs, while
© is the vector of joint rates including those of the legs as
well as those in the manipulating arm. With this in mind, the
velocity of a manipulating end-effector is given by

JR(@, .130)@ = STV;;;\‘S
where

JR(©,20) = [Js(wmé) ST Je(0)

is the reach Jacobian [1], which relates the motion of the
joints in both the manipulating limb and the supporting limbs
(which are restricted so as to maintain the feet contacts at a
fixed location) to the motion of the end-effector.

'For more information on wrench bases of frictional contact, see [19].

V. SIMULTANEOUS FORCE AND POSITION CONTROL FOR
LEGGED ROBOTS

We now extend the ideas of Section III and IV to the
case of multi-limbed robots which use one or more limbs
to carry out simultaneous velocity and force manipulation
tasks, while also maintaining a static equilibrium. We restrict
our analysis to the case of one manipulating limb, with the
remaining limbs providing support. The manipulating limb
contacts the world, with the goal of imparting wrenches to
its contact as defined by the wrench basis Byy. Now we
can express the manipulation task wrenches in the abdomen
frame as

F#' = Ad!, Bwfe

where f¢ is the manipulating contact force expressed in
the coordinates of By. We also define a twist basis Dy
that compliments By, and satisfies the local compatibility
condition. In [1], we showed that an end-effector motion
can arise from some combination of abdomen movement
and free-limb movement. However, for free-limb forces,
wrenches applied by the end-effector must be resisted by
the supporting limbs in order to maintain static equilibrium.

To accomodate a manipulating limb in contact, it must be
accounted for in the stance map,

ground contacts

S:—[AdT_l B., ... AL, B.,, AdL By

g.Acl Acpyr gAg
manipulation contact

as well as in the vector of contact forces, f =

T
L‘l e fg:| . The Stance Jacobian too must include
t

e block diagonal term associated with the manipulating
limb (the index M in (6) is replaced by &).

Definition 1: A multi-legged robot is in static equilibrium
if there exists f satisfying

Sf = Adge,9
feFC

Where f is a vector of contact frame forces including those of
the manipulating limb, G is the gravity wrench acting on the
origin of the center of mass frame C and FC is the friction

cone 2.

We can use this definition to obtain the set F¢ of end-effector
forces that can possibly be produced by the mechanism in
its current configuration

Fe={x—-G|zeR(S}

where R(A) is the range of matrix A. In general however, the
set of feasible manipulating forces F¢ depends not only on
the wrench basis By but also on the nature of contact of the
supporting legs, defined by the friction cone. The following
provides some general conditions under which a stance can
produce any manipulating force:

2The friction cone is the set of forces that satisfy the chosen contact-
friction model For backround and examples, see [19]



Proposition 1: A legged robot can sustain any end-
effector manipulating force, fg, if and only if S is surjective,
and there exists fq satisfying Sf; = G, and there exists an
internal force fi, € N'(S) ? such that fi, € int(FC).

Proof *. <= Let fg € FC¢. Since S is surjective, there exists
f' € FC such that Sf' + By fe¢ = 0. Now, since fi, €
FC and since FC is a cone, for any a > 0, afi,, € FC.
For a large enough, af, + f’ € FC since the friction cone
is closed and since f,, € int(F'C)). Then, we have S(f, +
[f/ =+ afn fS]T) =G.

= Suppose that we have Sf + By f¢ = G. Pick f1 €
int(FC) so that Sf; = F' # 0 and select f5 satisfying S fo =
—F. Then, set fix = f1 + fo. We now have S fi, = 0 and
fim S int(FC).

Now that we know how forces at the contacts result in
forces at the abdomen, we can ask how do motions of the
abdomen result in forces on the abdomen? It makes little
sense to define a stiffness that relates abdomen motions to
wrenches on the abdomen directly as we did for the end
effector. Instead, we must obtain a compliance relationship
between contact forces at the feet or end-effectors and
abdomen motions.

Let the stiffness matrix for the i*"* limb stance limb that
makes contact be K (see equation (3) in section II) , defined
with respect to its contact frame. Contact frame velocities v;
and contact frame forces f; are related by

KiVi = fi-

More generally, if the manipulating limb makes contact, then
we must include the effect of the manipulating limb’s motion
in the subspace defined by the basis Byy. Contact velocities
and forces (in the coordinates of Byy) are related by

fg = Kgljg.

In [1], we showed that instantaneous contact velocites are
related to abdomen velocities by

STVﬁ A — 14
T
where v = |11 vam—1 ve] . Therefore, we get the fol-
lowing compliance relationship between abdomen wrenches

and velocities:
KsVis 4 = AF4 (7)

Where we call Kg the stance stiffness matrix:
Ks = SKST, (®)

where
K 0 0 0

k=10 "0 0
0 0 KM ¢
0 0 0 K¢

3N(A) = Null Space of matrix A.
“This proposition is similar in nature to Proposition 5.2 in [19] and the
proof is along the same lines

When the manipulating limb is not in contact, K will not
include the last diagonal block representing the manipulating
contact stiffness.Note that in general, K is invertible, since
the stiffness matrices K; and K¢ are positive definite, by
convention (see section II), and since S will generally be
onto 3.

Now we address the issue of achieving a manipulation
goal that requires moving from one pose to another, while
achieving and maintaining a wrench. Compared to the fixed
base manipulator of Section III, we must account for gravity
and for the motion of the supporting legs. We must also
include the compliance model from Section II to relate forces
and velocites.

In words we want to solve the following problem: given a
combined pose and wrench goal for the manipulating limb,
move the manipulating and supporting limbs’ joints so as to

o Ensure that the end-effector moves towards the pose
goal, within the motion subspace defined by Dy, .

o Control the end-effector wrench to lie with the wrench
subspace defined by By, towards achieving a desired
wrench.

o Ensure that static stance equilibrium is achieved by
regulating the net wrench at the abdomen due to gravity.

« move minimally when the robot is redundant.

Hgn allve — vf,d”% + BIAF4 — Fmeasn%

+ 1A fe = (fe,a — femeas)|3 + /O3

subject to STV = Jr©
DEAdy, Ve = ve ©)
BgVAdQSAVVéS = KglAfS
STV 4 = Jsb

KsVis 4 = AF4

where F4 is the net wrench on the abdomen, F),..s is the
measured wrench at the abdomen,

Fmeas = Sfmeas -G

with fi,eqs being the vector of measured contact wrenches at
the supporting feet and G the gravity wrench as seen in the
abdomen frame. vg 4 is the motion goal for the end-effector
expressed in the twist basis Dy and Afe is the desired
change in force written in the wrench basis By, as seen in
the abdomen frame. fg meas and fg g are the measured and
desired end effector forces respectively, in the task wrench
basis’ coordinates. The matrices K¢ and Kg are the end-
effector and stance stiffness matrices respectively. All of the
full wrenches above and henceforth are expressed in the
abdomen frame.

Conceptually, the solution to (9) provides a proportional
control law that will drive error in position and force to zero,
locally. To see this more clearly, we can simplify the problem

Swhen it is not, the robot is not force resistant [1], and is in a poor
configuration for manipulation



above by making the relationship between variables explicit.
Let

ne = aDyve q+ BBwKz ' (fe,a — fe meas) »

and let
na = KglFMeas-

Then, the problem (9) can be written as

Vi = nell3 + BlIViya = nall3 + 71613

min
6
subject to STV = Jr© (10)
STV 4 = Jsb

Proposition 2: The problem (10) has a solution whenever
«, 0 and 7 are non-negative. It has a unique solution
whenvever «, 3 and «y are positive, there is no motion that
keeps both the abdomen and center of mass stationary, and

dim(R(Dv)) + dim(R(Byy)) = 6.

The proof of this proposition follows readily from writing
down the KKT conditions for (10), and considering the rank
of the resulting ‘KKT Matrix’, that relates the optimal values
of © and its dual to the problem data (see [23]).

Note that the problems (9) and (10) do not include friction
cone contstraints at the contacts. The local analysis (Prop. 2)
in the presence of the friction cone constraints is the same
when forces are interior to the friction cone. When the forces
are on the boundary, local feasibilty depends on the particular
friction model in use. We address the issue of feasibility
with respect to the friction cone and actuator limits in the
following section.

VI. STANCE FEASIBILITY AND ALTERNATIVES

In [1] we used a standard geometric notion of quasi-static
balance: in a quasi-statically stable stance, the center of mass
remains over the support region defined by the location of
the legs’ contacts with the supporting terrain. However, if
we want to account for end-effector forces and torque limits
we must take a different approach, since large end-effector
forces and excess joint torques can destabilize the robot.

We start by asking what it means to be statically stable
when we can measure end-effector wrenches. Fundamentally,
there should be no net forces acting on the robot mechanism.
This implies that all of the contact forces (at both the
manipulating end-effector and at the ground contacts) must
be balanced with the wrench applied on the mechanism due
to gravity. Moreover, the robot must be able to balance these
forces within its actuator force or torque limits. Using the
kinematics from the previous section, this balance require-
ment can be posed as the following feasibility problem:

find f

Sf+Ad], G=0
—mu < JEf<Tm
feFC

subject to

(1)

where there are symmetric torque limits with magnitude
Tpr on the joints. To better understand the meaning of this
problem, and to understand exactly when or why we fall,
we explore the strong alternative to this feasibilty problem
— as the name suggests, this is an alternative feasibility
problem that certifies the infeasibility of the current one.
The alternative arises from posing the fesibility problem as
a constrained minimization (with a constant objective func-
tion), and computing the conditions under which a solution
exists; the negation of these conditions is an alternative. ©
The alternative feasibility problem is:

Find Vi, 0
subject to (Vi3 )" (Ad,,G) > 077y
STvA, =Jb6+v (12)
v € FC*

where FC* is the dual to the friction cone given by
FC* = {v | v*'f > 0 for allf € FC}

and represents a set of contact velocities that result in slip
(the instantaeous power generated by these velocities is
positive). This alternative feasibility problem provides us
with a concrete understanding of when the robot cannot
remain standing; exactly one of (11) and (12) are true. In
words,the robot will fall in the current configuration, if there
is a local abdomen motion V3 ,, that generates more power
under influence of the gravity wrench than can be provided
by the joints. Moreover, this motion is not limited to be
one that is produced by the joints, but can also result from
slipping at the feet. The slip is encoded by the contact
velocity v.

Although we used these feasibility problems to gain in-
tuition, both the original and alternative problems can be
solved computationally to obtain contact forces for planning.
Moreover, the problems can be assigned objectives to obtain
optimal contact forces. For grasping, examples and proce-
dures for doing this, using Linear Matrix Inequalities, are
given in [24], [25]. Similar approaches may be taken for
legged robots.

VII. EXAMPLE

This section will apply some of the concepts from previous
sections to illustrate the kinds of tasks which are suitable
for the proposed method, and the solutions the produces.
In particular, we apply the optimization problem (10) to
the redundant planar mobile-manipulator shown in Fig. 5.
This manipulator is capable of walking quasistatically, and
manipulating while standing. Gravity, G, acts downward.
This example is an extension of the one in [1].

Suppose this manipulator is tasked with painting a com-
pliant ceiling. Although most ceilings are very stiff, we can
lump the stiffness of the roller and ceiling into one. The task
requires pushing upward, and moving side to side. Because
the associated twist and wrench are reciprocal, this task will
satisfy local compatibility throughout execution.

SFor a more detailed explatation, plase see [23].



Fig. 5.

Redundant Planar Walker

Suppose that the end-effector begins at + = —1.5 and
must move to x = 1, and in the process achieve a force of
1 N upward. We assume that the ceiling’s stiffness is k. =
4Nm~1 (the stiffness is intentionally low for the purposes
of illustration). Iteratively applying the solution to (10) with
a = f = 10 and v = 0.1 results in the motion shown
in Fig. 6. The resulting motion is smooth and uses all of
the body’s degrees of freedom to achieve the task, while
remaining balanced. The initial mechanism position is shown
in blue, while the final one is red.

-2 -1 0

Fig. 6. Simulated Solution

VIII. CONCLUSION

This work studied the kinematics and feasibility of of
combined force and position control for multi-limbed robots.
We used a classical framework for the combination of
forces and positions, and provide a novel compliance model
to relate forces to motion. With these assumptions, we
first considered the local planning problem for combined
force/position tasks with a fixed-base manipulator. We then
developed some necessary kinematic extensions for multi-
limbed robots, and posed the corresponding local planning
problem as a constrained optimization.

To gain intuition, we defined and analyzed stance and
wrench feasibility, and obtained conditions under which they
are possible or infeasible. Finally, we provided a simple
example with a planar walker.
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