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Abstract— Apprenticeship learning has recently attracted a
wide attention due to its capability of allowing robots to learn
physical tasks directly from demonstrations provided by human
experts. Most previous techniques assumed that the state space
is known a priori or employed simple state representations that
usually suffer from perceptual aliasing. Different from previous
research, we propose a novel approach named Sequence-based
Multimodal Apprenticeship Learning (SMAL), which is capable
to simultaneously fusing temporal information and multimodal
data, and to integrate robot perception with decision making.
To evaluate the SMAL approach, experiments are performed
using both simulations and real-world robots in the challenging
search and rescue scenarios. The empirical study has validated
that our SMAL approach can effectively learn plans for robots
to make decisions using sequence of multimodal observations.
Experimental results have also showed that SMAL outperforms
the baseline methods using individual images.

I. INTRODUCTION

Apprenticeship learning (AL) has become an active re-
search area in robotics over the past years, which enables
a robot to learn physical tasks from expert demonstrations,
without the requirement to engineer accurate task execution
models. AL has been widely applied in a variety of practical
applications, including object grasping [1], robotic assembly
[2], helicopter control [3], navigation and obstacle avoidance
[4], among others [5], [6], [7], [8]. AL methods automatically
learn a mapping from world states to robot actions based on
optimal or near optimal demonstrations. These methods can
also quantify the trade-off among task constraints, which can
be difficult or even impossible for manual task modeling.

Given the advantage of AL, however, most previous tech-
niques focused only on either perception or decision making
without good integration between these two key components
[9], [6]. It limits the capability of AL methods to address
real-world problems when a robot needs to make decisions
based upon online observations, especially in cases when the
perception data consist of multiple modalities obtained from
a variety of equipped sensors. To address this issue, several
methods were proposed to integrate perception and planning
within the same AL formulation. A promising direction is
to utilize images perceived by robot’s onboard cameras as a
representation of the current state, and then use supervised
learning or reinforcement learning for decision making [10],
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Fig. 1. Overview of the proposed SMAL method to achieve robot appren-
ticeship learning. Our SMAL approach is able to simultaneously integrating
temporal information and multimodal observations to generate a multimodal
sequence-based representation of world states. In addition, SMAL integrates
perception and decision making for robots to learn physical tasks directly
from sequences of multimodal observations. Our SMAL approach has been
validated in search and rescue applications to find victims.

[11]. However, state representation and recognition based on
individual images often suffer from the issue of perceptual
aliasing (i.e., multiple distinct states of the world give rise
to the same percept), due to their incapability to incorporate
temporal information or multimodal observations. Unreliable
perception will result in wrong planning and decision mak-
ing, and possibly fail the tasks.

In this paper, we develop a novel Sequence-based Multi-
modal Apprenticeship Learning (SMAL) method to integrate
spatio-temporal multimodal perception and decision making
in the AL scenario. Instead of using individual images, we
propose to represent a world state directly as a sequence of
multimodal observations. Then, state recognition is achieved
by our new multimodal sequence-based scene matching that
integrates multimodal features obtained from each individual
frame and fuses temporal information contained in the whole
sequence. Then, we introduce a framework to integrate the
sequence-based multimodal state perception with a reinforce-
ment learning method to achieve apprenticeship learning. We
evaluate the proposed SMAL approach in challenging search
and rescue applications, as we believe our new AL paradigm
has potential to address several critical tasks such as victim
search and path planning.

The main contributions of this paper are twofold. First, we
propose a novel representation of world states, and introduce
an approach to recognize the states by simultaneously fusing
temporal information and multimodal data. Second, we de-
velop the SMAL approach that integrates multisensory robot
perception and decision making to learn tasks from human
experts in challenging environments with perceptual aliasing
(e.g., disaster scenarios).



The rest of this paper is organized as follows. We describe
related publications in Section II. In Section III, we propose
the sequence-based multimodal state learning. In Section IV,
we discuss perception and decision making integration. After
presenting experimental results in Section V, we conclude
our paper in Section VI.

II. RELATED WORK

In this section, we provide a review of AL techniques, and
state representation and recognition methods.

A. Apprenticeship Learning

Apprenticeship learning [6], also known as learning from
demonstration (LfD) or imitation learning (IL) has attracted
numerous attention in recent decades [12], [13], [14], which
allows robots to accomplish tasks autonomously by learning
from expert demonstrations without being told explicitly.

Many AL methods were reported in various applications,
which fall into two categories: Direct and indirect approaches
[12]. Direct approaches directly imitate experts by applying
supervised learning to learn policy as a direct mapping from
states to motion primitives. In problems with discrete action
space, classification methods are used as mapping functions
[13], [15], [16], [17]. For example, interactive policy learning
was proposed to control a car from demonstrations based on
Gaussian mixture models [16]. AL techniques based on k-
Nearest Neighbors (kNN) classifiers were implemented to
learn obstacle avoidance and navigation [17]. In problems
with continuous action space, regression-based methods are
typically used as state-action mapping functions [10], [18],
[19], [20]. For example, driving actions were learned through
mapping input images to actions using neural networks [10].
Robot control policy was also estimated in soccer scenarios
using sparse online gaussian processes [20].

Indirect approaches models the interaction between agent
and environment as a Markovian decision problem, which
select the optimal policy to maximize certain reward. Most
methods manually defined the reward function. For example,
hand-crafted sparse reward functions was applied for policy
synthesis in the task of corridor following in the reinforce-
ment learning framework. Reward functions depending on
the swing angle were implemented in a ball-in-a-cup game
[14], in which optimal actions were chosen to maximize the
accumulated reward. Due to the great challenge to define an
effective reward function [5]. Inverse reinforcement learning
was proposed to learn optimal reward functions given expert
demonstrations [21], [22], [23]. For example, three methods
were demonstrated in grid world and mountain-car tasks [9].
An inverse reinforcement learning method was proposed to
recover unknown reward functions under MDP framework,
which was able to output policy with performance close to
that of the expert [6].

However, most previous studies assume the state space is
known a priori, which still require at least partially manual
construction of state space. To address this issue, we propose
a state learning method to automatically construct state space

from multimodal sequential observations provided in expert
demonstrations.

B. State Representation and Recognition

As our objective is to integrate decision making and robot
perception that applies onboard sensors to perceive the world
state, this review will focus on methods that represent world
states based on raw data directly acquired by optical cameras,
which have become a standard sensor in modern robots.

Representation: Many techniques have been implemented
to characterize and represent world states from image data
based on features. Local and global features are two main
categories for visual state representation [24]. Local features
describe local information in a part of an image, including
SIFT [25], ORB [26], etc. Such techniques apply a detector
to identify interest points in an image and extract a feature
vector by applying a descriptor around each interest point.
Unlike local features, state representations based on global
features describe the whole image, which encode its global
color, shape, and texture signatures [27]. Examples of global
features include LDB to encode intensity and gradient dif-
ferences of image grid cells, GIST [28] to encode dominant
spatial structures, and the recent deep feature to learn image
statistics [29].

Recognition: Most of the previous state recognition meth-
ods (e.g., scene recognition) are based on individual-image
matching, using pairwise similarity scoring [30], [31], near-
est neighbor search [32], [33], [34], and sparse optimization
[35], [36]. However, it has been demonstrated that state (or
scene) recognition based on individual images cannot work
well in challenging environments (e.g., with strong percep-
tual aliasing) [37], [38], [30], [31] and fusing information
from a sequence of images is critical to match between states
[30].

Different from previous techniques, we propose a unified
formulation to simultaneously fuse multiple types of features
to represent states and match sequence of multimodal obser-
vations for state recognition.

III. SPARSE MULTIMODAL STATE LEARNING

We propose a novel SMAL approach to (1) represent and
recognize states based on multimodal observation sequences,
and (2) integrate state learning with decision making to guide
robot actions (e.g., performing victim search and rescue in
disaster areas). This section focuses on contribution (1), and
contribution (2) will be detailed in the Section IV.

Notation. In this paper, we represent vectors as boldface
lowercase letters, and matrices using boldface, capital letters.
Given a matrix M = {m,;} € R"*™, we refer to its i-th row
and j-th column as m’ and mj, respectively. The ¢;-norm
of a vector v € R™ is defined as [|v|[;y = >_7" , |v;], and the
l3-norm of v is defined as ||v|]]2 = V'vTv. The {2 1-norm
of the matrix M is defined as:

M|z =) | > mE = |lm’]: (D
i=1 \ j=1 i=1




A. Sequence-based Multimodal State Matching

To solve the problem of state identification in challenging
real-world environments (e.g., disaster scenarios in search
and rescue operations), we propose to incorporate a temporal
sequence of observations (e.g., images) for state recognition
and fuse multiple heterogenous sensing modalities to capture
comprehensive environmental information to address percep-
tual aliasing.

Assume a set of templates encoding the states (e.g., scenes
in victim search) from a target area X = [x1,Xa2, - ,Xp] €
R™*™ and each template contains a set of r heterogenous
feature modalities x; = [(x}) ", (x2) ", - - ,(X;")T]T e R™,
where xg e R™i 5 =1,---,r represents the feature vector
of length m; extracted from the j-the feature modality and
m = Z;Zl m;. Because our method focuses on sequence-
based state learning, we group adjacent observations (e.g.,
camera frames) together as a temporal sequence to encode
each state, resulting in the set of sequence-based templates
X = [X!, X2 ... X*], where X7,1 < j < k denotes the
7-th sequence that contains [ images acquired in a short time
period, and k is the number of sequences in the set satisfying
k = |n/l]. Then, given a new query sequence containing a
set of [ multimodal observations Y = [y1,y2, - ,¥i] €
R™*! we formulate state identification as a learning task to

estimate the weight matrix, W = [wq, wa, -+ , W;]:
1 1 1
Wi W3 ... W
w2 wi ... wl
1 2 1 nxl
W = eR"™™, (2
wio ows ... w,

where w € R! denotes the weights of the templates in the
g-th sequence X7 with respect to the p-th query observation
¥p in the sequence Y.

Since individual observations in template and query se-
quences can be noisy or contain missing values, we propose
to constrain each observation y in the sequence Y to only
rely on a small number of representative template sequences
for state recognition, leading to the regularized sparse opti-
mization problem as follows:

l
nvnvn; (IXw; = yill2 + Allwillh) , 3)
where the ¢;-norm regularization of w; forces the sparsity
of the scene templates used to represent the query scene. Eq.
(3) can be rewritten as a more compact matrix expression:

min [|(XW =) "l2.1 + AW, @)

where W1l = 570, [ will1.

However, the regularizer of weight matrix W in Eq. (4) is
an element-wise ¢;-norm, which ignores the interrelationship
among individual feature modalities within each observation
y. To encode this interrelationship among individual modali-
ties within an individual observation y, we use the {5 ;-norm
as a new regularization:

H%},HH(XW—Y)THQJ + AW |21 (5)

The ¢5 ;-norm regularization applies an ¢3-norm to enforce
group effects of all individual modalities in the same individ-
ual observation, and uses an /;-norm to enforce the sparsity
among individual observations.

To enable sequence-based state recognition, we propose a
new regularization to model the group structure among all
sequences. We name it the S;-norm, because it is a structured
¢1-norm encoding the group structure of W, as follows:

l k
Wils, = > Wl ]a. (6)

i=1 j=1

The S;-norm applies the ¢3-norm on individual observations
within each sequence, and the ¢;-norm among sequences.
That is, the new S7-norm not only enforces the observations
within the same sequence to have similar weights, but also
enforces the sparsity between sequences. For example, if
a template sequence X' is not representative for a query
observation Y, the weights of the individual observations
in X’ have small values; otherwise, their weights are large.
Thus, the final optimization problem becomes

min [(XW = Y) 21 + AtWll21 + Aol [W]ls,. (7

B. State Space Learning and State Identification

Our previous discussion is based upon the assumption that
the state space has been provided during the training phase
using expert demonstrations. However, the critical problems
of how to construct state space has not been discussed.

To address this problem in the training phase, we introduce
a new approach in Algorithm 1 to automatically construct
the state space S for our sequence-based state recognition.
Intuitively, if a query sequence does not match any template
sequences within the database, it will be inserted into the
database. Formally, after obtaining the optimal weight matrix
W, given a new sequence Y during training, we identify its
state by matching Y with all existing template sequences X.
If the weight of a template sequence X/ satisfies:

l
doIwllh <, ®)
=1

where 7 is a threshold with a small value, then we conclude
that Y does not match the sequence X7. If Y does not have
any matches in X, we add Y into the template database. This
approach ensures that there exists only one representative
sequence in the template database to encode the same state
(e.g., the same scene with similar viewpoints). If duplicated
sequences are provided, our algorithm will ignore them, and
the state space S will remain the same.

During the execution phase, given the query sequence of
multimodal observations Y obtained by the robot, our SMAL
method recognizes its state by solving the following problem:

l

s:argm;aXZHWthj=1a2,-~-,k’, 9)
7=t

where W{ is computed by Algorithm 2.



Algorithm 1: State space learning

Input : Observations recorded during demonstrations
Output: S (state space), X (state template database, or
STD), and s-stream (state stream).

1: Initialize: X, S, s-stream = &.
2: while there exist unprocessed observations do

3 Calculate the optimal weight matrix W according
to Algorithm 2 with respect to X and the current
sequence of observations Y

4 if no match is found by Eq. (8) then

5 X+ [X,Y];

6: Add the new state to the state space S;

7 else

8 ‘ Find the matched state by Eq. (9);

9 end

10: Append the current state to s-stream;

11: Go to the next sequence of observations;

12: end

w

: return S, X, s-stream.

C. Optimization Algorithm

Although the optimization problem in Eq. (7) is convex, it
is challenging to solve it since there are non-smooth terms in
the objective function. Here we provide an efficient algorithm
to solve this problem that grantees theoretical convergence.

After taking the derivative of Eq. (7) with respect to W
and setting it to 0, we have

XTXWP —X'YP + M QW + ,R'W =0, (10)

where P is a diagonal matrix with the ¢-th diagonal element

equals p;; = m, Q is a diagonal matrix with the

and R’ is a block diagonal matrix
_ 1
. . . . 2lwillz .
! dimensional identity matrix. For each ¢, we obtain

i-th element as s—5—,
2[[we]l2

with the i-th diagonal block as I, where I denotes an

pi X Xw; — pii X yi + MQw; + oR'w; = 0. (11)
Therefore, w; can be calculated by
w; = pi (piX X + M Q + ARY) - X'y;. (12)

We can observe that the matrices P, Q, and R in Eq. (12)
all depend on the weight matrix W, which are unknown. To
solve this regularized optimization problem, we propose an
iterative solver as presented in Algorithm 2. We can prove
that Algorithm 2 guarantees the theoretical convergence to
the global optimal solution. Detailed analysis and mathemat-
ical proof is provided in Appendix.

IV. INTEGRATION OF STATE PERCEPTION AND
DECISION MAKING

Beyond the ability to automatically learn states, our SMAL
method is also able to integrate state perception and decision
making. This integration allows a robot to directly utilize raw
multisensory observation sequences to make decisions and

Algorithm 2: An iterative algorithm to solve the sparse
optimization problem in Eq. (7).
: The scene templates X € R™*",

the query sequence of frames Y € R™*!,
Output: The weight matrix W € R™*!,

1: Initialize W e R"*!;

2. while not converge do
3: Calculate the diagonal matrix P with the i-th
diagonal element as p;; =

Input

4: Calculate the diagonal matrix Q with the i-th
diagonal element as m,

5: Calculate the block diagonal matrix R* (1 < ¢ <)
with the j-th diagonal block as mlﬁ

6: For each w; (1 < i < s), calculate

wi = pi (X X + M Q + AR T X Ty

end
g return W € R"*!,

e

take actions, without assuming perfect perception or hand-
crafted states that are not practical in complicated real-world
environments (e.g., search and rescue scenarios).

We propose to achieve the integration of our state per-
ception with the general Markov decision process (MDP)
model, which has been widely employed for robot decision
making, to show the generalization of our SMAL method
that has the potential to impact various robotics applications
using MDP. From the viewpoint of real-world online robot
execution, the input data into our integrated model is the
raw multimodal observation sequences obtained by sensors
equipped on the robot, and the output of our SMAL method
is an optimal action learned in response to the state identified
by our perception method.

Formally, the integrated perception and decision making
model of our SMAL method is represented as a tuple (2 =
(S, A,T,R,~), where S = {sg,s1, - ,sn,} denotes a fi-
nite set of discrete states; A = {ag,a1,--- ,an, } represents
a finite set of discrete actions that human/robot can perform
to activate state transitions; 7 : S x A x & — [0, 1] denotes
a discrete transition function representing the probability of
a state transition resulted from an action; R : S x A — R
denotes a mapping from the state-action pair to a scalar,
representing the immediate reward received when the robot
takes action a € A in state s € S; and 7y € [0, 1] is a reward
discount factor. Different from previous MDP-based methods
whose states are typically computed at a specific time point
and represented by a single modality, our integrated model
represents a state based on a sequence of observations with
multimodal modalities. This integration is realized using our
sequence-based multimodal state recognition method that
transfers a multimodal observation sequence Y € R™*! into
a discrete value s = s(Y) € Z, as defined in Eq. (9).

Same as all MDP-based decision making, our integrated
model aims to learn a policy 7 that is defined as a mapping
from the learned state space S to the action space .A. The



value of a policy 7 is given by V7™ = 3"7° (7' R(s¢, m(s¢)).
Then, the objective of decision making is to find an optimal
policy 7* to maximize the value function V7
oo
= argmaxz'th(st,w(st)) (13)
" =0

In the following, we describe our implemented methods to
learn other components of the MDP model used in integrated
SMAL method, as follows:

Learning Action Space. The action space A can be learned
based on the kinematic data collected during expert demon-
strations. In our experiments, teleoperation command streams
provided by humans are recorded and used to learn the action
space A, where each action a € A consists of a sequence of
[ atom movements. Such atom movements include moving
forward, moving backward, turning left, and turning right.
Ideally, actions are continuous, but robots perform actions in
discrete-time during the execution phase, since the specific
optimal action is selected based on the current state, which is
discrete and recognized at every ! frames. The action space
A is learned by Algorithm 3.

Algorithm 3: Algorithm to learn action space A

Recorded kinematic stream k-stream, and
state stream s-stream learned by Algorithm 1
Output: The action space A, and action stream
a-stream.

Input

1: Initialize: a-stream, A = @.

2. while there exists unprocessed kinematic data do

Get a sequence of [ atom movements am from the
kinematic stream

w

4 Append am to the action stream a-stream;
5: if am is not contained in A then

6 | Insert am to A;

7: end

8: end

9:

return A, a-stream.

Learning State Transition. The state transition T'(s,a, s")
represents the probability that the system will end up in
state s’ after taking action a in state s. The state transition
T is learned using the state and action streams obtained in
Algorithms 1 and 3, respectively. In our implementation, the
state transition is learned by Algorithm 4.

Learning Immediate Reward. After the MDP model 2 =
(S, A, T)\R is learned, we are able to learn the immediate
reward R(s,a) provided by the human demonstrations and a
predefined . A widely used technique is inverse reinforce-
ment learning. We directly employed the technique in [9], in
which reward learning is formulated as a sparse optimization
problem since the maximum reward (i.e., finding victims) in
our application is achieved at the end state.

V. EXPERIMENTS

To evaluate the performance of our SMAL approach, we
performed two sets of experiments in different scenarios to

Algorithm 4: Algorithm to learn state transition.
Input

State stream s-stream and action stream
a-stream
Output: The state transitions 7'

Initialize: State transition map ST M = &,
for i = 1 : length of s-stream do
| Append the value of key s(i) with (a(i), s(i + 1)).
end
for key s in ST M do
; T(s.a,5) = Number of (a,s’). in STM]s]
Number of (a) in STM]s]

AN

7. end
8: return 7.

address the application of robot-assisted search and rescue,
including (1) urban search and rescue in simulation, and (2)
indoor search tasks using real robots. The mission objective
for the robot is to find a victim within the environment, who
are not directly viewable by the robot.

In our experiments, the (simulated and real) robots employ
a camera to perceive the surrounding world; multiple feature
modalities are applied to extract information to represent the
world. To enable real-time performance, we intentionally use
feature modalities that can be extracted efficiently, including
low-resolution color features on 24 x 32 downsampled images
and histogram of oriented gradients features on 240 x 320
downsampled images. The visual feature modalities are nor-
malized and concatenated as a multimodal representation of
individual observations.

A. Urban Search and Rescue Simulation

In this set of experiments, we apply the Webots simulator!
[39] to evaluate our SMAL approach in an urban search and
rescue application. The objective is to let a robot learn how to
find victims in large urban areas from expert demonstrations.
We chose the campus of the Colorado School of Mines as
our urban environments. The Google satellite map of this
area is shown in Fig. 2(b). We imported the OpenStreetMap?
of this area into the Webots platform, as illustrated in Fig.
2(a). The robot and victim models we built in the Webots
platform are shown in Fig. 2(a). The two-wheel mobile
robot, named Rescuebot, equips with a color camera with a
1024 x 768 resolution. In addition, we are able to obtain the
accurate Rescuebot’s location and rotation information from
the simulator, which is used as the ground truth to evaluate
state recognition. The victim is lying on the ground without
any movement during the entire simulation period, waiting
for a robot to find him.

During the training process, we teleoperated the Rescue-
bot to approach the target victim using keyboards as the
expert demonstration. The image sequences obtained by the
Rescuebot and the keyboard teleoperation commands were

'Webots: https://www.cyberbotics.com.
2QOpenStreetMap: http://www.openstreetmap.org/#map=18/
39.74966/-105.22212.
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Fig. 2. Experiment setups and qualitative results in robot-assisted urban search and rescue scenarios. Fig. 2(a) illustrates the simulated environment. Fig.
2(a) shows the Google satellite map of the real campus environment of the Colorado School of Mines. Fig. 2(c) illustrates qualitative results with the top
row showing the robot moving route and the bottom row showing the observations obtained by the robot camera.

recorded to train our SMAL method. After training was
completed, the Rescuebot was able to automatically execute
search operations using the learned model in the testing
phase.

To qualitatively evaluate the experimental results, an ex-
ample route that the Rescuebot successfully finds the victim
in the execution phase is presented in Fig. 2(c). It demon-
strates that, although the Rescuebot cannot see the victim
directly, the robot is still able to move and search around to
locate the victim. This qualitative result demonstrates that our
SMAL method enables robots to learn how to autonomously
search for victims in urban search and rescue scenarios.
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Fig. 3. Quantitative evaluation of our SMAL approach in simulated urban
search and rescue scenarios.

In addition, we perform quantitative validation using the
precision-recall curve as a metric to evaluate the performance
of state recognition, as shown in Fig. 3(a) (curves closer to
the top right corner indicating a better performance). We
also compared the SMAL approach to the baseline method
based on individual images with the same modalities, which
is demonstrated in Fig. 3(a). It is observed that our SMAL
method for sequence-based state recognition outperforms the
baseline method using individual images.

We also evaluate the efficiency of our methods for state
recognition through studying the value of objective function
iteratively updated by Algorithm 2. The result, presented in
Fig. 3(b), indicates the algorithm converges in 9 iterations
(in general, it converges within 20 iterations with the value
below 10~#, which demonstrates the algorithm efficiency to
solve the formulated regularized optimization problem.

B. Indoor Search and Rescue using Real TurtleBot

In this set of experiments, we evaluate our SMAL method
to teach robots to perform victim search in indoor scenarios.
A real TurtleBot II robot is used to evaluate the performance
of our system. The objective is to teach the TurtleBot about
how to find victims (in this experiment, a NAO humanoid
robot) in the room using expert demonstrations. The setup
of the indoor search area is presented in Fig. 4(a). We also
install an overhead camera above this area to collect the
ground truth of robot location and orientation for evaluation
only by tracking the ARTag attached on top of the Turtlebot.

In the training phase, we teleoperated the TurtleBot using
keyboards as demonstrations to let it approach the Nao robot.
The observation obtained by the TurtleBot and the keyboard
teleoperation commands were recorded to train our SMAL
model. After that, during the execution phase, the TurtleBot
executed the search task based on the learned model to find
the NAO robot. A challenge of this real-world experiment in
comparison to simulation is that the TurtleBot often shook
when moving, making the captured observations unstable,
which can decrease the accuracy of state recognition.

The qualitative experimental results are illustrated in Fig.
4(b), which indicates even the Turtlebot cannot directly see
the victim (i.e., the NAO robot in this set of experiments),
but it can still navigate around multiple obstacles to find the
victim. This demonstrates the effectiveness of our SMAL
approach to teach robots about how to search victims in
a real indoor environment. We also quantitatively evaluate
our method’s performance using precession-recall curves
and compare SMAL with the baseline method using image
matching. The results are presented in Fig. 5(a), which shows
our approach significantly outperforms the baseline method.
The efficiency of our SMAL approach is proved in Fig. 5(b),
which shows the algorithm converges after 12 iterations.

C. Parameter Analysis

We analyze the effects of various parameter values on our
SMAL approach in real-world indoor search tasks using real
TurtleBots.

The sequence length [ for state recognition is the most
important parameter. The precision-recall curves in Fig. 6(a)
indicate that better performance can be obtained when we



(a) Experiment setup

(b) Moving route and observations of the TurtleBot during execution.

Fig. 4. Experiment setups of robot-assisted search and rescue in indoor environments and qualitative results. Fig. 4(a) shows the indoor environment used
in this set of experiments for robots to search the victim (i.e., the NAO robot). Qualitative experimental results are presented in Fig. 4(b), with the top
row showing the moving route of the TurtleBot from the viewpoint of an overhead camera, and the bottom row showing the observations acquired by the

TurtleBot during the execution.

increase the sequence length. That is because long sequences
can provide more comprehensive information than short
sequences. When [ = 1, a sequence becomes a single image.
In addition, we use success rate as a metric to evaluate
the percentage that the robot can successfully find victims
without hitting obstacles. The results are demonstrated in Fig.
6(b), where 10 executions are used in each case to calculate
the success rate. It is observed that when the used sequence
is short, the poor perception result negatively affects decision
making, resulting in the low success rate. However, longer
sequences do not necessarily result in higher success rates.
This is because as we increase the sequence length, although
each sequence can contain more information, the frequency
in which the robot receives observations decreases. This can
dramatically decrease the succuss rate, since the information
does not come in time for robot control.

VI. CONCLUSION

We propose a novel sequence-based multimodal appren-
ticeship learning approach that can automatically learn and
identify world states, and integrates perception and decision
making. The SMAL approach represents each state as a se-
quence of multimodal observations by simultaneously fusing
temporal information and multimodal data. The SMAL ap-
proach also integrates robot perception and decision making
to learn tasks from human demonstrations to enable effective
robot actions in challenging environments with perceptual
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Fig. 5. Quantitative evaluation of our SMAL approach in real-world indoor
search and rescue scenarios.

80%
08 —SMAL with 1 = 60 gg:ﬁ
’ —~ SMAL with 1 = 10 50%
= =SMAL with1=5 40%
S0.6 - Image matching 30%
ig el 20%
S— T
E 0.4 .- 0% |
o N S &
7 7 B
0.2 N N N &
X ) >
\S\ o S \;,\&‘- cb@
0 %@\v &Y‘ @Y’ z}&%
0 02 04 06 08 1 < < &5
N

Recall

(a) Precision-recall curves (b) Success rates

Fig. 6. Performance evaluation of SMAL using different parameter values.

aliasing. To evaluate the performance of the SMAL method,
experiments using both simulations and real-world robots are
performed in the challenging search and rescue applications.
Qualitative results have validated that our method is able to
guide autonomous robots to successfully finish the search and
rescue task. In addition, quantitative evaluation results have
demonstrated that our SMAL method outperforms baseline
methods based on individual images to find victims in the
challenging search and rescue applications.

APPENDIX I
CONVERGENCE ANALYSIS OF ALGORITHM 2

Theorem 1: Algorithm 2 decreases the objective value of
the problem in Eq. (7) in each iteration.

The following lemma [40] is used to prove Theorem 1.

Lemma 1: For any nonzerg vector a and a,2the following
inequality holds: [|&]l> — gz < [lafls — Sz

Then we are ready to prove the convergence of Algorithm
2, which is represented by Theorem 1.

Proof: We denote the update of W is W. According
to Step 6 in Algorithm 2, we have:

W = arg min Tr((XW — Y)P(XW - Y)")
A%

l
+MTr (W QW) + X2 Y w/ Riw,.

i=1

(14)



Thus, we can obtain
Tr(XW —Y)P(XW —-Y)")
l
+MTr(W QW) + X Z W
<Tr((XW — Y)P(XW — Y) )

l
+MTr(W QW) + X2 Y wi R'w;

i=1

15)

We are able to derive the following inequalities according
to the definition of P, Q, and R.:

! ~ 2 =112 ~j
XwW; —yi w W
S (I vl S Z I1E
— \ 2| Xw; —yill2 2HW||2 * 2| w! |2
l 2 J
IXwi —yill2 [[wl|3 w3
4+ +A
E_:<Q|XWL yill2 2[lwll2 ZQHW]\Iz

According to Lemma 1, we obtain the inequalities:

l ~ 2
- IXW; — yill2
Xwi —yille — oo
2:: <H wi—yills 2| Xw; — yill2
<> (10w — il - Xyl (16)
- YR T Xws — il

~ 1 2
[[w][3 ) ( lwll2 )
Wl — A <E wlz — A
(” I= L2fwls) = Il "2 wl

ZZ(' 2H\|WJJH\|2) ZZ(” Wil = et JH|\2)

After computing the summation of the three equations in
Eq. (16) on both sides (weighted by \s), we obtain:

l
DoNXFs = yi) "Iz + A [l + Az l2

i=1

l
<D IXwi = yi) 2 + Al wllz + Aeflwll2

i=1

amn

Thus, we conclude that Algorithm 2 decreases the objective
value monotonically during each iteration. Because Eq. (7)
is a convex optimization function, Algorithm 2 converges to
the global optimal solution. [ ]
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