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Abstract
We introduce a framework for model learning and planning in stochastic domains with

continuous state and action spaces and non-Gaussian transition models. It is efficient because
(1) local models are estimated only when the planner requires them; (2) the planner focuses
on the most relevant states to the current planning problem; and (3) the planner focuses on
the most informative and/or high-value actions. Our theoretical analysis shows the validity and
asymptotic optimality of the proposed approach. Empirically, we demonstrate the effectiveness
of our algorithm on a simulated multi-modal pushing problem.

1 Introduction

Most real-world domains are sufficiently complex that it is difficult to build an accurate deterministic model
of the effects of actions. Even with highly accurate actuators and sensors, stochasticity still widely appears
in basic manipulations, especially non-prehensile ones [36]. The stochasticity may come from inaccurate
execution of actions as well as from lack of detailed information about the underlying world state. For
example, rolling a die is a deterministic process that depends on the forces applied, air resistance, etc.;
however, we are not able to model the situation sufficiently accurately to plan reliable actions, nor to execute
them repeatably if we could plan them. We can plan using a stochastic model of the system, but in many
situations, such as rolling dice or pushing a can shown in Fig. 1, the stochasticity is not modeled well by
additive single-mode Gaussian noise, and a more sophisticated model class is necessary.

In this paper, we address the problem of learning and planning for non-Gaussian stochastic systems
in the practical setting of continuous state and action spaces. Our framework learns transition models
that can be used for planning to achieve different objectives in the same domain, as well as to be poten-
tially transferred to related domains or even different types of robots. This strategy is in contrast to most
reinforcement-learning approaches, which build the objective into the structure being learned. In addition,
rather than constructing a single monolithic model of the entire domain which could be difficult to represent,
our method uses a memory-based learning scheme, and computes localized models on the fly, only when
the planner requires them. To avoid constructing models that do not contribute to improving the policy, the
planner should focus only on states relevant to the current planning problem, and actions that can lead to
high reward.

We propose a closed-loop planning algorithm that applies to stochastic continuous state-action systems
with arbitrary transition models. It is assumed that the transition models are represented by a function
that may be expensive to evaluate. Via two important steps, we focus the computation on the current
problem instance, defined by the starting state and goal region. To focus on relevant states, we use real time
dynamic programming (RTDP) [2] on a set of states strategically sampled by a rapidly-exploring random
tree (RRT) [18, 13]. To focus selection of actions from a continuous space, we develop a new batch Bayesian
optimization (BO) technique that selects and tests, in parallel, action candidates that will lead most quickly
to a near-optimal answer.

We show theoretically that the expected accumulated difference between the optimal value function of
the original problem and the value of the policy we compute vanishes sub-linearly in the number of actions
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Figure 1: A quasi-static pushing problem: the pusher has a velocity controller with low gain, resulting in
non-Gaussian transitions. We show trajectories for object and pusher resulting from the same push velocity.

we test, under mild assumptions. Finally we evaluate our approach empirically on a simulated multi-modal
pushing problem, and demonstrate the effectiveness and efficiency of the proposed algorithm.

2 Related Work

Learning The class of problems that we address may be viewed as reinforcement-learning (RL) problems
in observable continuous state-action spaces. It is possible to address the problem through model-free RL,
which estimates a value function or policy for a specific goal directly through experience. Though the
majority of work in RL addresses domains with discrete action spaces, there has been a thread of relevant
work on value-function-based RL in continuous action spaces [12, 1, 24, 31, 23]. An alternative approach
is to do direct search in the space of policies [6, 14].

In continuous state-action spaces, model-based RL, where a model is estimated to optimize a policy,
can often be more effective. Gaussian processes (GP) can help to learn the dynamics [7, 26, 22], which
can then be used by GP-based dynamic programming [8, 26] to determine a continuous-valued closed-loop
policy for the whole state space. More details can be found in the excellent survey [10].

Unfortunately, the common assumption of i.i.d Gaussian noise on the dynamics is restrictive and may
not hold in practice [36], and the transition model can be multi-modal. It may additionally be difficult to
obtain a good GP prior. The basic GP model is can capture neither the multi-modality nor the heteroscedas-
ticity of the noise. While more advanced GP algorithms may address these problems, they often suffer from
high computational cost [29, 37].

Moldovan et al. [21] addressed the problem of multi-modality by using Dirichlet process mixture mod-
els (DPMMs) to learn the density of the transition models. Their strategies for planning were limited by
deterministic assumptions, appropriate for their domains of application, but potentially resulting in colli-
sions in ours. Kopicki et al. [16, 15, 17] addressed the problem of learning to predict the behavior of rigid
objects under manipulations such as pushing, using kernel density estimation. In this paper, we propose
an efficient planner that can work with arbitrary, especially multi-modal stochastic models in continuous
state-action spaces. Our learning method in the experiment resembles DPMMs but we estimate the density
on the fly when the planner queries a state-action pair. We were not able to compare our approach with
DPMMs because we found DPMMs not computationally feasible for large datasets.

Planning We are interested in domains for which queries are made by specifying a starting state and a
goal set, and in which the solution to the given query can be described by a policy that covers only a small
fraction of the state space that the robot is likely to encounter.

Planning only in the fraction of the state-action space that the robot is likely to encounter is, in general,
very challenging. Other related work uses tree-based search methods [33, 19, 35], where the actions are
selected by optimizing an optimistic heuristic. These algorithms are impractical for our problem because of
the exponential growth of the tree and the lack of immediate rewards that can guide the pruning of the tree.

In contrast to the tree-search algorithms, iMDP [13], which is most related to our work, uses sampling
techniques from RRTs to create successively more accurate discrete MDP approximations of the original
continuous MDP, ultimately converging to the optimal solution to the original problem. Their method as-
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sumes the ability to solve the Bellman equation optimally (e.g. for a simple stochastic LQR problem), the
availability of the backward transition models, and that the dynamics is modeled by a Wiener process, in
which the transition noise is Gaussian with execution-time-dependent variance. However, the assumptions
are too restrictive to model our domains of interest where the dynamics is non-closed-form, costly to evalu-
ate, non-reversible, and non-Gaussian. Furthermore, iMDP is designed for stochastic control problems with
multiple starting states and a single goal, while we are interested in multiple start-goal pairs.

Our work builds on the idea of constructing a sequence of MDPs from iMDP [13], and aims at prac-
tically resolving the challenges of state/action selection faced by both iMDP and tree-search-based plan-
ners [33].

Bayesian optimization There have been a number of applications of BO in optimal control, although
to our knowledge, it has not been previously applied to action-selection in continuous-action MDPs. BO
has been used to find weights in a neural network controller [9], to solve for the parameters of a hierar-
chical MDP [3], and to address safe exploration in finite MDPs [30]. To our knowledge, BO has not been
previously applied to action-selection in continuous-action MDPs.

3 Problem formulation

Let the state space S ⊂ Rds with metric d and the control space U ⊂ Rdu both be compact and measurable
sets. The interior of the state space S is So and the boundary is ∂S. For the control space U , there exists an
open set Uo in Rdu such that U is the closure of Uo. We assume the state is fully observed (any remaining
latent state will manifest as stochasticity in the transition models). Actions a = (u,∆t) are composed
of both a control on the robot and the duration for which it will be exerted, so the action space is A =
U × [Tmin, Tmax], where Tmin, Tmax ∈ R+ \ {∞} are the minimum and the maximum amount of duration
allowed. The action space A is also a compact set. The starting state is s0, and the goal region is denoted as
G ⊂ S, in which all states are terminal states. We assume G has non-zero measure, and S has finite measure.
The transition model has the form of a continuous probability density function ps′|s,a on the resulting state
s′, given previous state s and action a, such that ∀s′ ∈ S, ps′|s,a(s′ | s, a) ≥ 0,

∫
S p(s

′ | s, a) ds′ = 1.
Given a transition model and a cost function C : S×S×A→ R associated with a goal region, we can

formulate the problem as a continuous state-action MDP (S,A, ps′|s,a, R, γ), where R(s′ | s, a) = −C(s′ |
s, a) is the immediate reward function and γ is the discount factor. A high reward is assigned to the states
in the goal region G, and a cost is assigned to colliding with obstacles or taking any action. We would like
to solve for the optimal policy π : S → A, for which the value of each state s is

V π(s) = max
a∈A

∫
s′∈S

ps′|s,a(s
′ | s, a)

(
R(s′ | s, a) + γ∆tV π(s′)

)
ds′.

4 Our method: BOIDP

We describe our algorithm Bayesian Optimization Incremental-realtime Dynamic Programming (BOIDP)
in this section. At the highest level, BOIDP in Alg. 1 operates in a loop, in which it samples a discrete set
of states S̃ ⊂ S and attempts to solve the discrete-state, continuous-action MDP M̃ = (S̃, A, P̂s′|s,a, R, γ).
Here P̂s′|s,a(s′ | s, a) is the probability mass function for the transition from state s ∈ S̃ and action
a ∈ A to a new state s′ ∈ S̃. The value function for the optimal policy of the approximated MDP M̃ is
V (s) = max

a∈A
Qs(a), where

Qs(a) =
∑
s′∈S̃

P̂s′|s,a(s
′ | s, a)

(
R(s′ | s, a) + γ∆tV (s′)

)
. (1)

If the value of the resulting policy is satisfactory according to the task-related stopping criterion1, we can
proceed; otherwise, additional state samples are added and the process is repeated. Once we have a policy

1For example, one stopping criterion could be the convergence of the starting state’s value V (s0).
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Algorithm 1 BOIDP
1: function BOIDP(s0,G, S, ps′|s,a, Nmin)
2: S̃ ← {s0}
3: loop
4: S̃ ← SAMPLESTATES(Nmin, S̃,G, S, ps′|s,a)

5: π, V = RTDP(s0,G, S̃, ps′|s,a)

6: until stopping criteria reached
7: EXECUTEPOLICY(π, S̃,G)

8: function EXECUTEPOLICY(π, S̃,G)
9: loop

10: sc ← current state
11: s̃← arg mins∈S̃ d(s, sc)
12: Execute π(s̃)

13: until current state is in G

Algorithm 2 Transition model for discrete states

1: function TRANSITIONMODEL(s, a, S̃, ps′|s,a)
2: Ŝ ← HIGHPROBNEXTSTATES(ps′|s,a(S̃ | s, a)) ∪ {sobs} . sobs is a terminal state
3: P̂s′|s,a(Ŝ | s, a)← ps′|s,a(Ŝ | s, a)

4: for s′ in Ŝ do
5: if s′ ∈ So and EXISTSCOLLISION(s, a, s′) then
6: P̂s′|s,a(sobs | s, a)← P̂s′|s,a(sobs | s, a) + P̂s′|s,a(s′ | s, a)

7: P̂s′|s,a(s′ | s, a)← 0

8: P̂s′|s,a(Ŝ | s, a)← NORMALIZE(P̂s′|s,a(Ŝ | s, a))

9: return Ŝ, P̂s′|s,a(Ŝ | s, a)

π on S̃ from RTDP, the robot can iteratively obtain and execute the policy for the nearest state to the current
state in the sampled set S̃ by the metric d.

There are a number of challenges underlying each step of BOIDP. First, we need to find a way of
accessing the transition probability density function ps′|s,a , which is critical for the approximation of
P̂s′|s,a(s

′ | s, a) and the value function. We describe our “lazy access” strategy in Sec. 4.1. Second,
we must find a way to compute the values of as few states as possible to fully exploit the “lazy access” to
the transition model. Our solution is to first use an RRT-like process [18, 13] to generate the set of states that
asymptotically cover the state space with low dispersion (Sec. 4.2), and then “prune” the irrelevant states
via RTDP [2] (Sec. 4.3). Last, each dynamic-programming update in RTDP requires a maximization over
the action space; we cannot achieve this analytically and so must sample a finite set of possible actions.
We develop a new batch BO algorithm to focus action sampling on regions of the action space that are
informative and/or likely to be high-value, as described in Sec. 4.4.

Both the state sampling and transition estimation processes assume a collision checker
EXISTSCOLLISION(s, a, s′) that checks the path from s to s′ induced by action a for collisions with per-
manent objects in the map.

4.1 Estimating transition models in BOIDP

In a typical model-based learning approach, first a monolithic model is estimated from the data and then
that model is used to construct a policy. Here, however, we aim to scale to large spaces with non-Gaussian
dynamics, a setting where it is very difficult to represent and estimate a single monolithic model. Hence,
we take a different approach via “lazy access” to the model: we estimate local models on demand, as the
planning process requires information about relevant states and actions.

We assume a dataset D = {si, ai, s′i}Ni=0 for the system dynamics and the dataset is large enough to
provide a good approximation to the probability density of the next state given any state-action pair. If a
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stochastic simulator exists for the transition model, one may collect the dataset dynamically in response to
queries from BOIDP. The “lazy access” provides a flexible interface, which can accommodate a variety
of different density-estimation algorithms with asymptotic theoretical guarantees, such as kernel density
estimators [34] and Gaussian mixture models [20]. In our experiments, we focus on learning Gaussian
mixture models with the assumption that ps′|s,a(s′ | s, a) is distributed according to a mixture of Gaussians
∀(s, a) ∈ S ×A.

Given a discrete set of states S̃, starting state s and action a, we compute the approximate discrete
transition model P̂s′|s,a as shown in Algorithm 2. We use the function HIGHPROBNEXTSTATES to select
the largest set of next states Ŝ ⊆ S̃ such that ∀s′ ∈ Ŝ, ps′|s,a(s′ | s, a) > ε. ε is a small threshold parameter,
e.g. we can set ε = 10−5. If ps′|s,a does not take obstacles into account, we have to check the path from
state s to next state s′ ∈ S̃ induced by action a for collisions, and model their effect in the approximate
discrete transition model P̂s′|s,a. To achieve this, we add a dummy terminal state sobs, which represents
a collision, to the selected next-state set Ŝ. Then, for any s, a, s′ transition that generates a collision, we
move the probability mass P̂s′|s,a(s′ | s, a) to the transition to the collision state P̂s′|s,a(sobs | s, a). Finally,
P̂s′|s,a(Ŝ | s, a) is normalized and returned together with the selected set Ŝ.

These approximated discrete transition models can be indexed by state s and action a and cached for
future use in tasks that use the same set of states S̃ and the same obstacle map. The memory-based essence
of our modeling strategy is similar to the strategy of non-parametric models such as Gaussian processes,
which make predictions for new inputs via smoothness assumptions and similarity between the query point
and training points in the data set.

For the case where the dynamics model ps′|s,a is given, computing the approximated transition P̂s′|s,a
could still be computationally expensive because of the collision checking. Our planner is designed to
alleviate the high computation in P̂s′|s,a by focusing on the relevant states and actions, as detailed in the
next sections.

4.2 Sampling states

Algorithm 3 describes the state sampling procedures. The input to SAMPLESTATES in Alg. 3 includes the
minimum number of states, Nmin, to sample at each iteration of BOIDP. It may be that more than Nmin

states are sampled, because sampling must continue until at least one terminal goal state is included in
the resulting set S̃. To generate a discrete state set, we sample states both in the interior of So and on its
boundary ∂S. Notice that we can always add more states by calling SAMPLESTATES.

To generate one interior state sample, we randomly generate a state srand, and find snearest that is the
nearest state to srand in the current sampled state set S̃. Then we sample a set of actions from A, for each
of which we sample the next state sn from the dataset D given the state-action pair sneareast, a (or from
ps′|s,a if given). We choose the action a that gives us the sn that is the closest to srand. To sample states on
the boundary ∂S, we assume a uniform random generator for states on ∂S is available. If not, we can use
something similar to SAMPLEINTERIORSTATES but only sample inside the obstacles uniformly in line 7 of
Algorithm 3. Once we have a sample srand in the obstacle, we try to reach srand by moving along the path
srand → sn incrementally until a collision is reached.

4.3 Focusing on the relevant states via RTDP

We apply our algorithm with a known starting state s0 and goal region G. Hence, it is not necessary to
compute a complete policy, and so we can use RTDP [2] to compute a value function focusing on the
relevant state space and a policy that, with high probability, will reach the goal before it reaches a state
for which an action has not been determined. We assume an upper bound of the values for each state s to
be hu(s). One can approximate hu(s) via the shortest distance from each state to the goal region on the
fully connected graph with vertices S̃. We show the pseudocode in Algorithm 4. When doing the recursion
(TRIALRECURSE), we can save additional computation when maximizingQs(a). Assume that the last time
arg maxaQs(a) was called, the result was a∗ and the transition model tells us that S̄ is the set of possible
next states. The next time we call arg maxaQs(a), if the values for S̄ have not changed, we can just return
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Algorithm 3 RRT states sampling for BOIDP

1: function SAMPLESTATES(Nmin, S̃,G, S, ps′|s,a)
2: S̃o ← SAMPLEINTERIORSTATES(dNmin/2e, S̃,G, S, ps′|s,a)

3: ∂S̃ ← SAMPLEBOUNDARYSTATES(dNmin/2e, S̃,G, S, ps′|s,a)

4: return S̃o ∪ ∂S̃

5: function SAMPLEINTERIORSTATES(Nmin, S̃,G, S, ps′|s,a)
6: while | S̃ |< Nmin or G ∩ S̃ = ∅ do
7: srand ← UNIFORMSAMPLE(S)
8: snearest ← NEAREST(srand, S̃)
9: sn, an ← RRTEXTEND(snearest, srand, ps′|s,a)

10: if found sn, an then
11: S̃ ← S̃ ∪ {sn}
12: return S̃

13: function RRTEXTEND(snearest, srand, ps′|s,a)
14: dn =∞
15: while stopping criterion not reached do
16: a← UNIFORMSAMPLE(A)
17: s′ ← SAMPLE

(
ps′|s,a(· | snearest, a)

)
18: if (not EXISTSCOLLISION(s, s′, a)) and dn > d(srand, s

′) then
19: dn ← d(srand, s

′)
20: sn, an ← s′, a

21: return sn, an

a∗ as the result of the optimization. This can be done easily by caching the current (optimistic) policy and
transition model for each state.

4.4 Focusing on good actions via BO

RTDP in Algorithm 4 relies on a challenging optimization over a continuous and possibly high-dimensional
action space. Queries toQs(a) in Eq. (1) can be very expensive because in many cases a new model must be
estimated. Hence, we need to limit the number of points queried during the optimization. There is no clear
strategy for computing the gradient of Qs(a), and random sampling is very sample-inefficient especially
as the dimensionality of the space grows. We will view the optimization of Qs(a) as a black-box function
optimization problem, and use batch BO to efficiently approximate the solution and make full use of the
parallel computing resources.

We first briefly review a sequential Gaussian-process optimization method, GP-EST [32], shown in Al-
gorithm 5. For a fixed state s, we assume Qs(a) is a sample from a Gaussian process with zero mean
and kernel κ. At iteration t, we select action at and observe the function value yt = Qs(at) + εt,
where εt ∼ N (0, σ2). Given the observations Dt = {(aτ , yτ )}tτ=1 up to time t, we obtain the pos-
terior mean and covariance of the Qs(a) function via the kernel matrix Kt = [κ(ai, aj)]ai,aj∈Dt

and
κt(a) = [κ(ai, a)]ai∈Dt [25]:

µt(a) = κt(a)T(Kt + σ2I)−1yt

κt(a, a
′) = κ(a, a′)− κt(a)T(Kt + σ2I)−1κt(a

′) .

The posterior variance is given by σ2
t (a) = κt(a, a). We can then use the posterior mean function µt(·)

and the posterior variance function σ2
t (·) to select which action to test in the next iteration. We here make

use of the assumption that we have an upper bound hu(s) on the value V (s). We select the action that is
most likely to have a value greater than or equal to hu(s) to be the next one to evaluate. Algorithm 5 relies
on sequential tests of Qs(a), but it may be much more effective to test Qs(a) for multiple values of a in
parallel. This requires us to choose a diverse subset of actions that are expected to be informative and/or
have good values.
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Algorithm 4 RTDP for BOIDP

1: function RTDP(s0,G, S̃, ps′|s,a)
2: for s in S̃ do
3: V (s) = hu(s) . Compute the value upper bound
4: while V (·) not converged do
5: π, V ← TRIALRECURSE(s0,G, S̃, ps′|s,a)

6: return π, V

7: function TRIALRECURSE(s,G, S̃, ps′|s,a)
8: if reached cycle or s ∈ G then
9: return

10: π(s)← arg maxaQ(s, a, S̃, ps′|s,a) . Max via BO
11: s′ ← SAMPLE(P̂s′|s,a(S̃|s, π(s)))

12: TRIALRECURSE(s′,G, S̃, ps′|s,a)

13: π(s)← arg maxaQ(s, a, S̃, ps′|s,a) . Max via BO
14: V (s)← Q(s, π(s), S̃, ps′|s,a)
15: return π, V

16: function Q(s, a, S̃, ps′|s,a)
17: if P̂s′|s,a(S̃|s, a) has not been computed then
18: P̂s′|s,a(S̃|s, a) = 0 . P̂s′|s,a is a shared matrix
19: Ŝ, P̂s′|s,a(Ŝ|s, a)← TRANSITIONMODEL(s, a, S̃, ps′|s,a)

20: return R(s, a) + γ∆t ∑
s′∈Ŝ P̂s′|s,a(s

′|s, a)V (s′)

We propose a new batch Bayesian optimization method that selects a query set that has large diversity
and low values of the acquisition function Gs,t(a) =

(
hu(s)−µt−1(a)

σt−1(a)

)
. The key idea is to maximize a

submodular objective function with a cardinality constraint on B ⊂ A, |B| = M that characterize both
diversity and quality:

Fs(B) = log detKB − λ
∑
a∈B

hu(s)− µt−1(a)

σt−1(a)
(2)

where KB = [κ(ai, aj)]ai,aj∈B and λ is a trade-off parameter for diversity and quality. If λ is large,
Fs will prefer actions with lower Gs,t(a), which means a better chance of having high values. If λ is low,
log detKB will dominate Fs and a more diverse subsetB is preferred. λ can be chosen by cross-validation.
We optimize the heuristic function Fs via greedy optimization which yield a 1 − 1

e approximation to the
optimal solution. We describe the batch GP optimization in Algorithm 6.

The greedy optimization can be efficiently implemented using the following property of the determi-

Algorithm 5 Optimization of Qs(a) via sequential GP optimization

1: D0 ← ∅
2: for t = 1→ T do
3: µt−1, σt−1← GP-predict(Dt−1)
4: at ← arg mina∈A

hu(s)−µt−1(a)
σt−1(a)

5: yt ← Qs(at)
6: Dt ← Dt−1 ∪ {at, yt}

7



Algorithm 6 Optimization of Qs(a) via batch GP optimization

1: D0 ← ∅
2: for t = 1→ T do
3: µt−1, σt−1← GP-predict(Dt−1)
4: B ← ∅
5: for i = 1→M do
6: B ← B ∪ {arg maxa∈A Fs(B ∪ {a})− Fs(B)}
7: yB ← Qs(B) . Test Qs in parallel
8: Dt ← Dt−1 ∪ {B,yB}

nant:

Fs(B ∪ {a})− Fs(B) (3)

= log detKB∪{a} − log detKB −
hu(s)− µt−1(a)

σt−1(a)
(4)

= log(κa − κT
BaK

−1
B κBa)−

hu(s)− µt−1(a)

σt−1(a)
(5)

where κa = κ(a, a),κBa = [κ(ai, a)]ai∈B .

5 Theoretical analysis

In this section, we characterize the theoretical behavior of BOIDP. Thm. 1 establishes the error bound for
the value function on the π̂∗-relevant set of states [2], where π̂∗ is the optimal policy computed by BOIDP.
A set B ⊆ S is called π-relevant if all the states in B is reachable via finite actions from the starting state
s0 under the policy π. We denote | · |B as the L∞ norm of a function · over the set B.

We assume the existence of policies whose relevant sets intersect with G. If there exists no solution
to the continuous state-action MDPM, our algorithm will not be able to generate an RRT whose vertices
contain a state in the goal region G, and hence no policy will be generated. We use the reward setup
described in Sec. 3. For the simplicity of the analysis, we set the reward for getting to the goal large enough
such that the optimal value function V ∗(s) = maxa∈AQs(a) is positive for any state s on the path to the
goal region under the optimal policy π∗.

We denote the measure for the state space S to be ρ and the measure for the action spaceA to be ψ. Both
ρ and ψ are absolutely continuous with respect to Lebesgue measure. The metric for A is g, and for S is d.
We also assume the transition density function ps′|s,a is not a generalized function and satisfies the property
that if

∫
F ps′|s,a(s

′|s, a) ds′ > 0, then ρ(F) > 0. Without loss of generality, we assume min ∆t = 1 and
max ∆t = T .

Under mild conditions on Qs(a) specified in Thm. 1, we show that with finitely many actions selected
by BO, the expected accumulated error expressed by the difference between the optimal value function V ∗

and the value function V̂ of the policy computed by BOIDP in Alg. 1 on the π̂∗-relevant set decreases
sub-linearly in the number of actions selected for optimizing Qs(·) in Eq. (1).

Theorem 1 (Error bound for BOIDP). LetD = {si, ai, s′i}Ni=0 be the dataset that is collected from the true
transition probability ps′|s,a, ∀(s, a) ∈ S ×A. We assume that the transition model ps′|s,a estimated by the
density estimator asymptoticly converges to the true model. ∀s ∈ S, we assume Qs(a) =

∫
s′∈S ps′|s,a(s

′ |
s, a)

(
R(s′ | s, a) + γ∆tV ∗(s′)

)
ds′ is a function locally continuous at arg maxa∈AQs(a), where V ∗(·) =

maxa∈AQ·(a) is the optimal value function for the continuous state-action MDPM = (S,A, ps′|s,a, R, γ).
V ∗(·) is associated with an optimal policy whose relevant set contains at least one state in the goal region
G. At iteration k of RTDP in Alg. 4, we define V̂k to be the value function for M̃ = (S̃, A, P̂s′|s,a, R, γ)

approximated by BOIDP, π̂k to be the policy corresponding to V̂k, and Bk to be the π̂k-relevant set. We
assume that

Qs,k(a) =
∑
s′∈S̃

P̂s′|s,a(s
′ | s, a)

(
R(s′ | s, a) + γ∆tV̂k−1(s′)

)

8



is a function sampled from a Gaussian process with known priors and i.i.d Gaussian noise N (0, σ). If we
allow Bayesian optimization for Qs,k(a) to sample T actions for each state and run RTDP in Alg. 4 until it
converges with respect to the Cauchy’s convergence criterion [5] with K <∞ iterations, in expectation,

lim
|S̃|,|D|→∞

|V̂K(·)− V ∗(·)|BK ≤
ν

1− γ

√
2ηT

T log(1 + σ2)
,

where ηT is the maximum information gain of the selected actions [27, Theorem 5], ν = max
s,t,k

min
a∈A

Gs,t,k(a),

and Gs,t,k(·) is the acquisition function in [32, Theorem 3.1] for state s ∈ S̃, iteration t = 1, 2, · · · , T in
Alg. 5 or 6, and iteration k = 1, 2, · · · ,K of the loop in Alg. 4.

Proof. To prove Thm. 1, we first show the following facts: (1) The state sampling procedure in Alg. 3
stops in finite steps; (2) the difference between the value function computed by BOIDP and the optimal
value function computed via asynchronous dynamic programming with an exact optimizer is bounded in
expectation; (3) the optimal value function of the approximated MDP M̃ asymptotically converges to that
of the original problem defined by the MDPM.
Claim 1.1: The expected number of iterations for the set of sampled states S̃ computed by Alg. 3 to contain
one state in G is finite.
Proof of Claim 1.1: Let Sgood be the set of states with non-zero probability to reach the goal region via
finite actions. Clearly, G ⊂ Sgood. Because there exists a state in the goal region that is reachable with finite
steps following the policy π∗ starting from s0, we have s0 ∈ Sgood. Hence S̃ ∩ Sgood is non-empty in any
iteration of SAMPLEINTERIORSTATES of Alg. 3. We can show that if the nearest state selected in Line 7 of
Alg. 3 is in Sgood, there is non-zero probability to extend another state in Sgood with the RRT procedure. To
prove this, we first show for every state s ∈ Sgood ∩ S̃ there exists a set of actions with non-zero measure,
in which each action a satisfies

∫
Sgood

ps′|s,a(s
′ | s, a) ds′ > 0.

For every state s ∈ Sgood ∩ S̃, because Qs(a) is locally continuous at a = π∗(s), for any positive real
number ζ, there exists a positive real number δ such that ∀a ∈ {a : g(a, π∗(s)) < δ, a ∈ A}, we have

|Qs(a)−Qs(π∗(s))| < ζ. (6)

Notice that by the design of the reward function R, we have

Qs(a) =

∫
Sgood∪(S\Sgood)

ps′|s,a(s
′ | s, a)

(
R(s′ | s, a) + γ∆tV ∗(s′)

)
ds′ (7)

≤
∫
Sgood

ps′|s,a(s
′ | s, a)

(
R(s′ | s, a) + γ∆tV ∗(s′)

)
ds′

+
Ca

1− γT

∫
S\Sgood

ps′|s,a(s
′ | s, a) ds′ (8)

where −Ca > 0 is the smallest cost for either executing one action or colliding with obstacles. The
inequality is because ∀s′ ∈ S \ Sgood,

R(s′ | s, a) + γ∆tV ∗(s′) ≤ Ca
1− γT

< 0. (9)

Because π∗(s) = arg maxa∈AQs(a) and the reward for the goal region is set large enough so that
Qs(π

∗(s)) > 0, there exists r > 0 such that ∀q ∈ R satisfying q > Qs(π
∗(s))− r, we have q > 0. Let the

arbitrary choice of ζ in Eq. (6) be ζ = r. Because Qs(π∗(s))− ζ = Qs(π
∗(s))− r < Qs(a), we have

Qs(a) > 0,∀a ∈ {a : g(a, π∗(s)) < δ, a ∈ A},

and∫
Sgood

ps′|s,a(s
′ | s, a)

(
R(s′ | s, a) + γ∆tV ∗(s′)

)
ds′ > − Ca

1− γT

∫
S\Sgood

ps′|s,a(s
′ | s, a) ds′ > 0

9



Hence
∫
s′∈Sgood

ps′|s,a(s
′ | s, a) ds′ > 0 must hold for any action a ∈ {a : g(a, π∗(s)) < δ, a ∈ A}. Recall

that one dimension of a = (u,∆t) is the duration ∆t of the control u. Because the dynamics of the physics
world is continuous, for any a = (u,∆t′) ∈ A such that g((u,∆t), π∗(s)) < δ and 1 ≤ ∆t′ ≤ ∆t, we
have

∫
Sgood

ps′|s,a(s
′ | s, a) ds′ > 0. Let As = {(u,∆t′) : g((u,∆t), π∗(s)) < δ, 1 ≤ ∆t′ ≤ ∆t} ∩A.

What remains to be shown is ψ(As) > 0. Because there exists an open set Ao such that A is the closure
of Ao, π∗(s) is either in Ao or a limit point of Ao. If π∗(s) is in the open set Ao, there exist 0 < δ′ ≤ δ
such that {a : g(a, π∗(s)) < δ′} ⊂ A, and so we also have ψ(As) > 0. If π∗(s) is a limit point of the
open set Ao, there exist a′ ∈ Ao such that g(a′, π∗(s)) < δ/2 and a′ 6= π∗(s). Because a′ ∈ Ao, there
exist 0 < δ′ ≤ δ/2 such that {a : g(a′, a) < δ′} ⊂ A. For any a ∈ {a : g(a′, a) < δ′}, we have
g(a, π∗(s)) ≤ g(a, a′) + g(a′, π∗(s)) < δ′+ δ/2 ≤ δ. Hence {a : g(a′, a) < δ′} ⊂ As, and so ψ(As) > 0.
Thus for any π∗(s) ∈ A, we have ψ(As) > 0.

So, for every state s ∈ Sgood ∩ S̃ and action a ∈ As with ψ(As) > 0,
∫
Sgood

ps′|s,a(s
′ | s, a) ds′ > 0.

As a corollary, ρ({s′ : p(s′ | s, a) > 0} ∩ Sgood) > 0 holds ∀s ∈ Sgood ∩ S̃, a ∈ As.
Now we can show that there is non-zero probability to extend a state on the near-optimal path

in Sgood with the RRT procedure in one iteration of SAMPLEINTERIORSTATES in Alg. 3. Let θ =
mins∈S̃∩Sgood,a∈As

ρ({s′ : p(s′ | s, a) > 0} ∩ Sgood) > 0. With the finite S̃ for some iteration, we can

construct a Voronoi diagram based on the vertices from the current set of sampled states S̃. ∀s ∈ Sgood∩ S̃,
there exists a Voronoi region Vor(s) associated with state s. We can partition this Voronoi region Vor(s)
to one part, Vor(As) ⊂ Vor(s), containing states in Sgood generated by actions in As and its complement,
Vor(A \ As) = Vor(s) \ Vor(As). Notice that As includes actions with the minimum duration, and the
unit for the minimum duration can be set small enough so that ρ({s′ : p(s′ | s, a) > 0, a ∈ As, s

′ ∈
Sgood} ∩ Vor(s)) > 02. Since {s′ : p(s′ | s, a) > 0, a ∈ As} ∩ Sgood ∩ Vor(s) ⊂ Vor(As), we have
ρ(Vor(As)) > 0,∀s ∈ S̃. We denote ps = mins

ρ(Vor(As))
ρ(S) > 0 and pa = mins

ψ(As)
ψ(A) > 0. With proba-

bility at least ps, there is a random state sampled in Vor(As) in this iteration. With probability at least pa,
at least an action in As is selected to test distance, and with probability at least θ, a state in Sgood can be
sampled from the transition model conditioned on the state s and the selected action in As.

Next we show that SAMPLEINTERIORSTATES in Alg. 3 constructs an RRT whose finite set of sampled
states S̃ contains at least one goal state in expectation.

By assumption, the goal state is reachable with finite actions. For any s ∈ Sgood ∩ S̃, the goal region is
reachable from s in finite steps. Notice that once a new state in {s′ : p(s′ | s, a) > 0, a ∈ As} ∩ Sgood is
sampled, s′ uses one less step than s to reach the goal region. Let K be the largest finite number of actions
necessary to reach the goal region G from the initial state s0. Hence, with at most a finite number of K

θpspa
iterations in expectation (including both loops for sampling actions and loops for sampling states), at least
a goal state will be added to S̃.

Q.E.D.

Claim 1.2: Let Ṽ ∗ be the optimal value function computed via asynchronous dynamic programming with
an exact optimizer. If Alg. 4 converges with K <∞ iterations,

|V̂K(·)− Ṽ ∗(·)|BK ≤
ν

1− γ

√
2ηT

T log(1 + σ2)
.

Proof of Claim 1.2: The RTDP process of BOIDP in Alg. 4 searches for the relevant set BK of BOIDP’s
policy π̂ via recursion on stochastic paths (trials). If BOIDP converges, all states in Bπ̂ should have been
visited and their values V̂ (s), ∀s ∈ BK have converged. Compared to asynchronous dynamic programming
(ADP) with an exact optimizer, our RTDP process introduces small errors at each trial, but eventually
the difference between the optimal value function computed by ADP and the value function computed by
BOIDP is bounded.

2This is because Vor(s) is a neighborhood of s, and there exists an action a ∈ As such that a next state s′ ∈ Sgood is in the
interior of Vor(s) given the current state s. So there exists a small ball in S with s′ as the center such that this ball is a subset of
both Vor(s) and {s′ : p(s′ | s, a) > 0, a ∈ As, s

′ ∈ Sgood} (by the continuity of ps′|s,a).
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In the following, the order of states to be updated in ADP is set to follow RTDP. This order does not
matter for the convergence of ADP as any state in Bπ̂ will eventually be visited infinitely often if K →
∞ [28]. We denote the value for the i-th state updated at iteration k of RTDP to be V̂ki, the corresponding
value function updated by RTDP with an exact optimizer only for this update to be V̂ ∗ki, and the difference
between them to be εki = |V̂ ∗ki − V̂ki|.

According to [32, Theorem 3.1], in expectation, for any i-th state ski to be updated at iteration k, the
following inequality holds:

εki ≤ νki

√
2ηT

T log(1 + σ2)
,

where
νki = max

t∈[1,T ]
min
a∈A

Gsi,t,k(a),

and

Gsi,t,·(a) =
hu(si)− µt−1(a)

σt−1(a)

is the acquisition function in [32, Theorem 3.1], which makes use of the assumed upper bound hu(·) on
the value function. Let the sequence of states to be updated at iteration k be sk1, sk2, · · · , sknk

and ν =
maxk∈[1,K],i∈[1,nk] νki. For any iteration k and state ski, we have

εki ≤ ν

√
2ηT

T log(1 + σ2)
= ε.

So our optimization introduces error of at most ε to the optimization of the Bellman equation at any iteration.
Furthermore, we can bound the difference between the value for the i-th state updated at iteration k of
RTDP (V̂ki) and the corresponding value function updated by ADP (Ṽ ∗ki). More specifically, the following
inequalities hold for any K = 1, 2, · · · ,∞:

|V̂11 − Ṽ ∗11| ≤ ε,
|V̂12 − Ṽ ∗12| ≤ ε+ γε,

· · ·,

|V̂1n1 − Ṽ ∗1n1
| ≤

n1∑
i=1

γi−1ε,

· · ·,
· · ·,

|V̂K1 − Ṽ ∗K1| ≤ ε+ γ

n1+···+nK−1∑
i=1

γi−1ε,

|V̂K2 − Ṽ ∗K2| ≤ ε+ γε+ γ2

n1+···+nK−1∑
i=1

γi−1ε,

· · ·,

|V̂KnK − Ṽ
∗
KnK | ≤

n1+···+nK∑
i=1

γi−1ε <
ε

1− γ
=

ν

1− γ

√
2ηT

T log(1 + σ2)
.

Notice that V̂ki converges because it monotonically decreases for any state index i and it is lower
bounded by

(
C

1−γT

)
where C < 0 is the highest cost, e.g. colliding with obstacles. Since we use Cauchy’s
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convergence test [5], we can set the threshold for the convergence test to be negligible. Hence for some
K <∞, both V̂k and Ṽk converge according to Cauchy’s convergence test, and we have

|V̂K(·)− Ṽ ∗(·)|BK ≤
ν

1− γ

√
2ηT

T log(1 + σ2)
.

Q.E.D.

Claim 1.3: Ṽ ∗, the optimal value function of the approximated MDP M̃, asymptotically converges to V ∗,
the optimal value function of the original problem defined by the MDPM.
Proof of Claim 1.3: We consider the asymptotic case where the size of the dataset |D| → ∞ and the number
of states sampled |S̃| → ∞. Notice that these two limit does not contradict Claim 1.1 because BOIDP
operates in a loop and we can iteratively sample more states by calling SAMPLESTATES in Alg. 1. When
|D| → ∞, ps′|s,a converges to the true transition model.

Because the states are sampled uniformly randomly from the state space S in Line 7 of Alg. 3, when
|S̃| → ∞, the set S̃ can be viewed as uniform random samples from the reachable state space3. So the
value function for the optimal policy of M̃ asymptotically converges to that ofM:

lim
|S̃|,|D|→∞

|Ṽ ∗ − V ∗|∞ = 0.

Q.E.D.
Thm. 1 directly follows Claim 1.1, 1.2, and 1.3. By the triangle inequality of L∞, we have

lim
|S̃|,|D|→∞

|V̂K − V ∗|BK ≤ lim
|S̃|,|D|→∞

|V̂K − Ṽ ∗|BK + lim
|S̃|,|D|→∞

|Ṽ ∗ − V ∗|BK

≤ ν

1− γ

√
2ηT

T log(1 + σ2)

holds in expectation.

6 Implementation and Experiments

We tested our approach in a quasi-static problem, in which a robot pushes a circular object through a planar
workspace with obstacles in simulation4. We represent the action by the robot’s initial relative position x to
the object (its distance to the object center is fixed), the direction of the push z, and the duration of the push
∆t, which are illustrated in Fig. 2. The companion video shows the behavior of this robot, controlled by a
policy derived by BOIDP from a set of training examples.

In this problem, the basic underlying dynamics in free space with no obstacles are location invariant;
that is, that the change in state ∆s resulting from taking action a = (u,∆t) is independent of the state s
in which a was executed. We are given a training dataset D = {∆si, ai}Ni=0, where ai is an action and
∆si is the resulting state change, collected in the free space in a simulator. Given a new query for action
a, we predict the distribution of ∆s by looking at the subset D′ = {∆sj , aj}Mj=0 ⊆ D whose actions
aj are the most similar to a (in our experiments we use 1-norm distance to measure similarity), and fit a
Gaussian mixture model on ∆sj using the EM algorithm, yielding an estimated continuous state-action
transition model ps′|s,a(s + ∆s | s, a) = p∆s|a(∆s | a). We use the Bayesian information criterion (BIC)
to determine the number of mixture components.

3Alg. 3 does not necessarily lead to uniform samples of states in the state space. However, as the number of states sampled
approaches infinity, |S̃| → ∞, we can construct a set of finite and arbitrarily small open balls that cover the (reachable) state space
such that there exists at least one sampled state in any of those balls. Such a cover exists because the state space is compact. If the
samples are not uniform, we can simply adopt a uniform sampler on top of Alg. 3, and throw away a fixed proportion of states so
that the remaining set of states are uniform samples from the state space S.

4All experiments were run with Python 2.7.6 on Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz with 64GB memory.
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Figure 2: Pushing a circular object with a rectangle pusher.
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Figure 3: (a) Samples from the single-mode Gaussian transition model (K = 1) and the two-component
Gaussian mixture transition model (K = 2) in the free space when a = 0. (b) The number of visited states
(y-axis) increases with the number of sampled states |S̃| (x-axis). Planning with K = 2 visits fewer states
in RTDP than with K = 1.

6.1 Importance of learning accurate models

Our method was designed to be appropriate for use in systems whose dynamics are not well modeled with
uni-modal Gaussian noise. The experiments in this section explore the question of whether a uni-modal
model could work just as well, using a simple domain with known dynamics s′ = s + T (a)ρ, where the
relative position x = 0 and duration ∆t = 1 are fixed, the action is the direction of motion, a = z ∈ [0, 2π),
T (a) is the rotation matrix for angle, and the noise is

ρ ∼ 0.6N (

[
5.0
5.0

]
,

[
2.0 0.0
0.0 2.0

]
) + 0.4N (

[
5.0
−5.0

]
,

[
2.0 0.0
0.0 2.0

]
).

We sample ρ from its true distribution and fit a Gaussian (K = 1) and a mixture of Gaussians (K = 2).
The samples from K = 1 and K = 2 are shown in Fig. 3 (a). We plan with both models where each
action has an instantaneous reward of −1, hitting an obstacle has a reward of −10, and the goal region has
a reward of 100. The discount factor γ = 0.99. To show that the results are consistent, we use Algorithm 3
to sample 1500 to 5000 states to construct S̃, and plan with each of them using 100 uniformly discretized
actions within 1000 iterations of RTDP.

To compute the Monte Carlo reward, we simulated 500 trajectories for each computed policy with the
true model dynamics, and for each simulation, at most 500 steps are allowed. We show 10 samples of
trajectories for both K = 1 and K = 2 with |S̃| = 5000, in Fig 4. Planning with the right model K = 2
tends to find better trajectories, while because K = 1 puts density on many states that the true model does
not reach, the policy of K = 1 in Fig 4 (a) causes the robot to do extra maneuvers or even choose a longer
trajectory to avoid obstacles that it actually has very low probability of hitting. As a result, the reward and
success rate for K = 2 are both higher than K = 1, as shown in Fig. 5. Furthermore, because the single-
mode Gaussian estimates the noise to have a large variance, it causes RTDP to visit many more states than
necessary, as shown in Fig. 3 (b).
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Figure 4: (a) Samples of 10 trajectories with K = 1. (b) Samples of 10 trajectories with K = 2. Using the
correct number of components for the transition model improves the quality of the trajectories.
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Figure 5: (a): Reward. (b): Success rate. Using two components (K = 2) performs much better than using
one component (K = 1) in terms of reward and success rate.

6.2 Focusing on the good actions and states

In this section we demonstrate the effectiveness of our strategies for limiting the number of states visited
and actions modeled. We denote using Bayesian optimization in Lines 10 and 13 in Algorithm 4 as BO and
using random selections as Rand.

We first demonstrate why BO is better than random for optimizing Qs(a) with the simple example
from Sec. 6.1. We plot the Qs(a) in the first iteration of RTDP where s = [−4.3, 33.8], and let random
and BO in Algorithm 5 each pick 10 actions to evaluate sequentially as shown in Fig 7 (a). We use the
GP implementation and the default Matern52 kernel implemented in the GPy module [11] and optimize
its kernel parameters every 5 selections. The first point for both BO and Rand is fixed to be a = 0.0.
We observe that BO is able to focus its action selections in the high-value region, and BO is also able to
explore informative actions if it has not found a good value or if it has finished exploiting a good region
(see selection 10). Random action selection wastes choices on regions that have already been determined
to be bad.

Next we consider a more complicated problem in which the action is the high level control of a pushing
problem a = (z, x,∆t), z ∈ [0, 2π], x ∈ [−1.0, 1.0],∆t ∈ [0.0, 3.0] as illustrated in Fig. 2. The instan-
taneous reward is −1 for each free-space motion, −10 for hitting an obstacle, and 100 for reaching the
goal; γ = 0.99. We collected 1.2 × 106 data points of the form (a,∆s) with x and ∆t as variables in the
Box2D simulator [4] where noise comes from variability of the executed action. We make use of the fact
that the object is cylindrical (with radius 1.0) to reuse data. An example of the distribution of ∆s given
a = (0.0, 0.3, 2.0) is shown in Fig. 6.

We compare policies found by Rand and BO with the same set of sampled states (|S̃| =
200, 400, 600, 800, 1000) within approximately the same amount of total computation time. They are both
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Figure 7: (a) We optimize Qs(a) with BO and Rand by sequentially sampling 10 actions. BO selects
actions more strategically than Rand. (b) BO samples fewer actions than Rand in the pushing problem for
all settings of |S̃|.

able to compute the policy in 30 ∼ 120 seconds, as shown in Fig. 8 (b). In more realistic domains, it is pos-
sible that learning the transition model will take longer and dominate the action-selection computation. We
simulate 100 trajectories in the Box2D simulator for each planned policy with a maximum of 200 seconds.
We show the result of the reward and success rate in Fig. 9, and the average number of actions selected for
visited states in Fig. 7(b). In our simulations, BO consistently performs approximately the same or better
than Rand in terms of reward and success rate while BO selects fewer actions than Rand. We show 10
simulated trajectories for Rand and BO with |S̃| = 1000 in Fig. 10.

From Fig. 8 (a), it is not hard to see that RTDP successfully controlled the number of visited states
to be only a small fraction of the whole sampled set of states. Interestingly, BO was able to visit slightly
more states with RTDP and as a result, explored more possible states that it is likely to encounter during the
execution of the policy, which may be a factor that contributed to its better performance in terms of reward
and success rate in Fig. 9. We did not compare with pure value iteration because the high computational
cost of computing models for all the states made it infeasible.

BOIDP is able to compute models for only around 10% of the sampled states and about 200 actions
per state. If we consider a naive grid discretization for both action (3 dimension) and state (2 dimension)
with 100 cells for each dimension, the number of models we would have to compute is on the order of 1010,
compared to our approach, which requires only 104.
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Figure 8: (a) Number of visited states in RTDP. Both of Rand and BO consistently focus on about 10%
states for planning. (b) Learning and planning time of BO and Rand.
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Figure 9: (a) Reward. (b) Success rate. BO achieves better reward and success rate, with many fewer
actions and slightly more visited states.

7 Conclusion

An important class of robotics problems are intrinsically continuous in both state and action space, and may
demonstrate non-Gaussian stochasticity in their dynamics. We have provided a framework to plan and learn
effectively for these problems. We achieve efficiency by focusing on relevant subsets of state and action
spaces, while retaining guarantees of asymptotic optimality.
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